
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 59, No. 1 (2016) 153-186 

DOI: http://dx.doi.org/10.12989/sem.2016.59.1.153                                           153 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Nonlinear higher order Reddy theory for temperature-
dependent vibration and instability of embedded functionally 

graded pipes conveying fluid-nanoparticle mixture 
 

M. Raminnea

, H. Biglari and F. Vakili Tahami 

 
Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran 

 
(Received July 22, 2015, Revised March 29, 2016, Accepted April 15, 2016) 

 
Abstract.  This paper addresses temperature-dependent nonlinear vibration and instability of embedded 

functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic 

medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear 

deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of 

Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to 

pipe. Based on energy method and Hamilton‟s principal, the governing equations are derived. Generalized 

differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of 

system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume 

percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature 

gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and 

decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The 

presented results indicate that the material in-homogeneity has a significant influence on the vibration and 

instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, 

fluid velocity leads to divergence and flutter instabilities. 
 

Keywords:  nonlinear vibration; temperature-dependent; orthotropic pasternak medium; FG pipe; fluid-

nanoparticle mixture 

 
 
1. Introduction 
 

Functionally graded materials are used in modern technologies for structural components such 

as those used in, nuclear, aircraft, space engineering and pressure vessels (Ng et al. 2001, Nguyen 

and Thang 2015, Kim 2015). Therefore analysis of the static and dynamic behavior of FG beam, 

plate and shell structures has been considered by many researchers in recent years. 

The problem of dynamic behavior of plates and shells has attracted considerable attention in 

recent years. Reddy et al. (1984) studied the effect of transverse shear deformation on deflection 

and stresses of laminated composite plates subjected to uniformly distributed load using finite 

element analyses. The non-linear dynamics and stability of simply supported, circular cylindrical 

                                           

Corresponding author, Ph.D., E-mail: m.raminnia@tabrizu.ac.ir 



 

 

 

 

 

 

M. Raminnea, H. Biglari and F. Vakili Tahami 

shells containing inviscid, incompressible fluid flow was analyzed by Amabili et al. (2002). In 

another work by Amabili (2003), large-amplitude vibrations of circular cylindrical shells subjected 

to radial harmonic excitation in the spectral neighbourhood of the lowest resonances were 

investigated. Karagiozis et al. (2005) investigated nonlinear vibrations of circular cylindrical 

shells, empty or fluid-filled, clamped at both ends and subjected to a radial harmonic force 

excitation. The dynamics of a circular cylindrical shell carrying a rigid disk on the top and 

clamped at the base was investigated by Pellicano and Avramov (2007). Jansen (2008) used a 

perturbation method to analyze the nonlinear vibration behaviour of imperfect general structures 

under static preloading. Effect of geometric imperfections on non-linear stability of circular 

cylindrical shells conveying fluid was studied by Amabili et al. (2009). Dynamic stiffness matrix 

of an axisymmetric shell and response to harmonic distributed loads was presented by 

Khadimallah et al. (2011). Khalili et al. (2012) studied closed-form formulation of three-

dimensional (3-D) refined higher-order shear deformation theory (RHOST) for the free vibration 

analysis of simply supported-simply supported and clamped-clamped homogenous isotropic 

circular cylindrical shells. Based on a meshless approach, postbuckling analysis of CNTR-FG 

cylindrical panels under axial compression was investigated by Leiw et al. (2014). 

Functionally graded materials (FGMs) are a new generation of composite materials in which 

the microstructural details are spatially varied through nonuniform distribution of the 

reinforcement phase. The concept of FGM can be utilized for the management of a material‟s 

microstructure so that the bending behavior of a plate structure made of such material can be 

improved. These materials have found a wide range of applications in many industries (Shahba 

and Rajasekaran 2012, Wattanasakulpong et al. 2012). An analytical method on active vibration 

control of smart FG laminated cylindrical shells with thin piezoelectric layers was presented by 

Sheng and Wang (2009a) based on Hamilton‟s principle. Sheng and Wang (2009b) presented the 

coupling equations to govern the electric potential and the displacements of the functionally 

graded cylindrical shell with surface-bonded PZT piezoelectric layer, and subjected to moving 

loads. Considering rotary, in-plane inertias, and fluid velocity potential, the dynamic 

characteristics of fluid-conveying functionally graded materials (FGMs) cylindrical shells 

subjected to dynamic mechanical and thermal loads were investigated by Sheng and Wang (2010). 

