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Abstract.  In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) 

Timoshenko beam in thermal environment with various boundary conditions are performed by employing a 

semi analytical differential transform method (DTM) and presenting a Navier type solution method for the 

first time. The temperature-dependent material properties of FG beam are supposed to vary through 

thickness direction of the constituents according to the power-law distribution which is modified to 

approximate the material properties with the porosity phases. Also the porous material properties vary 

through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, 

namely, uniform and linear temperature rises through thickness direction are considered. Derivation of 

equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation 

and rotary inertia. Hamilton’s principle is applied to obtain the governing differential equation of motion and 

boundary conditions. The detailed mathematical derivations are presented and numerical investigations are 

performed while the emphasis is placed on investigating the effect of several parameters such as porosity 

distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the 

natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG 

beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for 

future analyses of FG beams with porosity phases. 
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1. Introduction 
 

Functionally graded materials (FGMs) are new type of composite materials formed of two or 

more phases which their both composition and structure gradually change over gradient directions 

smoothly and continuously. Therefore by changing the properties of the material it is possible to 

perform a certain function of material properties of mechanical strength and thermal conductivity.  

The FGMs were introduced by Japanese scientists in mid-1980s as aerospace application for 

the first time. FGMs possess various advantages in comparison with traditional composites. For 

instance, multi functionality, ability to control deformation, corrosion resistance, dynamic 
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response, minimization or remove stress concentrations, smoothing the transition of thermal stress 

and resistance to oxidation. Hence, FGMs have received wide engineering applications in modern 

industries including aerospace, nuclear energy, turbine components, rocket nozzles, critical 

furnace parts, batteries/fuel cells, critical furnace parts, etc. (Jha et al. 2013, Wattanasakulpong et 

al. 2012, Thai and Vo 2012, Şimşek and Kocatürk 2009). These wide engineering applications is 

cause that researchers attracted to FGMs, and study their vibration, static and dynamic’s behavior 

of the FG structures (Ebrahimi et al. 2009, Ebrahimi et al. 2009). Many investigation are reported 

in literature to study the dynamic and static behavior of functionally graded beams, here some of 

these disquisitions are mentioned briefly. Aydogdu and taskin (Aydogdu and Taskin) discussed 

free vibration analysis simply supported FG beam with power-law and exponential material 

graduation. They used different higher order shear deformation and classical beam theory (CBT) 

for deriving the differential equations of motion and solved them by Navier type solution method. 

Also they concluded that, increasing the mode number is couse increasing the difference between 

CBT and higher order theories. Simsek (201) investigated the vibration analysis of FGM beams 

based classical, the first-order and different higher order shear deformation beam theories by using 

Rayleigh-Ritz method. Also in another paper, non-linear vibration of FG Timoshenko beam 

subjected to a moving harmonic loading has been studied by him (Şimşek 2010). Sina et al. (2009) 

analyze the free vibration of FG beams by developing a new beam theory for laminated composite 

beams, which has a little different with first-order shear deformation beam theory. Pradhan and 

Chakraverty (2013) have presented free vibration characteristics FG beams based on Euler and 

Timoshenko beam theory with various boundary conditions by using Rayleigh-Ritz method. An 

analytical method has been presented by Wei et al. (201) for free vibration of cracked FGM beams 

with axial loading, shear deformation and rotary inertia. Akgoz and Civalek developed a shear 

deformation beam model and new shear correction factors for Bending and buckling analyses of 

simply supported FG micro beams (Akgöz and Civalek 2014). Civalek and Kiracioglu presented a 

numerical solution, the DSC method for free vibration of Timoshenko beams (Civalek and 

Kiracioglu 2010). 

Due to huge application of beams in different fields such as civil, marine and aerospace 

engineering, and difference between the making temperatures and working temperatures of 

structures, for more efficient design, it is important to take into account the thermal effect when 

designing FGM structures. Xiang and Yang (2008) exploited free and forced vibration three-layer 

laminated Timoshenko beams of variable thickness with FGM in thermal environment. 

Differential quadrature method (DQM) has been used to solve equations of motions. Xiang and 

Yang (2008) presented an analytical solution for free vibration FG beams based on unified higher 

order shear deformation beam theory with general boundary conditions. Material properties were 

assumed to be temperature-dependent and the material graduation is taken to three type of power, 

exponential and sigmoid low. The important influence of temperature change on the vibration 

response of the FG beams is also taken into account. Using an analytical approach, bending and 

free vibration analysis of simply supported beam FG beams is investigated by Thai and Vo based 

on various higher-order shear deformation beam theories (Thai and Vo 2012). Recently 

Timoshenko beam theory was used to investigate thermo-mechanical vibration of pre/post-buckled 

FG beams resting on elastic foundation  by Komijani et al. (2014). The material properties are 

assumed temperature and  microstructure dependent and generalized differential quadrature 

method is used to solve motion equations. Analytical solutions are presented by Fourier series 

expansion. Akgoz and Civalek performed the thermo-mechanical buckling characteristics of 

embedded FG micro beams in elastic medium based on trigonometric shear deformation beam and 

344



 

 

 

 

 

 

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams... 

modified couple stress theories (Akgöz and Civalek 2014).  Ebrahimi and Salari (2015) 

propounded thermal buckling and vibrations characteristic of FG nano beams. They concluded 

reduction of natural frequency and buckling temperature is result of exist of nonlocality. 

With the rapid progression in technology of structure elements, structures with graded porosity 

can be introduced as one of the latest development in FGMs. The structures consider pores into 

microstructures by taking the local density into account. Because of existence of technical problem 

in manufacturing of FGM, porosity or micro voids occurring inside FGM, thus it is necessary to 

consider the effect of  porosity on static and dynamic’s behavior of these materials in this 

investigation. The porous materials are combined of two elements as solid (body) and liquid or gas 

that wood, stone, sponge and bone are example of these materials in the nature. Studies on the 

vibration response of porous FG structures, especially for beams, are still limited in number. For 

porous plates, the linear and nonlinear dynamic stability of a circular porous plate has been 

investigated to determine the critical loads in two separate study by Magnucka-Blandzi (2009, 

2010). In another study, she also presented the problem of axi-symmetrical deflection and buckling 

of circular porous plates (Magnucka-Blandzi 2008). Moreover, the wave propagation of an infinite 

FG plate having porosities by using various simple higher-order shear deformation theories has 

been studied by Ait Yahia et al. (2015). Yahia et al. have presented non-linear free vibrations 

analysis of FG porous annular plates resting on elastic foundations (Yahia et al. 2015). They 

concluded that porosity volume fraction and type of porosity distribution have a significant 

influence on the geometrically non-linear free vibration response of the FG annular plates at large 

amplitudes. Mechab et al. have developed a nonlocal elasticity model for free vibration of FG 

porous nanoplates resting on elastic foundations (Mechab 2016). They utilized exponential shear 

deformation plate theory. Ebrahimi and Mokhtari (2014) studied transverse vibration analysis of 

rotating FG beam with porosities based on Timoshenko beam theory. DTM has been presented to 

solve the equations of motions. Wattanasakulpong and Ungbhakorn (2014) used Euler-Bernoulli 

beam theory to investigate linear and nonlinear vibrations analysis of porous functionally graded 

beams with elastically restrained ends. Material properties of FG beam have been described by a 

modified rule of mixture. Translational and rotational springs have been used to simulate the non-

classical boundary condition for FGM beams. Moreover, Wattanasakulpong and Chaikittiratana 