A model for sigmoid FGM microplates based on the modified couple stress theory with first order 

shear deformation was developed by Jung et al. (2014). Analysis of FG carbon nanotubes 

reinforced plates and panels is investigated by many authors. A large deflection geometrically 

nonlinear behaviour of carbon nanotube-reinforced functionally graded (CNTR-FG) cylindrical 

panels under uniform point transverse mechanical loading was studied by Zhang et al. (2014a) 

using the kp-Ritz method. Lei et al. (2014) presented a first-known dynamic stability analysis of 

CNTR-FG cylindrical panels under static and periodic axial force by using the mesh-free kp-Ritz 

method. They showed the effects of different boundary conditions and types of distributions of 

carbon nanotubes. The effective material properties of resulting CNTR-FG panels are estimated by 

employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The 

analysis of flexural strength and free vibration of carbon nanotube reinforced composite 

cylindrical panels was carried out by Zhang et al. (2014b) considering four types of distributions 

of uniaxially aligned reinforcements. Based on a meshless approach, postbuckling analysis of 

CNTR-FG cylindrical panels under axial compression was investigated by Leiw et al. (2014). The 

effective material properties of CNTR-FG cylindrical panels are estimated through a 

micromechanical model based on the extended rule of mixture. 

In the present study, nonlinear vibration and instability of temperature-dependent FG pipes  

154



 

 

 

 

 

 

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability... 

 

Fig. 1 Configurations of the FGM pipe resting on orthotropic elastic medium 

 

 

resting on temperature-dependent orthotropic Pasternak medium are investigated. The FG pipe is 

conveying viscous fluid. The nonlinear governing equations are obtained based on Hamilton's 

principal along with Reddy shell theory. GDQM is applied for obtaining the frequency and critical 

fluid velocity of the FG pipe. The effects of the mode numbers, nonlinearity, fluid velocity, volume 

percent of nanoparticle in fluid, gradient index, Pasternak medium, temperature and boundary 

conditions on the frequency and critical fluid velocity of the FG pipe are disused in detail. 

 

 

2. Formulation 
 

2.1 Functionally graded materials 
 

A schematic configuration of a FG pipe surrounded by an orthotropic elastomeric temperature-

dependent medium is shown in Fig. 1. The FG pipe is often made from a mixture of two material 

and the composition varies continuously and smoothly in the thickness direction. Herein, the outer 

(z=h/2) and the inner (z=−h/2) surfaces of the FG pipe are zirconium oxide and titanium alloy, 

respectively.  

Mechanical properties of the FG pipe including Young‟s modulus and mass density per unit 

volume are assumed to vary continuously through the pipe thickness according to either a power 

law distribution as (Reddy and Praveen 1998, Mirzavand and Eslami 2011) 

     
,)()( tctz EVEEzE   (1) 

     
,)()( tctz Vz    (2) 

in which the subscripts z and t represent the zirconium oxide and titanium alloy, respectively, and 

the volume fraction Vc 
may be given by 
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where g is the gradient indices and takes only positive values. For g=0 and g=∞, the pipe is fully 
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zirconium oxide and titanium alloy, respectively; whereas the composition of zirconium oxide and 

titanium alloy is linear for g=1. 

 
2.2 Basic equations 

 
Based on Reddy shell theory, the displacement field can be expressed as (Reddy 1984) 
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where (ux, uθ, 
uz) denote the displacement components at an arbitrary point (x,θ,z) in the pipe, and 

(u,v,w) are the displacement of a material point at (x,θ) on the mid-plane (i.e., z=0) of the pipe 

along the x-, θ-, and z-directions, respectively;
 
ψx 

and ψθ are the rotations of the normal to the mid-

plane about θ- and x- directions, respectively.  

The von Kármán strains associated with the above displacement field can be expressed in the 

following form 
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where 
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where (εxx, εθθ) are the normal strain components and (γθz, γxz, γxθ) are the shear strain components. 

The constitutive equation for stresses σ and strains ε matrix in thermal environment may be 

written as follows  
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(10) 

Noted that Cij (i,j=1,2,...,6) and αxx, 
αθθ 

may be obtained using Eqs. (1)-(3).  

 

2.3 Energy method 
 

The total potential energy, V, of the FG pipe is the sum of strain energy, U, kinetic energy, K, 

and the work done by the elasomeric medium, W. 
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The strain energy can be written as 

     
  . 

2

1

0

2/

2/  


h

h
zzxzxzxxxxxx dVU    (11) 

Combining of Eqs. (5)-(10) and (11) yields 
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(12) 

where the stress resultant-displacement relations can be written as 
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Substituting Eqs. (5)-(10) into Eqs. (13)-(16), the stress resultant-displacement relations can be 

obtained as follow 
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are thermal force and thermal moment 

resultants, respectively, and are given by 
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The kinetic energy of system may be written as 
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The external work due to Pasternak medium and fluid can be written as 
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2.4 Fluid flow work 
 

Consider the flow of fluid in a FG pipe in which the flow is assumed to be axially symmetric, 