(2015) predicted flexural vibration of porous FG beams based on Timoshenko beam theory by 

using Chebyshev collection method. They find out the porosities caused decrease the mass, 

strength and density of FG beams, so should be considered especially for the beams with clamped-

clamped boundary condition. Atmane et al. (2015) used an efficient beam theory to study bending, 

free vibration and buckling analysis of porous FG beams on elastic foundations. Literature search 

in the area of vibration analysis of FG porous beams indicated that there is no report considered 

the thermal environment effects on vibration characteristics of porous FG beams and the materials 

properties were assumed temperature independent. While one of the most important features of 

FGMs is thermal insulations so there is scientific need to be familiar with the thermo-mechanical 

behavior of FG porous structures subjected thermal loadings.Most recently Ebrahimi et al. (2015) 

studied the vibration of porous FG Euler beams subjected to thermal loadings. It should be noted 

that in the above-mentioned study, only one specific porosity distribution was considered and no 

detailed discussion concerning the effects of different porosity distributions on the thermo-

mechanical of porous beams was given. Also they utilized EBT, it is well-known that, the EBT 

ignores the effect of shear deformation and rotary inertia of the thick beams. In other words, this 

theory is based on the assumption that plane sections of the cross-section remain plane and 

perpendicular to the beam axis. The EBT is only suitable for vibration of thin beams, when a beam 
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is moderately deep, or made of high-strength composite materials with a high anisotropy ratio, the 

theory needs some modifications to include the effect of transverse shear. Literature search in the 

area of vibration analyses of FG porous beams indicate that there is not any report considered the 

thermal environment effects on vibration characteristics of porous FG beams based on 

Timoshenko beam theory. As stated before the most important feature of FGMs is their behavior 

in severe and high temperature environments, hence it is necessary to consider the changing 

material properties due to thermal environments, for instance, under a high temperature 

environment the materials become softer and the Young’s modulus and thermal expansion 

coefficients usually decrease with rising temperature. 

In this paper, vibration characteristics of temperature dependent FGM beams with two types of 

porosity volume fractions namely even and uneven porosity volume fractions and considering the 

effect of both uniform and linear temperature rising is presented. FGM with even porosity volume 

fraction has porosity evenly through cross-section of the beam, while in FGM beam with unevenly 

porosities, volume fraction centralized mostly around the middle zone of the cross-section and 

decrease linearly to zero at the top and  bottom surfaces as shown in Fig. 2. The material properties 

are assumed to vary continuously through the thickness direction according to modified power-low 

form and are temperature dependent. Timoshenko beam theory is used to determined displacement 

and strain’s field and consider the effects of shear deformation and rotatoriy inertia. Equations of 

motion and boundary conditions have been derived by Hamilton’s principle. These equations are 

solved by using Navier type method and DTM. The influence of several parameters such as 

thermal effects, gradient indexes, porosity volume fraction, type of porosity distributions, aspect 

ratio and boundary conditions on vibration behavior of FG Timoshenko beams with porosities is 

investigated. Comparisons with analytical solutions and the result from the existing literature are 

provided for two-constituents metal-ceramic beams and good agreement between the result of this 

article and those available in literature validated the presented approach. New numerical results 

can also be useful as valuable sources for validating other approaches and approximate methods. 

 

 
2.Theory and formulation 
 

2.1 Power-low functionally graded beams with porosities 
 
Consider a uniform FG beam with porosities of length L, width band thickness h, according to 

Fig. 1 Cartesian coordinate system O(x,y,z) is shown on the central axis of the beam, as x-axis is 

matched with neutral axis of the beam in the undeflected position, the y-axis in the width direction,  

 

 

 

Fig. 1 Geometry and cordinates of functionally graded material beam 
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and the z-axis in the depth direction. The beam is made of homogeneous and isotropic functionally 

graded materials which properties of it’s varying continuously only in the depth direction. 

Functionally graded materials (FGMs) are composite materials formed of two or multi phases that 

mechanical properties of them is gradually changed in one or more directions. A FG beam 

typically composed of two different materials as ceramics and metal, which at the top surface is 

full of ceramic (materials with good resistance to heat) and the bottom surface is metal rich 

(materials with good toughness property) and properties of ceramic varying to the metal propertie 

from top surface to the bottom surface smoothly. In this paper imperfect FGM with two type of 

porosities distribution (even and uneven) across the beam thickness has been studied, that 

porosities appear during manufacturing due to technical problem. Material properties of FG beam 

are supposed to vary through thickness direction of the constitutes according to modified power-

low distribution. P-FGM is one of the most favorable models for FGMs. Effective material 

properties such as Young’s modulus (E), shear modulus (G), mass density (ρ)
 

and thermal 

expansions (α) are assumed to vary continuously in the depth direction according to power-low. 

Poissons’ratio is assumed to be constant in the z-axis direction. The effective material properties of 

FG beam with two kind of porosities that distributed identical in two phases of ceramic and metal 

can be expressed by using the modified rule of mixture as Wattanasakulpong and Ungbhakorn 

(2014) 

     
( ) ( )

2 2
P P V P V

c c m m

 
    (1) 

Where Pc
 
and Pm are the material properties of ceramic and metal and α is the volume fraction 

of porosities  1 ,
 
for perfect FGM α is set to zero, Vc and Vm are the volume fraction of 

ceramic and metal that are attached as (Şimşek 2010) 

     
1c mv v 

 
(2)

 

The power-low volume fraction of the ceramics constituents of the beam is assumed to be 

given by 
Şimşek (2010)

 

     

1
( )

2

p

c

z
v

h
 

 
(3)

 

Here Z is the distance from the mid-plane of the FGM beam and p is the non-negative variable 

parameter (power-low exponent) which determine the material distribution through the thickness 

of the beam, according to this distribution we have a fully metal beam for large value of p and 

when p equal to zero a fully ceramic beam remain.For
 
the

 
even

 
distribution

 
of

 
porosities (FGM-I), 

the effective
 
material properties are obtained as Wattanasakulpong and Ungbhakorn (2014) 
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For second type, uneven distribution of porosities (FGM-II),the effective material properties 

are replaced by following form Wattanasakulpong and Ungbhakorn (2014) 
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To predict the behavior of FGMs under high temperature more accurately, it is necessary to 

consider the temperature dependency on material properties. The nonlinear equation of thermo- 

elastic material properties in function of temperature T(K) can be expressed as (Touloukian 1966) 

 

 

 

Fig. 2 Cross-section area of FGM beam with even and uneven porosities 
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1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T

    
 

(6) 

Where P0, P-1, P1, P2 
and P3 are the temperature dependent coefficients which can be seen in 

the table materials properties (Table 3) for Si3N4 and SUS304. The bottom surface (z=-h/2) of FG 

porous beam is pure metal (SUS304), whereas the top surface (z=h/2) is pure ceramics (Si3N4). 

 

2.2 Formulation of motion of FG porous beam using Timoshenko beam theory 
 
The equations of motion is derived by using the Timoshenko beam theory following to 

Timoshenko beam theory the displacement field at any point of the beam can be written as (Ebrahimi 

and Salari 2015) 

     
   , , , ( , )xu x z t u x t z x t   (7)

 

     
 , , 0yu x z t   (8)

 

     
( , , ) ( , )zu x z t w x t  (9)

 

Where uis the axial displacement along x-axis, w is the transverse displacement along z-axis, φ 

is the rotational angle due to bending and t is the time. Then the strains field can be expressed as: 

xx

u
z

x x




 
 
   

(10)
 

xz

w

x
 


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  

(11)
 

εxx, γxz are normal and shear strain. The Euler Lagrange equations has been used to derive the 

equation of motion by using a Hamilton’s principle, which can be stated as (Tauchert 1974)
 

        0
( ) 0

t

U T V dt     (12)
 

Where t1, t2 
are the initial and end time δu is the virtual variation of strain energy, δV is the 

virtual variation of work done by external loads and δT is the virtual variation of kinetic energy. 

Here strain energy, kinetic energy and potential energy (external loading)  can be calculated step 

by step and the equation of motion has been obtained by using rules of calculus of variations and 

Hamilton's principle. 

a) In the first step we define strain energy as 

        t b s t b sU U U U U U      
 

(13) 

        
( )ij ij xx xx xz xz

v v
U dV dV              

(14)
 

Where total strain energy has been obtained by summation of bending strain energy Ub and 

shear strain energy Us, then by substituting the quantity of strains from Eqs. (10)- (11) into Eq. 

(14) as 

349



 

 

 

 

 

 

Farzad Ebrahimi and Ali Jafari 

        
0

0
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   

  
     (15)

 

By defining N, M, Q as axial force, bending moment and shear force components as following 

and replacing these resultants into Eq. (15) , get to Eq. (18). 

        
( , ) (1, ) ,xx s xz

A A
N M Z dA Q K dA     (16), 

(17)
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Where coefficient Ks is called the Timoshenko shear correction factor and the exact value of it 

depends on cross section parameters and material properties of the beam. Here, Ks for rectangular 

beams has been assumed equal to 5/6 approximately.

 b) in the second step the kinetic energy expression for Timoshenko beam theory can be 

expressed as 
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u
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
the velocity along x, y and z-axises has been obtained by derivative of the coordinates with 

respect to time (t) as 
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Where (I0, I1, I2) are the mass moment of inertias that can be define as 

        

2
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(22) 

Also the virtual variation of kinetic energy can be derived as 
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(23)
 

C) In the last step the variation of potential energy can be obtained as 

        
0

( W)
[ ( ) ( ) ]dx

L W
V f x U q x W N
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
  
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Where f(x), q(x) are the axial and transverse loading that in this investigate equal to zero and 

N  is the external loading due to thermal environment or elastic foundation. 
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In this study for analyzing vibration of porous FG beam in thermal environment, material 

properties are taken to be temperature-dependent and the temperature distribution is considered 

vary through thickness direction in two cases as: uniform and linear temperature distribution. 

The first variation of external loadings due to temperature change can be written in the form as 

        
0

( W)
dx

L T W
V N

x x




 


 
  (25)

 

Which NT is obtained as (Ebrahimi and Salari 2015)
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In which α
 

is the coefficient of thermal dilatation that is typically positive and very small

(0 , 1)  . At last by substituting Eqs. (18)- (23) and (25) into Eq. (12) as 

        

2

1

2 2 2 2

0 1 1 22 2 2 2

0

2

0 2
0

t l

t

T

N U M U
I I U Q I I

X t t X t t

Q W W
I N W

X t X X

 
 



        
          
        

    
    
    

 
 (27)

 

and embedded equal to zero the coefficients of ∂u, ∂φ and ∂W, the governing equations of motion 

of porous FG Timoshenko beam in thermal environment can be obtained as 

        
( : 0)U ,   

2 2

0 12 2
0

N U
I I

x t t

  
  

  
 (28)

 

        
 : 0 ,

  

2 2

1 22 2
0

M U
Q I I

x t t

  
   

  
 (29)

 

        
 : 0 ,W

  

2

0 2
( ) 0TQ W W
N I

x x x t

   
  

   
 (30)

 

For a material that is linearly elastic and obeys the 1D Hooke’s law, the relation between stress-

strain can be described as 

        
 xx xxE z   (31)

 

        
 xz XZG Z   (32)

 

Where G is the shear modulus and E  is the Young’s modulus, by substituting the Eqs. (10)-

(11) into (16)-(17) and integrating over the beam’s cross-section, axial force, bending moment and 

shear force can be derived as following 

       
, , ( )xx xx xx xx xx

u u w
N A B M B D Q C

x x x x x

 


    
     

    
 (33) 
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In which the cross-section stiffness are defined as 

        

   2( , , ) (1, , ) ,xx xx xx xx s

A A

A B D z z E z dA C k G z dA    
(34),(35)

 

And the last form of Euler-Lagrange equations for FG Timoshenko beam with porosities in 

thermal environment in terms of displacement can be derived as 

        

2 2 2 2
00 12 2 2 2

u u
A B I Ixx xx

x x t t

    
   

   

 (36)
 

        

2 2 2 2
( ) 01 22 2 2 2

u w U
B D C I Ixx xx xx

xx x t t

 


    
     

   

 (37)
 

        

2 2 2
( ) 0

02 2 2

w W WTC N I
xx xx x t

   
   
  

 (38)
 

 
 
3.Sulution method 
 

3.1 Analytical solution 
 
In this section, by using Navier’s method (an analytical solution) Euler-Lagrange equations for 

free vibration of simply-supported porous FG beam has been solved. The displacement functions 

are expressed as combinations of non significant coefficients and known trigonometric functions 

to satisfy Lagrange equations and boundary conditions at x=0, x=L the following displacements 

functions are assumed to be of the formed 

        1

cos( ) miw t

m

m

m
U U x e

L





  (39)
 

        1

cos( ) miw t

m

m

m
W W x e

L





  (40)
 

        1

cos( ) miw t

m

m

m
x e

L


 





  (41)
 

In which (Um, Wm, θm) are the unknown Fourier coefficient that will be calculated for each 

value of m. 

Boundary conditions for a simply-supported beam are as Eqs. (42)-(43) (Ebrahimi and Salari 

2015). 

     
(0) 0 , ( ) 0

u
u L

x


 


 (42)
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(0) ( ) 0 , (0) ( ) 0w w L L

x x

  
   

 
 (43)

 

By substituting Eqs. (40)-(41) into Eqs. (36)-(37)-(38) respectively, leads to Eqs. (44)-(45), 

       

2 2 2 2

0 1( ) ( ) 0xx m m xx m m

m m
A I U B I

L L

 
  

   
       
   

 (44)
 

     

2 2 2

0( ) ( ) ( ) 0T

xx m xx m m

m m m
C C N I W

L L L

  
 

   
        
   

 (45)
 

     

2 2 2 2

1 2( ) ( ) ( ) 0xx m m xx xx m m xx m

m m m
B I U D C I C W

L L L

  
  

     
            
     

 (46)
 

By finding determinant of the coefficient matrix of the above equations and setting this 

multinomial to zero, we can find natural frequencies ωn. 