Newtonian, laminar and fully developed. The basic momentum governing equation of the flow 

simplifies to (Wang and Ni 2009) 
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where ρb and P are fluid mass density and flow fluid pressure, respectively. The fluid force acted 

on the FG pipe can be calculated from Eq. (33). Since the velocity and acceleration of the pipe and 

fluid at the point of contact between them are equal (Wang and Ni 2009), we have  
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where vx 
is the mean flow velocity. In Eq. (33), shear stress (τ) is dependent to viscosity 

eff  

which can be expressed as follows 
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Finally, using Eqs. (34)-(38) and combination with Eq. (33), the fluid flow work may be written as 
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Noted that in this section, the effective viscosity (
eff ) and density (

eff ) of the fluid-

nanoparticle may be calculated from mixture law as follows (Ghorbanpour Arani et al. 2016) 
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where ρn, ρf, μn, μf
 
and ϕ are nanoparticle density, fluid density, nanoparticle viscosity, fluid 

viscosity and volume fraction of nanoparticle in the fluid respectively. 

 

2.5 Orthotropic Pasternak foundation  
 

The external force of orthotropic Pasternak medium can be expressed as (Kutlu and Omurtag 

012) 
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where KW, Kgξ and Kgη are spring constant of Winkler type, shear constant in ξ and η directions, 

respectively; angle θ describes the local ξ direction of orthotropic foundation with respect to the 

global x-axis of the pipe. Since the surrounding medium is relatively soft, the foundation stiffness 

KW may be expressed by (Shen and Zhang 2011, Kolahchi et al. 2015a) 
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where Es, vs, Hs are Young‟s modulus, Poisson‟s ratio and depth of the foundation, respectively. In 

this paper, Es is assumed to be temperature-dependent while vs is assumed to be a constant. 

 

2.6 Governing equations 
 

The governing equations can be derived by Hamilton‟s principal as follows 
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Substituting Eqs. (15) and (27) into Eq. (28) yields the following governing equations 
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Substituting Eqs. (18) to (40) into Eqs. (47) to (51), the governing equations can be written as 

follows  

,
4

2
3

4

3

4

3

4

2

1

2

1

:

2

3

2

3

2

2

12

2

0

2

2666666

22

2

2122

2

211

1211

2

12

2

11

xt

w

h

I

t
J

t

u
I

xR

w

Rxh
E

xR
B

R

w

x

w

x

v

R

u
A

R

R

w

Rh
E

x

w

xh
E

R
B

x
B

R

w

R

w

R

v
A

x

w

x

u
A

x
u

x

xx

x

x






































































































































































































































































































































 

(55) 

 

163



 

 

 

 

 

 

M. Raminnea, H. Biglari and F. Vakili Tahami 

,
4

2
3

4

3

4

3

4

2

1

2

1

:

2

3

2

3

2

2

12

2

0

2

2666666

22

2

2222

2

212

2212

2

22

2

12












































































































































































































































































































































tR

w

h

I

t
J

t

v
I

xR

w

Rxh
E

xR
B

R

w

x

w

x

v

R

u
A

x

R

w

Rh
E

x

w

xh
E

R
B

x
B

R

w

R

w

R

v
A

x

w

x

u
A

R
v

xx

x

x

 

(56) 

 

,
3

4

3

4

2

2coscossin2sin

sinsincos2cos

3

4

3

4

2

1

2

1

1

3

4

3

4

2

1

2

1

2
3

4
2

3

4

3

4

2

1

2

1

3

4

444

44
:

2

3

2

3

42

3

32

3

32222

4

22

4

6

2

22

2

0

2

2222

2

2

2
2

2

2

2

22

2
2

2

2

2
2

22

2
2

2

2

2
2

22

2

2222

2

212

2212

2

22

2

12

22

2

2222

2

212

2212

2

22

2

12

22

2

2

266

6666
2

22

2

2122

2

211

1211

2

12

2

11

2

2

2

25555244442

2555524444






































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































tRxt
J

tR

v
I

xt

u
I

htR

w

tx

w
I

ht

w
I

x

w
v

tx

w

x
h

x

w
v

t

w

R

h

x

w
v

t

w

R

h

x

w
v

tx

w
v

t

w
h

R

w

xR

w

x

w
K

R

w

xR

w

x

w
KwK

R

w

Rh
E

x

w

xh
E

R
B

x
B

R

w

R

w

R

v
A

x

w

x

u
A

R

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

R

xR

w

Rxh
H

xR
F

R

w

x

w

x

v

R

u
E

xR

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

x

h

R

w

h
F

R

w
D

Rx

w

h
F

x

w
D

xh

R

w
N

x

w
N

RR

w
N

x

w
N

x

R

w

h
D

R

w
A

Rx

w

h
D

x

w
A

x
w

x

xfx

f

x

f

xxffg

gW

x

x

x

x

x

x

x

x

xx

xxxx

xx

 
 

164



 

 

 

 

 

 

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability... 