 
3.2 Application of differential transform method to free vibration problems 
 
In this section, DTM is performed to solving equations of motions, which is a semi-analytic 

transformation technique based on Taylor series expansion equations and is a useful tool to obtain 

analytical solutions of these differential equations. Certain transformations rules are applied to 

governing equations and the boundary conditions of the system in order to transform them into a 

set of algebraic equations in terms of the differential transforms of the original functions. This 

method construct an analytical solution in the form of polynomials. It is different from the high-

order Taylor series method, which requires symbolic computation of the necessary derivative of 

the data functions and is expensive for large orders. The Taylor series method is computationally 

expansive for large orders. DTM is an iterative procedure for obtaining analytic Taylor series 

solutions of differential equations, in fact this method tries to find coefficients of series expansions 

of unknown function with using the initial data on the problem. 

Differential transformation of the nth derivative function y(x) and differential inverse 

transformation of Y(k) are respectively defined as follow (Hassan 2002) 

     0 0

1
( ) ( )

!

k

k
k x

d
Y k y x

k dx



 

 
  

 
  (47) 

     0

( ) ( )ky x X Y k


  (48) 

In which y(x) is the original function and Y(k) is the transformed function. Consequently from 

Eqs. (47)-(48) can obtain 

     0 0

( ) ( )
!

k k

k
k x

x d
Y k y x

k dx



 

 
  

 
  (49) 
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     0

( ) ( )k

k

y x X Y k




  (50) 

In this calculations 
1

( ) ( )k

n

y x X Y k




  is small enough to be neglected, and N is determined by 

the convergence of the eigenvalues. From definitions of DTM in Eqs. (47)-(48)-(49), the 

fundamental theorems of differential transforms method can be performed that are listed in Tables 

1-2. present the differential transformation of conventional boundary conditions. Assuming a 

sinusoidal variation of w(x,t) and θ(x,t), which the functions are approximated as 

     ( , ) i tw x t we      and     ( , ) i tx t e    (51) 

By substituting Eq. (51) into Eqs. (37)-(38) equations of motions has been turned to 
2 2

2 2

1 22
( ) 0xx xx

xx xx xx

xx xx

B w B
D C C I I

A x x A


    

 
     

 
 (52) 

 

 
Table 1 Some of the transformation rules of the one-dimensional DTM (Ju 2004)  

Original function Transformed function 

    ( )f x g x h x       ( )F K G K H K   

  ? )f x g x    ( )F K G K  

    ( )f x g x h x     
0

( )

K

l

F K G K l H l



   

 
( )n

n

d g x
f x

dx
   

 !
( )

!

k n
F K G K n

k


   

  nf x x     
1

0

k n
F K K n

k n



   



 

 
Table 2 Transformed boundary conditions (B.C.) based on DTM (Ju 2004)  

x=0  x=L  

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 

f (0) 0
 

[0] 0F 
 

f ( ) 0L 
 

0

[ ] 0

k

F k






 

df (0)
0

dx


 
[1] 0F 

 

df ( )
0

dx

L


 0

? ] 0

k

k F k






 

2

2

(0)
0

dx

d f


 
[2] 0F 

 

2

2

( )
0

dx

d f L


 
 

0

1 ? ] 0

k

k k F k





 
 

3

3

(0)
0

dx

d f


 
[3] 0F 

 

3

3

( )
0

dx

d f L


 
  

0

1 2 [ ] 0

k

k k k F k





  
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2
2

02
( ) 0T

xx xx

w
C N C I w

x x




 
   

 
 (53) 

According to the basic transformation operations in Table 2, the transformed form of the 

governing Eqs. (52) and (53) around x0=0 may be obtained as 

       

     
2

2 2

2 1( )( 1)( 2) 2 ( ) ( 1) 1 0xx xx
xx xx xx

xx xx

B B
D k k k I C I k C k w k

A A
               

(54) 

             2

0( )( 1)( 2) 2 ( 1) 1 0T

xx xxC N k k w k I w k C k k           (55) 

Transformed functions of w(x), φ(x) are w[k], φ[k], by using the theorems introduced in Table 

2, transformed various boundary conditions can be expressed as follow: 

Simply supported-Simply supported: 

        0 0, 1 0w     

     

   
0 0

0, 0
k k

w k k k
 

 

    (56a) 

Clamped-Simply supported: 

        0 0, 0 0w     

     

   
0 0

0, 0
k k

w k k k
 

 

    (56b) 

Clamped-Clamped: 

        0 0, 0 0w     

     

   
0 0

0, 0
k k

w k k
 

 

    (56c) 

By using Eqs. (54)-(55) together with the transformed boundary conditions one arrives at the 

following eigenvalue problem 

          

 
( ) ( )

11 12

( ) ( )

21 21 22

( ) ( )
0

( ) ( )

n n

n n

M M
C

M M

 

 

 
 

 

 (57) 

Where [C] correspond to the missing boundary conditions at x=0 and Mij are polynomials in 

terms of (ω) corresponding to the nth term. for the non-trivial solutions of Eq. (57) , it is necessary 

that the determinant of the coefficient matrix set equal to zero 

        

( ) ( )

11 12

( ) ( )

21 21 22

( ) ( )
0

( ) ( )

n n

n n

M M

M M

 

 

 
 

 

 (58) 

The ith estimated eigenvalue may be obtained by for the nth iteration, by solving Eq. (58). The 
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total number of iterations is related to the accuracy of calculations which can be determined by 

following equations 

       

( ) ( 1)n n

i i     (59) 

In this study ε=0.0001 in procedure of finding eigenvalues which results in four-digit precision 

in estimated eigenvalues. Furtherthe computer package Mathematica has been developed 

according to the DTM rules as stated before to find eigenvalues. As mentioned before, DTM 

implies an iterative procedure to obtain the high-order Taylor series solution of differential 

equations. The Taylor series method requires a long computational time for large orders, whereas 

one advantage of employing DTM in solving differential equations is a fast convergence rate and 

small calculation error. 

 

 

4. Thermal environment and temperature distributions 
 

For a porous FG beam in thermal environment, temperature is assumed vary along the 

thickness directions at two ways as: 

 

4.1 uniform temperature rise (UTR) 
 
Consider a porous FG that is at initial temperature equal to T0=300 and beam is free of stresses 

at initial temperature and temperature of beam change to final temperature with the difference of 

ΔT as 

        0T T T  
 

(60) 

 
4.2 Linear temperature rise (LTR) 
 
Consider the temperature of the top surface of the porous FG beam is Tt and vary linearly from 

Tt to Tb, the bottom surface temperature finallythe temperature rise is given as (Kiani and Eslami  

2013) 

     

1

2
m

z
T T T

h

 
    

 
  (61) 

And ΔT should be defined as 

     t bT T T  
 (62) 

 
 
5. Numerical result and discussions 
 

Through this section, after validation for S-S porous FG beam the influence of different types 

of porous distributions, porosity volume fraction, power-law exponent, temperature rises, 

boundary conditions on the natural frequencies of the porous FG beam will be perceive. The 

functionally graded porous beam is combined of Steel (SUS304) and Silicon nitride (Si3N4) where  
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Table 3 Temperature dependent coefficients of Young’s modulus, thermal expansion coefficient,  mass 

density and Poisson’s ratio for Si3N4 and SUS304  

Material Properties P0 P-1 P1 P2 P3 

Si3N4 E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

 α(K-1) 5.8723e-6 0 9.095e-4 0 0 

 ρ (Kg/m3) 2370 0 0 0 0 

 v 0.24 0 0 0 0 

SUS304 E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

 α(K-1) 12.330e-6 0 8.086e-4 0 0 

 ρ (Kg/m3) 8166 0 0 0 0 

 v 0.3262 0 -2.002e-4 3.797e-7 0 

 
Table 4 Convergence study for the first dimensionless natural frequency of even porous FG beam under 

linear temperature rise with L/h=20, α=0.1, ΔT=40 [K], p=0.5 

Method Iteration 
C-C C-S S-S 

λ1 λ2 λ1 λ2 λ1 λ2 

DTM 11 10.7467 14.4549 7.0142 13.8114 4.3251 12.6788 

 12 10.1801 109.828 6.9473 16.0877 4.3137 1244.48 

 13 9.9226 103.094 6.8887 103.216 4.3143 129.986 

 14 10.1257 19.0002 6.9117 18.6422 4.3150 16.1182 

 15 10.0998 22.2776 6.9116 19.6668 4.3149 16.8066 

 16 10.0944 28.0001 6.9110 20.9890 4.3149 18.5615 

 17 10.0922 124.042 6.9107 124.205 4.3149 18.0688 

 18 10.0937 25.4995 6.9108 22.1407 4.3149 17.7426 

 19 10.0936 26.6848 6.9108 22.2208 4.3149 17.7748 

 20 10.0936 27.4266 6.9108 22.3566 4.3149 17.8086 

 21 10.0936 27.8241 6.9108 22.4705 4.3149 17.8054 

 22 10.0936 27.3745 6.9108 22.4121 4.3149 17.8022 

 23 10.0936 27.4184 6.9108 22.4118 4.3149 17.8025 

 24 10.0936 27.4347 6.9108 22.4138 4.3149 17.8027 

 25 10.0936 27.4383 6.9108 22.4148 4.3149 17.8027 

 26 10.0936 27.4344 6.9108 22.4144 4.3149 17.8027 

 27 10.0936 27.4347 6.9108 22.4144 4.3149 17.8027 

 28 10.0936 27.4349 6.9108 22.4144 4.3149 17.8027 

 29 10.0936 27.4349 6.9108 22.4144 4.3149 17.8027 

 30 10.0936 27.4349 6.9108 22.4144 4.3149 17.8027 

Analytical  - - - - 4.3147 17.7994 

 

 

its properties are given in Table 3. It is assumed that the temperature increase in metal surface to 

reference temperature T0 of the FG beam is Tm−T0=5K (Kiani and Eslami 2013). 
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The non-dimensional natural frequencies (λ) can be calculated by relations in Eq. (63). 

        

2

m

m

L

h e


   (63) 

Table 4 shows the convergence study of DTM for first two frequencies. It is observed that after 

a certain number of iterations, the eigenvalues converged to a value with good precision, hence the 

number of iterations is important in DTM method. From the result of Table 4, high convergence 

rate of the method can be easily observed, as seen that the first and second natural frequency of S-

S FG beam with even porosity and p=0.5, ΔT=40 [K], α=0.1, L/h=20 converged after 15 and 24 

iterations with four digit precision while for the C-S boundary conditions first and second natural 

frequencies converged after 18 and 26 iterations at last for C-C supports converged after 19, 28 

iterations respectively. 

In Table 5, numerical result are compared with Simsek (2010) for validating of the present 

research, hereupon natural frequencies of FG beams combined of alumina and aluminum with  

following material and beam properties (EAl=70 GPa, ρAl=2702 kg/m3, vAl=0.3, 
2 3

3( 70 , 270 /2 0.3, 380, ,Al Al oAl Al kg m E GPaE GPa     ,
 

2 3 2 3

3, 3960 / , 0.3)Al o Al okg m v    for L/h=5, 20 and various gradient indexes with simply-simply  

boundary conditions are obtained by two solution method as DTM and analytical. The present 

frequencies are in good agreement with results of Simsek (201). It is observed that the 

fundamental frequency parameters obtained in the present research are in approximately enough to 

the results provided in the study that is used for comparison and validate the proposed method of 

solutions. The fundamental frequency parameters obtained in the present investigation are in 

approximately close enough to the results provided in these literatures and thus validates the 

proposed method of solution. 

In the next tables effects of different parameters such as temperature change, porosity 

parameter, types of temperature rising, porosities distribution, gradient indexes and boundary 

conditions on free vibration behavior of porous FG beam are represented. Three different 

boundary conditions are considered in the following: simply-supported/simply-supported (S-S) , 

simply supported/clamped (C-S) and clamped/clamped (C-C) that predicate the edge conditions at 

x=0, x=L of the beam. 

 

 
Table 5 Comparison of the nondimensional fundamental fequency for a S-S FG beam with various gradient 

indexes 

Power-law 

Exponent 
L/h 

present Simsek (2010) 

Analytical DTM Lagrange’s equations 

p=0 
5 5.15247847 5.15247850 5.1524 

20 5.46031881 5.4603185 5.4603 

p=0.2 
5 4.80540725 4.80605463 4.8065 

20 5.08133551 5.08138658 5.0826 

p=0.5 
5 4.40789132 4.41066441 4.4083 

20 4.65090965 4.65112669 4.6513 

p=1 
5 3.99024091 3.99659975 3.9902 

20 4.20505401 4.20554478 4.2050 

p=2 
5 3.63438622 3.64478827 3.6343 

20 3.83667615 3.83756665 3.8367 
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The first dimensionless natural frequency of the porous beam with the simply supported has 

been presented at Table 6. For (L/h=20) and different values of the gradient index (p=0.1, 0.2, 0.5, 

1), volume fraction of porosity (α=0, 0.1, 0.2) and temperature changes (ΔT=20, 40, 80K) based on 

both DTM and analytical solution method. Two types of porosities distribution is considered as 

even (FGM I) and uneven (FGM II), as well as temperature rising is inclusive uniform and linear 

distributions at this table. 