   

,
3

4

3

4

2

2coscossin2sin

sinsincos2cos

3

4

3

4

2

1

2

1

1

3

4

3

4

2

1

2

1

2
3

4
2

3

4

3

4

2

1

2

1

3

4

444

44
:

2

3

2

3

42

3

32

3

32222

4

22

4

6

2

22

2

0

2

2222

2

2

2
2

2

2

2

22

2
2

2

2

2
2

22

2
2

2

2

2
2

22

2

2222

2

212

2212

2

22

2

12

22

2

2222

2

212

2212

2

22

2

12

22

2

2

266

6666
2

22

2

2122

2

211

1211

2

12

2

11

2

2

2

25555244442

2555524444






































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































tRxt
J

tR

v
I

xt

u
I

htR

w

tx

w
I

ht

w
I

x

w
v

tx

w

x
h

x

w
v

t

w

R

h

x

w
v

t

w

R

h

x

w
v

tx

w
v

t

w
h

R

w

xR

w

x

w
K

R

w

xR

w

x

w
KwK

R

w

Rh
E

x

w

xh
E

R
B

x
B

R

w

R

w

R

v
A

x

w

x

u
A

R

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

R

xR

w

Rxh
H

xR
F

R

w

x

w

x

v

R

u
E

xR

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

x

h

R

w

h
F

R

w
D

Rx

w

h
F

x

w
D

xh

R

w
N

x

w
N

RR

w
N

x

w
N

x

R

w

h
D

R

w
A

Rx

w

h
D

x

w
A

x
w

x

xfx

f

x

f

xxffg

gW

x

x

x

x

x

x

x

x

xx

xxxx

xx

 

(57) 

,
3

4

2
3

4

3

4

3

4

2

1

2

1

3

4

444

2
3

4

3

4

3

4

2

1

2

1

:

2

3

422

2

22

2

1

2

266

6666

22

2

2122

2

211

1211

2

12

2

11

2

24444224444

2

2666666

22

2

2122

2

211

1211

2

12

2

11

xt

w
J

ht
K

t

u
J

xR

w

Rxh
H

xR
F

R

w

x

w

x

v

R

u
E

R

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

x

h

x

w

h
F

x

w
D

hx

w

h
D

x

w
A

xR

w

Rxh
F

xR
D

R

w

x

w

x

v

R

u
B

R

R

w

Rh
F

x

w

xh
F

R
D

x
D

R

w

R

w

R

v
B

x

w

x

u
B

x

x

x

x

x

x

xxxx

xx

x

x

x



































































































































































































































































































































































































































































































































































































































































































































































































 

(58) 

.
3

4

3

4

3

4

2

1

2

1

2
3

4

3

4

444

3

4

3

4

2

1

2

1

2
3

4
:

2

3

422

2

22

2

1

22

2

222

2

2

2122212

2

22

2

12

2

266

6666

2

25555225555

22

2

2222

2

212

2212

2

22

2

12

2

2666666
































































































































































































































































































































































































































































































































































































































































































































































































































tR

w
J

ht
K

t

v
J

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

R

xR

w

Rxh
H

xR
F

R

w

x

w

x

v

R

u
E

x

h

R

w

h
F

R

w
D

hR

w

h
D

R

w
A

R

w

Rh
F

x

w

xh
F

R
D

x
D

R

w

R

w

R

v
B

x

w

x

u
B

R

xR

w

Rxh
F

xR
D

R

w

x

w

x

v

R

u
B

x

xx

x

x

x

x

xx

 

165



 

 

 

 

 

 

M. Raminnea, H. Biglari and F. Vakili Tahami 

     
.

3

4

3

4

3

4

2

1

2

1

2
3

4

3

4

444

3

4

3

4

2

1

2

1

2
3

4
:

2

3

422

2

22

2

1

22

2

222

2

2

2122212

2

22

2

12

2

266

6666

2

25555225555

22

2

2222

2

212

2212

2

22

2

12

2

2666666
































































































































































































































































































































































































































































































































































































































































































































































































































tR

w
J

ht
K

t

v
J

R

w

Rh
H

x

w

xh
H

R
F

x
F

R

w

R

w

R

v
E

x

w

x

u
E

R

xR

w

Rxh
H

xR
F

R

w

x

w

x

v

R

u
E

x

h

R

w

h
F

R

w
D

hR

w

h
D

R

w
A

R

w

Rh
F

x

w

xh
F

R
D

x
D

R

w

R

w

R

v
B

x

w

x

u
B

R

xR

w

Rxh
F

xR
D

R

w

x

w

x

v

R

u
B

x

xx

x

x

x

x

xx

 

(59) 

 

 
3. GDQM 
 

There is a lot of numerical method to solve the initial-and/or boundary value problems which 

occur in engineering domain. Some of the common numerical methods are finite element method 

(FEM), Galerkin method, finite difference method (FDM), DQM and etc. FEM and FDM for 

higher-order modes require to a great number of grid points. Therefore these solution methods for 

all these points need to more CPU time, while the DQM has several benefits that are listed as 

below (Kolahchi et al. 2015b, Kolahchi and Moniribidgoli 2016): 

1. DQM is a powerful method which can be used to solve numerical problems in the analysis of 

structural and dynamical systems. 

2. The accuracy and convergence of the DQM is higher than FEM. 

3. DQM is an accurate method for solution of nonlinear differential equations in approximation 

of the derivatives. 

4. This method can easily and exactly satisfy a variety of boundary conditions and require 

much less formulation and programming effort. 

5. Recently, DQM has been extended to handle irregular shaped. 

Due to the above striking merits of the DQM, in recent years the method has become 

increasingly popular in the numerical solution of problems in engineering and physical science. In 

this method, the differential equations are changed into a first order algebraic equation by 

employing appropriate weighting coefficients. Because weighting coefficients do not relate to any 

special problem and only depend on the grid spacing. In other words, the partial derivatives of a 

function (say w here) are approximated with respect to specific variables (say x and θ), at a 

discontinuous point in a defined domain as a set of linear weighting coefficients and the amount 

represented by the function itself at that point and other points throughout the domain. The 

approximation of the n
th
 and m

th
 derivatives function with respect to x and y, respectively may be 

expressed in general form as (Abdollahian et al. 2013) 

166



 

 

 

 

 

 

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability... 

     

),,(),(

),,(),(

),,(),(

1

)()(

1

)(

1

)()(

1

)()(

lk

N

l

jl
m

ik
n

N

k

ji

mn

x

li

N

l

jl
m

ji

m

jk

N

k

ik
n

ji

n

x

xfBAxf

xfBxf

xfAxf

x

x



































 (60) 

where Nx and Nθ, denotes the number of points in x and θ directions, f(x, θ) is the function and Aij, 

Bjl
 
are the weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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The weighting coefficients for the second, third and fourth derivatives are determined via 

matrix multiplication 

 

.,...,2,1,,,,

,,...,2,1,,,,

1

)1()3()4(

1

)1()2()3(

1

)1()1()2(

1

)1()3()4(

1

)1()2()3(

1

)1()1()2(





NjiBBBBBBBBB

NjiAAAAAAAAA

N

k

kjikij

N

k

kjikij

N

k

kjikij

x

N

k

kjikij

N

k

kjikij

N

k

kjikij

xxx












 (63) 

There are many typical grids such as equally space, Chebyshev, Legendre and Chebyshev-

Gauss-Lobatto (Lobatto in short) grid points which are commonly used in the literature. For most 

cases, the original Lobatto grid is the best choice among the four traditional non-uniform grids. 

The stretched Lobatto grid with proper choice of stretching parameter can improve the accuracy of 

numerical solution (Shu et al. 2001). However, the distribution of grid points in domain is 

calculated by Chebyshev-Gauss-Lobatto polynomials as follows 
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The solution of the motion equations can be assumed as follows: 
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  extx   (69) 

where fh
E


   and 

f

t E

h



  are the dimensionless natural frequency and dimensionless 

time. Substituting Eqs. (60) and (65)-(69) into the governing equations turns it into a set of 

algebraic equations expressed as 
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(74) 

Finally, the governing equations (i.e., Eqs. (70)- (74)) in matrix form can be expressed as  

  ],0[][][][][ 2  dMCKK NLL 

 

(75) 

where [d]=[u v w ψx ψy]
T
; [KL] and [KNL] are respectively, linear and nonlinear stiffness matrixes; 

[C] is damp matrix and [M] is the mass matrix. For solving the Eq. (75) and reducing it to the 

standard form of eigenvalue problem, it is convenient to rewrite Eq. (75) as the following first 

order variable as 

     
    Z A Z ,  (76) 
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in which the state vector Z and state matrix [A] are defined as 

     

d

d

d
Z

d

 
  
 

 and  
   

 1 1

L NL

0 I
A ,

M K K M C 

 
  

          

 (77) 

where [0] and [I] are the zero and unitary matrices, respectively. However, the frequencies 

obtained from the solution of Eq. (77) are complex due to the damping existed in the presence of 

the viscous fluid flow. Hence, the results are containing two real and imaginary parts. The real part 

is corresponding to the system damping, and the imaginary part representing the system natural 

frequencies. This nonlinear equation can now be solved using a direct iterative process as follows: 

• First, nonlinearity is ignored by taking KNL=0 to solve the eigenvalue problem expressed in 

Eq. (77). This yields the linear eigenvalue and associated eigenvector. The eigenvector is then 

scaled up so that the maximum transverse displacement of the pipe is equal to the maximum 

eigenvector, i.e., the given vibration amplitude wmax.  

• Using linear w, [KNL] could be evaluated. Eigenvalue problem is then solved by substituting 

[KNL] into Eq. (7). This would give the nonlinear eigenvalue and the new eigenvector.  