By studying the results of Table 6. It is obsereved that fundamental frequency will be growth 

by increasing the porosity parameter for every temperature rising and porous distributions, and the 
 

 

Table 6 Temperature and material graduation effect on first dimensionless natural frequency of a S-S FG 

porous beam with different FG type and porosity parameter and thermal loading (L/h=20) 

ΔT=20 [K] 

FGM 

type 
a Load 

type 

n=0.1 n=0.2 n=0.5 n=1 

DTM Analytical DTM Analytical DTM Analytical DTM Analytical 

FGM 

(I) 

0 
UTR 5.5581 5.5581 5.0726 5.0727 4.2788 4.2786 3.7278 3.7276 

LTR 5.6159 5.6158 5.1324 5.1323 4.3405 4.3403 3.7893 3.7891 

0.1 
UTR 5.9110 5.9109 5.3085 5.3084 4.3692 4.3690 3.7449 3.7446 

LTR 5.9624 5.9623 5.3619 5.3618 4.4245 4.4243 3.7999 3.7991 

0.2 
UTR 6.4184 6.4183 5.6278 5.6277 4.4790 4.4786 3.7590 3.7586 

LTR 6.4636 6.4635 5.6750 5.6749 4.5280 4.5277 3.8078 3.8074 

FGM 

(II) 

0 
UTR 5.5581 5.5580 5.0727 5.0726 4.2788 4.2786 3.7278 3.7276 

LTR 5.6159 5.6158 5.1324 5.1323 4.3405 4.3403 3.7893 3.7891 

0.1 
UTR 5.7884 7.7884 5.2469 5.2468 4.3807 4.3806 3.7916 3.7913 

LTR 5.8424 5.8423 5.3028 5.3027 4.4386 4.4384 3.8491 3.8488 

0.2 
UTR 6.0557 6.0557 5.4444 5.4443 4.4920 4.4919 3.8592 3.8589 

LTR 6.1061 6.1061 5.4968 5.4968 4.5462 4.5460 3.9129 3.9127 

ΔT=40 [K] 

FGM 

type 
a Load 

type 

n=0.1 n=0.2 n=0.5 n=1 

DTM Analytical DTM Analytical DTM Analytical DTM Analytical 

FGM 

(I) 

0 
UTR 5.2929 5.2928 4.8109 4.8108 4.0226 4.0225 3.4765 3.4763 

LTR 5.4806 5.4805 5.0024 5.0023 4.2182 4.2180 3.6717 3.6715 

0.1 
UTR 5.6709 5.6709 5.0731 5.0730 4.1407 4.1405 3.5218 3.5215 

LTR 5.8380 5.8380 5.2437 5.2437 4.3149 4.3147 3.6953 3.6951 

0.2 
UTR 6.2020 6.2019 5.4180 5.4179 4.2777 4.2774 3.5636 3.5633 

LTR 6.3492 6.3491 5.5683 5.5681 4.4311 4.4308 3.7160 3.7157 

FGM 

(II) 

0 
UTR 5.2929 5.2928 4.8109 4.8108 4.0227 4.0225 3.4765 3.4763 

LTR 5.4806 5.4806 5.0024 5.0023 4.2182 4.2180 3.6717 3.6715 

0.1 
UTR 5.5386 5.5386 5.0012 5.0012 4.1415 4.1414 3.5578 3.5575 

LTR 5.7139 5.7139 5.1801 5.1800 4.3240 4.3239 3.7395 3.7392 

0.2 
UTR 5.8203 5.8202 5.2138 5.2137 4.2689 4.2687 3.6420 3.6417 

LTR 5.9839 5.9838 5.3808 5.3807 4.4391 4.4390 3.8109 3.8107 
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Table 6 Continued 

ΔT=80 [K] 

FGM 

type 
a Load 

type 

n=0.1 n=0.2 n=0.5 n=1 

DTM Analytical DTM Analytical DTM Analytical DTM Analytical 

FGM 

(I) 

0 
UTR 4.7006 4.7006 4.2210 4.2210 3.4341 3.4340 2.8885 2.8884 

LTR 5.1937 5.1937 4.7266 4.7265 3.9584 3.9583 3.4216 3.4214 

0.1 
UTR 5.1432 5.1432 4.5511 4.5510 3.6246 3.6244 3.0088 3.0086 

LTR 5.5752 5.5752 4.9941 4.9940 4.0833 4.0831 3.4739 3.4737 

0.2 
UTR 5.7335 5.7334 4.9596 4.9595 3.8301 3.8300 3.1217 3.1215 

LTR 6.1079 6.1079 5.3434 5.3433 4.2270 4.2267 3.5229 3.5226 

FGM 

(II) 

0 
UTR 4.7006 4.7006 4.2210 4.2210 3.4341 3.4340 2.8885 2.8884 

LTR 5.1937 5.1937 4.7266 4.7266 3.9584 3.9583 3.4216 3.4214 

0.1 
UTR 4.9864 4.9864 4.4534 4.4533 3.5984 3.5982 3.0179 3.0177 

LTR 5.4422 5.4422 4.9205 4.9204 4.0816 4.0814 3.5073 3.5071 

0.2 
UTR 5.3044 5.3043 4.7044 4.7043 3.7675 3.7673 3.1464 3.1462 

LTR 5.7260 5.7259 5.1362 5.1361 4.2130 4.2128 3.5957 3.5954 

 
Table 7 Temperature and material  graduation effect on first dimensionless natural frequency of a C-S FG 

beam with different FG type, porosity and thermal loading (L/h=20)  

FGM 

type 
a 

Load 

type 

ΔT=20[K] ΔT=40[K] ΔT=20 

Power-low exponent 

n=0.1 n=0.2 n=0.5 n=1 n=0.1 n=0.2 n=0.5 n=1 n=0.1 n=0.2 n=0.5 n=1 

DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM 

FGM 

(I) 

0 
UTR 8.8331 8.0764 6.8385 5.9779 8.6374 7.8843 6.6526 5.7972 8.2237 7.4760 6.2530 5.4050 

LTR 8.8699 8.1155 6.8803 6.0205 8.7618 8.0128 6.7859 5.9314 8.5378 7.8000 6.5904 5.7471 

0.1 
UTR 9.3630 8.4237 6.9591 5.9844 9.1842 8.2496 6.7922 5.8230 8.8100 7.8826 6.4360 5.4750 

LTR 9.3941 8.4580 6.9964 6.0225 9.2936 8.3631 6.9109 5.9427 9.0841 8.1670 6.7342 5.7780 

0.2 
UTR 10.1338 8.9012 7.1100 5.9865 9.9710 8.7444 6.9619 5.8443 9.6337 8.4174 6.6484 5.5398 

LTR 10.1605 8.9305 7.1427 6.0202 10.0651 8.8431 7.0661 5.9497 9.8681 8.6627 6.9079 5.8046 

FGM 

(II) 

0 
UTR 8.8331 8.0765 6.8385 5.9779 8.6374 7.8844 6.6526 5.7972 8.2237 7.4760 6.2530 5.4050 

LTR 8.8699 8.1155 6.8803 6.0205 8.7618 8.0128 6.7859 5.9314 8.5378 7.8000 6.5904 5.7471 

0.1 
UTR 9.1786 8.3345 6.9839 6.0637 8.9933 8.1533 6.8095 5.8947 8.6038 7.7702 6.4365 5.5301 

LTR 9.2124 8.3707 7.0230 6.1035 9.1087 8.2728 6.9339 6.0200 8.8941 8.0704 6.7498 5.8476 

0.2 
UTR 9.5821 8.6293 7.1443 6.1559 9.4064 8.4583 6.9808 5.9983 9.0393 8.0987 6.6330 5.6597 

LTR 9.6131 8.6627 7.1807 6.1930 9.5133 8.5693 7.0968 6.1149 9.3071 8.3764 6.9235 5.9538 

 

 

growthing of the frequency for FGM (I) is more tangible than FGM (II). 

This growthing in frequency value emphasis on the importance of porosity effect. Also it is 

obvious from this table that increasing temperature change yields decreasing of natural frequencies 

in two types of temperature risings, thus temperature change has a significant effect on the 

dimensionless natural frequencies. As we know, increasing of the power indexes lead to rise the 
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percentage of metal phase thereupon FG beames will be more flexible and fundamental frequency 

values reduce. In addition, for a certain of values of temperature change, gradient indexes, 

temperature rise and porous parameter, dimensionles natural frequency of the even distribution is 

more than uneven one. It can also be seen that the dimensionless natural frequencies perdicated by 

DTM are in close agreement with those evaluated by analytical solution.  

Also, Table 7, contains the effect of temperature change, porosity parameter, material 

graduation on natural frequencies of the porous FG beams of Clamped-Simply boundary condition 

with different volume fraction of porosity parameters and two cases of temperature rise. It is 

observable from this table that fundamental frequency increase with increasing porous parameter, 

also increasing gradient index and temperature change yields to comes down of natural frequency 

values, furthermore fundamental frequencies of FGM beams with uneven porosity distribution are 

less than even distribution one. 

 

 
Table 8 Temperature and material  garduation effect on first dimensionless natural frequency of a C-C FG 

beam with different FG type, porosity and thermal loading (L/h=20) 

FGM 

type 
a Load 

type 

ΔT=20[K] ΔT=40[K] ΔT=80[K]
 

Power-low exponent 

n=0.1 n=0.2 n=0.5 n=1 n=0.1 n=0.2 n=0.5 n=1 n=0.1 n=0.2 n=0.5 n=1 

DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM DTM 

FGM 

(I) 

0 
UTR 12.8585 11.7664 9.9789 8.7346 12.7112 11.6227 9.8415 8.6022 12.4113 11.3282 9.5563 8.3248 

LTR 12.8781 11.7887 10.0051 8.7626 12.7868 11.7033 9.9291 8.6928 12.6008 11.5293 9.7743 8.5508 

0.1 
UTR 13.6108 12.2551 10.1405 8.7316 13.4751 12.1238 10.0164 8.6128 13.2013 11.8570 9.7605 8.3652 

LTR 13.6260 12.2734 10.1633 8.7564 13.5387 12.1930 10.0936 8.6936 13.3607 12.0293 9.9516 8.5655 

0.2 
UTR 14.7111 12.9317 10.3458 8.7222 14.5859 12.8124 10.2350 8.6172 14.3367 12.5725 10.0080 8.3992 

LTR 14.7215 12.9459 10.3652 8.7441 14.6368 12.8699 10.3017 8.6881 14.4644 12.7153 10.1725 8.5743 

FGM 

(II) 

0 
UTR 12.8585 11.7664 9.9789 8.7346 12.7112 11.6227 9.8415 8.6022 12.4113 11.3282 9.5562 8.3247 

LTR 12.8781 11.7887 10.0051 8.7626 12.7868 11.7033 9.9291 8.6928 12.6008 11.5293 9.7743 8.5508 

0.1 
UTR 13.3475 12.1293 10.1793 8.8489 13.2073 11.9931 10.0499 8.7248 12.9233 11.7154 9.7824 8.4656 

LTR 13.3645 12.1493 10.2034 8.8750 13.2759 12.0671 10.1312 8.8092 13.0954 11.8995 9.9840 8.6754 

0.2 
UTR 13.9202 12.5452 10.4015 8.9727 13.7866 12.4161 10.2797 8.8566 13.5175 12.1541 10.0291 8.6148 

LTR 13.9348 12.5629 10.4236 8.9968 13.8484 12.4835 10.3549 8.9350 13.6725 12.3218 10.2150 8.8091 

 

Table 9 The effects of porosity on dimensionless frequency for higher modes of porous FG beam under 

linear temperature rise with L/h=20, ΔT=80[K], p=0.2 

Type of 

FGM 
a 

C-C
 

C-S
 

S-S 

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3 

FGM 

(I) 

0 11.5293 31.5200 65.7397 7.8000 25.6924 53.5747 4.7266 20.3281 45.4899 

0.1 12.0293 32.8314 67.5212 8.16698 26.7788 55.7663 4.9940 21.2110 47.3732 

0.2 12.7153 34.6451 69.1749 8.66256 28.2762 58.8064 5.3434 22.4215 49.9788 

FGM 

(II) 

0 11.5293 31.5200 65.7397 7.8000 25.6924 53.5774 4.7266 20.3281 45.4899 

0.1 11.8569 32.6811 66.8532 8.0704 26.4296 61.0442 4.9205 20.9809 46.9587 

0.2 12.5724 34.5408 68.3520 8.37641 62.5695 62.5695 5.1362 21.7251 48.5382 
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(a) ΔT=0 (b) ΔT=20 

  

(c) ΔT=40 (d) ΔT=80 

Fig. 3 The variation of the first dimensionless frequency of S-S FGM(I) beam with material graduation 

and porosity for different linear temperature rises (L/h=20) 

 

 

The effects of porosity on dimensionless frequency for higher modes of porous FG beam under 

linear temperature rise with different boundary condition and constant values of L/h=20, 

ΔT=80[K], p=0.2 presented at Table 9. It is concluded that porosity effect is more tangible for 

higher modes of porous FG beam. So it is necessary to consider porosity effect for vibration of FG 

beams. It is found that increasing of volume fraction of porosity is couse of increasing of 

dimensionless frequencies for both porosity distribution. 

Atlast, the fundamental frequency parameter is presented at Table 8. for FG beam subjected to 

uiform and linear temperature rising with different power-low indexes, porous distributions with 

Clamped-Clamped boundary conditions. Also, the conclusions that derived from this table for the 

effect of the porosity and power index parameters on the natural frequency are similar to two  
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(a) ΔT=0 (b) ΔT=20 

  

(c) ΔT=40 (d) ΔT=80 

Fig. 4 The variation of the first dimensionless frequency of S-S FGM(II) beam with material graduation 

and porosity for different uniform temperature rises (L/h=20) 

 

 

previously discussed edge conditions except that for even porosity with n=1 and ΔT=20, it is 

observed that with increasing of porosity, the fundamental frequencies will go come down. Indeed 

the effect of porosity on natural frequency depends on the values of power low exponent. By 

increasing values of power-low exponent from a certain value of n, increment of the porosity leads 

to decreasing of the frequencies and increasing of temperature changings leads that the certain 

value of the n (which from then on increasing of the porosity leads to decreasing of the frequency)  

has gone up. 