• The new nonlinear eigenvector is scaled up again and the above procedure is repeated 

iteratively until the frequency values from the two subsequent iterations „r‟ and „r+1‟ satisfy the 

prescribed convergence criteria as 

     
,0

1









r

rr

 (78) 

where ε0 is a small value number and in the present analysis it is taken to be %1.0  

 

 

4. Numerical results and discussion 
 

A computer program is prepared for the numerical solution of vibration and stability of FG pipe 

resting on orthotropic Pasternak foundation. Here, a mixture of zirconium oxide and titanium 

alloy, referred to as ZrO2/Ti-6Al-4V for the FGM pipe is selected. The FGM properties, P, can be 

expressed as nonlinear functions of environment temperature T as (Mirzavand and Eslami 2011) 

     
 1 2 3

0 1 1 2 3P P P T 1 PT P T P T ,

      (79) 

which T=T0+ΔT and T0=300K (room temperature); P0, P-1, P1, P2, P3 
are temperature dependent 

coefficients that are unique to the constituent materials. Typical values for Young‟s modulus E, 

Poison‟s ratio ν, and the coefficient of thermal expansion α of zirconium oxide and titanium alloy 

are listed in Table1. The elastomeric medium is made of Poly dimethylsiloxane (PDMS) which the 

temperature-dependent material properties of which are assumed to be vs=0.48 and 

Es=(3.22−0.0034T)GPa in which T=T0+ΔT and T0=300K (room temperature) (Shen and Zhang, 

2011). The FG pipes are considered with three kinds of boundary conditions: simply supported at 

both ends (SS) or clamped (CC), and one end simply supported and another clamped (SC) (Xing et 

al. 2013). In addition, the nanoparticle-fluid mixture is made of Al2O3-water suspension with 

variant volume fractions of particles (Ghorbanpour Arani et al. 2016). 
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Table 1 Temperature-dependent material coefficients for zirconium oxide and titanium alloy 

Material properties Material P0 P-1 P1 P2 P3 

E (Pa)
 Zirconium oxide 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-10 

Titanium alloy 122.56e+9 0 -4.586e-4 0 0 

v Zirconium oxide 0.28 0 0 0 0 

Titanium alloy 0.28 0 0 0 0 

α (1/K) 
Zirconium oxide 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11 

Titanium alloy 7.5788e-6 0 6.638e-4 -3.147e6 0 

 
Table 2 Accuracy of the GDQM for frequency of FG pipe  

Nθ Nx SS CC 

7 

7 0.7117 0.8272 

11 0.9945 1.1518 

15 1.1788 1.4124 

17 1.1788 1.4124 

11 

7 0.9551 1.2834 

11 1.1011 1.4136 

15 1.1855 1.4262 

17 1.1855 1.4262 

15 

7 0.9698 1.2942 

11 1.1855 1.4266 

15 1.1864 1.4273 

17 1.1864 1.4273 

17 

7 1.0704 1.3068 

11 1.1860 1.4270 

15 1.1864 1.4273 

17 1.1864 1.4273 

 

 

4.1 Convergence of GDQM 
 

The convergence and accuracy of the DQM in evaluating the excitation frequency of the FG 

pipe is shown in Table 2. The results are prepared for different values of the DQM grid points. Fast 

rate of convergence of the method are quite evident and it is found that fifteen DQ grid points can 

yield accurate results.  

 

4.2 Validation 
 
In the absence of similar publications in the literature covering the same scope of the problem, 

one can not directly validate the results found here. However, the present work could be partially 

validated based on a simplified analysis suggested by Yang and Shen (2003), Pradyumna and 

Bandyopadhyay (2008), Neves et al. (2013) and Fazzolari and Erasmo Carrera (2014). Hence, 

vibration of clamped supported classical cylindrical shells is investigated where the temperature 
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dependency of material, elastic medium and fluid are ignored. The geometrical parameters of the 

shell are assumed are L/h=10 and R/L=100. Furthermore, the shell made up of Si3 (ceramic) and 

SUS304 (metal) with Ec=322.2715 GPa, vc=0.24, ρc=2370 Kg/m
3
, Em=207.7877 GPa, vm=0.31 and 

ρm=8166 Kg/m
3
. Table 3 illustrates the first four dimensionless frequency (

mm DL  2 ) with 

Dm=Emh
3
/[12(1−vm

2
)] for different FG gradient index. As can be seen, the obtained results are the 

same as those expressed by Yang and Shen (2003), Pradyumna and Bandyopadhyay (2008), Neves 

et al. (2013) and Fazzolari and Erasmo Carrera (2014), indicating validation of our work. 

Noted that the little difference between present work and other references is due to the type of 

applied theory and solution method. In the works of Yang and Shen (2003), Pradyumna and 

 

 
Table 3 First four dimensionless frequency parameters of clamped FGM cylindrical shell for different FG 

index 

Mode Theory 
g 

0 0.2 2 10   

1 

HSDT, Pradyumna and Bandyopadhyay 

(2008) 
72.9613 60.0269 39.1457 33.3666 32.-274 

HSDT, Fazzolari and Carrera (2014) 75.2498 61.3403 41.1511 35.6545 33.2433 

HSDT, Yang and Shen (2003) 74.518 57.479 40.750 35.852 32.761 

HSDT, Neves et al. (2013) 74.2634 60.0061 40.5259 35.1663 32.6108 

HSDT, Neves et al. (2013) 74.5821 60.3431 40.8262 35.4229 32.8593 

RSDT, Present work 74.7832 60.9912 40.8812 35.5512 32.1434 

2 

HSDT, Pradyumna and Bandyopadhyay 

(2008) 
138.5552 113.8806 74.2915 63.2869 60.5546 

HSDT, Fazzolari and Carrera (2014) 143.5110 116.9275 78.1359 67.5201 63.0894 

HSDT, Yang and Shen (2003) 144.663 111.717 78.817 69.075 63.314 

HSDT, Neves et al. (2013) 141.6779 114.3788 76.9725 66.6482 61.9329 

HSDT, Neves et al. (2013) 142.4281 115.2134 77.6639 67.1883 62.4886 

RSDT, Present work 143.2016 116.0127 78.0034 67.3936 63.0088 

3 

HSDT, Pradyumna and Bandyopadhyay 

(2008) 
138.5552 114.0266 74.3868 63.3668 60.6302 

HSDT, Fazzolari and Carrera (2014) 143.6735 117.0744 78.2242 67.5946 63.1603 

HSDT, Yang and Shen (2003) 145.740 112.531 79.407 69.609 63.806 

HSDT, Neves et al. (2013) 141.8485 114.5495 77.0818 66.7332 62.0082 

HSDT, Neves et al. (2013) 142.6024 115.3665 77.7541 67.2689 62.5668 

RSDT, Present work 143.5908 116.6010 78.0582 67.4452 63.0245 

4 

HSDT, Pradyumna and Bandyopadhyay 

(2008) 
195.5366 160.6235 104.7687 89.1970 85.1788 

HSDT, Fazzolari and Carrera (2014) 201.6888 164.2966 109.5277 94.4779 88.3744 

HSDT, Yang and Shen (2003) 206.992 159.855 112.457 98.386 90.370 

HSDT, Neves et al. (2013) 199.1566 160.7355 107.9484 93.3350 86.8160 

HSDT, Neves et al. (2013) 200.3158 162.0337 108.9677 94.0923 86.6341 

RSDT, Present work 201.2230 163.9014 109.1110 94.2046 87.9103 
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Fig. 2 Effects of mode numbers on the dimension frequency (Im(Ω)) versus dimension flow velocity 

 

 

Fig. 3 Effects of mode numbers on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Bandyopadhyay (2008), Neves et al. (2013), Fazzolari and Erasmo Carrera (2014), the higher 

order shear deformation theory (HSDT) and semi-analytical approach, HSDT and finite element 

method, HSDT and radial basis functions, refined hierarchical kinematics (RHK) and Ritz method 

are used, respectively while in the present study, the RSDT in conjunction with GDQM is applied. 

 

4.3 Effect of different parameters 
 
Figs. 2 and 3 show the dimensionless frequency (Im(Ω)) and damping (Re(Ω)) of FG pipe 
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versus the dimensionless flow velocity (
xf vCV 11

* / ) for the first four modes of vibration, 

respectively. Generally, the system is stable when the real part of the frequency remains zero and it 

is unstable when the real and imaginary parts of the frequency become positive and zero, 

respectively. It can be seen that the Im(Ω) generally decreases with increasing V
*
. For zero 

frequency, FG pipe becomes unstable and the corresponding fluid velocity is called the critical 

flow velocity. As can be seen, the critical fluid velocity correspond to the first mode is reached at 

V
*
=1.508. This physically impalas that the pipe losses its stability due to the divergence via a 

pitchfork bifurcation while the second, third and fourth modes are still stable. Thereafter, for the 

fluid velocity within the range 1.508<V
*
<2.352, the Re(Ω) of the first mode is positive, which the 

system becomes unstable. Afterwards, the Im(Ω) of the first and second modes combines to each 

other in the region of 2.432<V
*
<2.995. This physically implies a single coupled-mode between the 

first and the second modes occurs which is unstable with flutter instability. Also, this phenomenon 

may be observed in different modes for higher velocities. For example, a coupled-mode between 

the second and the third modes takes place in the range of 3.015≤V
*
≤3.558. Meanwhile, it should  

be noted that the pipe becomes unstable at second, third and fourth modes when * 2.432V  , 
* 2.995V   and * 3.638V   respectively.  