Therefore by comparing the frequency values for porous FG beams for a prescribed porous 

distribution, temperature rise and gradient indexes in Tables 6-8, can observe the influence of 

boundary conditions on frequencies. The greatest  frequency at pre-buckling region, is obtained for  
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(a) α=0 (b) α=0.1 

 

(c) α=0.2 

Fig. 5 The variation of the first dimensionless frequency of  S-S FGM (I) beam with material graduation 

and uniform temperature rises for different porosities (L/h=20) 

 

 

the FG beam with C-C boundary conditions followed with C-S and S-S, respectively. 

Comparison of the first dimensionless natural frequencies of S-S FG (I) beam subjected to UTR 

and FG (II) beam subjected to LTR with changing of porosity volume fraction and power exponent 

are presented in Figs. 3-4 at constant slenderness ratio (L/h=20). Four type of temperature 

changing are considered as 0, 20, 40 and 80. It is observed from the results of Figs. 3 and 4 that the 

dimensionless natural frequencies of porous FG beam  decrease with the increase of power 

indexes. When the power exponent is in the range of 0 to 2, reducing is higher than where power 

exponent is in range between 2 to 10. Also the effect of temperature changing is obvious, the 

dimensionless natural frequencies will be decreased by increasing of temperature changing for all 

gradient indexes, thus both temperature rises have a significant effect on the fundamental  
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(a) ΔT=0 (b) ΔT=20 

  

(c) ΔT=40 (d) ΔT=80 

Fig. 6 The variation of the first dimensionless frequency of C-S FGM (I) beam with material graduation 

and porosity for different uniform temperature rises (L/h=20) 

 

 

frequency of the porous FG beam. Also it is concluded that even distribution porosity effect 

depends on power indexes, for low values of n increasing of porosity leads to increasing of 

fundamental frequencies and from a certain value of the n frequencies will be decreased by 

increasing of porosity. The certain value of the n has gone up by increment of temperature 

different in accordance with Fig. 3.  

The natural frequency parameter as a function of power law indexes for uniform temperature 

rise and porosity parameters is presented in Fig. 5 for FGM (I) with S-S boundary conditions. 

Different  porosity parameter has been considered as (α=0, α=0.1, α=0.2). It is easily deduced that 

an increase in temperature change  gives rise to decrease in the first dimensionless natural 

frequency for all gradient indexes. Also it is revealed that increasing of porosity parameter yields  
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(a) α=0 (b) α=0.1 

 
(c) α=0.2 

Fig. 7 The variation of the first dimensionless frequency of C-S FGM (II) beam with material graduation 

and uniform temperature rises for different porosities (L/h=20) 

 

 

the growth in dimensionless frequencies, thus it is necessary to consider porosity effect.  

Also the variation of the first dimensionless frequency of C-S FG (I) asubjected to uniform 

temperature rises is depicted in Fig. 6 with different porosity parameter and power exponents. Four 

temperature changing has been considered as 0, 20, 40 and 80. It is seen that increasing of power 

indexes and growing of temperature changing are couse of decreasing of frequencies. As well as 

by perceiving Fig. 8 similar results has been obtained for C-C porous FG beam. 

Fig. 7 display the variations of the first dimensionless natural frequency of the C-S FG beam 

with uneven porosity distributions respect to UTR for different values of gradient indexes and 

porosity parameters. Three porosity values has been considered as 0, 0.1 and 0.2. A comparison 

between these figure show that reducing of the fundamental frequencies is due to increasing of the 

temperature changes, and it is more palpable for  high power indexes. Similarly, fundamental 
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(a) ΔT=0 (b) ΔT=20 

  

(c) ΔT=40 (d) ΔT=80 

Fig. 8 The variation of the first dimensionless frequency of C-C FGM (I) beam with material graduation 

and porosity for different uniform temperature rises (L/h=20) 

 

 

frequency of C-C FG beam with uneven porosity distributions subjected to UTR  is presented in 

Fig. 9. It is found that increasing of porosity parameter yields to increasing of nondimensional 

frequency. 

Comparison of the first dimensionless natural frequencies of S-S FG beam subjected to both 

cases of thermal loading (UTR and LTR) with changing of porosity volume fraction and power 

exponent at constant slenderness ratio L/h=20 are presented in Fig. 10. It is concluded that 

frequency of the beam subjected to uniform is less than linear temperature rises, And the 

difference will be hight by increasing of the temperature changes. By comparing the three Figs 

with different porosity parameter we can found that increasing of porosity parameter yields to 

increasing of fundamental frequency.  
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(a) α=0 (b) α=0.1 

 

(c) α=0.2 

Fig. 9 Variations of the first dimensionless natural frequency of the C-C  FGM (II) beam with respect to 

uniform temperature change for different values of gradient indexes and porosities (L/h=20) 

 

 

6. Conclusions 
 

 

 

In this research thermo-mechanical vibrational characteristic of the temperature-dependent 

FGM beams with porosities volume fraction based on Timoshenko beam theory is presented. 

Material’s properties of the FG beams are assumed to be dependent to temperature and thickness 

based on modified rule of mixture. Hamilton’s principle is used to derive governing differential 

equations and boundry conditions. The Navier-based analytical model and a semi analytical 

differential transformation method are used to solve governing partial differential equations.  
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(a) α=0 (b) α=0.1 

 

(c) α=0.2 

Fig. 10 Comparisonof the first dimensionless frequency of S-S FG (I) beam with material graduation and 

uniform and linear temperature rises for different porosities (L/h=20) 

 

 

According to the numerical results, it is revealed that the proposed modeling and semi analytical 

approach can provide accurate frequency results of the FG beams as compared to analytical results 

and also some cases in the literature. 

Finally, the effect of different parameters are investigated, the effect of volume fraction of 

porosity, two cases of thermal loadings (UTR and LTR), material property gradient index and 

boundry conditions on fundamental frequencies of porous FGM are investigated. 

• It is concluded that increasing in temperature is cause of decreasing of fundamental frequency 

• Also it is revealed that for even distributions of porosity increment of the volume fraction of 

porosity yields the increase in fundamental frequencies for low values of power indexes and 

from a certain value of the n, yields the decrease in frequencies. And  certain value of the 
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ndepends on boundary conditions and temperature effects. 

• For uneven distributions of porosity fundamental, natural frequencies will be increased by  

increment of the volume fraction of porosity for all gradient indexes. Which emphasizes on the 

importance of inspected porosity volume fraction effect.  

• Dimensionless frequencies decrease by increasing in the gradient index value. 

• It is concluded that the dimensionles natural frequencies with the uniform temperature rise is 

less than linear temperature one. 

• Moreover it is revealed that under temperature rise, the greatest frequency at pre-buckling 

region is obtained for the porous FG beam with C-C boundry condition followed with S-S and 

C-S conditions, respectively. 

• It is concluded that various factor such as porosity parameter, temperature rises, boundary 

conditions play important roles in dynamic behavior of FG beams with porosities. Therefore, 

the porosity and thermal effects should be considered in the analysis of vibration bahaviour of 

structures. 

 • Porosity effect is more tangible for higher modes of porous FG beam. 
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