Figs. 4 and 5 show the effect of gradient index on the dimensionless frequency (and damping of 

FG pipe versus dimensionless flow velocity, respectively. With increasing flow velocity, system 

stability decreases and became susceptible to buckling. It can be observed that, the Im(Ω) o and 

critical fluid velocity of system decrease with increasing gradient index. This decrease in 

frequency and critical fluid velocity with power law index is attributed to the fact that zirconium 

oxide has larger stiffness than that of titanium alloy. When the value of power-law index is zero, 

FGM pipe consists of only zirconium oxide. Thus, frequency and critical fluid velocity values are 

maximum when g is zero. With increase of g value, the more metal materials are included in the 

FGM pipe. It is worth mentioning that the results this figure, exhibiting increase of frequency and 

critical fluid velocity with lower value of g, i.e., for zirconium oxide, which is lighter than the  

 

 

 

Fig. 4 Effects of gradient index on the dimension frequency (Im(Ω)) versus dimension flow velocity 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
 (


)

V
*

 

 

g=20

g=10

g=5

g=0

176



 

 

 

 

 

 

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability... 

 

 

Fig. 5 Effects of gradient index on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Fig. 6 Effects of elastic medium on the dimension frequency (Im(Ω)) versus dimension flow velocity 

 

 

metal, show that both mass and stiffness are contributing factors in increasing the value of 

frequency. Noted that FGMs are ultrahigh temperature-resistant materials suitable for aerospace 

applications such as aircraft, space vehicles, barrier coating and propulsion systems (Fazzolari and 

Carrera 2014). Hence, presented results indicate that the FG gradient index has a significant 

influence on the vibration and instability behaviors of the FGM pipe and should therefore be 

considered in its optimum design.  

The dimensionless frequency and damping of the FG pipe are demonstrated in Figs. 6 and 7 for 

different temperature-dependent mediums. In this figure, four cases are considered as follows: 
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Fig. 7 Effects of elastic medium on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Fig. 8 Effects of boundary conditions on the dimension frequency (Im(Ω)) versus dimension flow velocity 
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Fig. 9 Effects of boundary conditions on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Fig. 10 Effects of temperature gradient on the dimension frequency (Im(Ω)) versus dimension flow velocity 

 

 

As can be seen, considering elastic medium increases frequency and critical fluid velocity of 

the FG pipe. It is due to the fact that considering elastic medium leads to stiffer structure. 

Furthermore, the effect of the Pasternak-type is higher than the Winkler-type on the frequency and 

critical fluid velocity of the FG pipe. It is perhaps due to the fact that the Winkler-type is capable 

to describe just normal load of the elastic medium while the Pasternak-type describes both 

transverse shear and normal loads of the elastic medium. However, we can conclude that the 

elastic foundation is an important parameter for increasing the stiffness and frequency and 

delaying in the instability and buckling of pipe. 
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The effect of the different boundary conditions on the dimensionless frequency and damping of 

the FG pipe is depicted in Figs. 8 and 9. As can be seen, the frequency and critical fluid velocity of 

the FG pipe are maximum and minimum for CC and SS boundary conditions, respectively. It is 

because that considering CC boundary condition leads harder structure. 

Figs. 10 and 11 show the dimensionless frequency and damping of the FG pipe for different 

temperature gradients. It can be also found that the frequency and critical fluid velocity of the FG 

pipe decrease with increasing temperature which is due to the higher stiffness of FG pipe with 

lower temperature. Noted that the effect of temperature on the frequency and critical fluid velocity 

with respect to other parameters presented in this section is lower.  

 

 

 

Fig. 11 Effects of temperature gradient on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Fig. 12 Effects of fluid viscosity on the dimension frequency (Im(Ω)) versus dimension flow velocity 
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Fig. 13 Effects of fluid viscosity on the dimension frequency (Re(Ω)) versus dimension flow velocity 

 

 

Fig. 14 Effects of nanoparticle volume percent on the dimension frequency (Im(Ω)) versus 

dimension flow velocity 

 

 

Figs. 12 and 13 illustrate the effect of fluid viscosity on the Im(Ω) and Re(Ω) of FG pipe versus 

dimensionless fluid velocity, respectively. The results indicate that viscous fluid increases 

frequency very little. However, during the flow of a fluid through a FG pipe, the effect of fluid 

viscosity on the vibration and instability of structure may be ignored. It should be noted that, this 

is the same as observations made by Wang and Ni (2009). 

For presenting the effect of nanoparticle volume fraction in fluid, Figs. 14 and 15 are plotted. 

As can be seen, with increasing volume fraction of nanoparticles in fluid, the frequency and  
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Fig. 15 Effects of nanoparticle volume percent on the dimension frequency (Re(Ω)) versus 

dimension flow velocity 

 

 

Fig. 16 Nonlinear to linear frequency versus maximum amplitude for different FG gradient 

index and boundary conditions 

 

 

critical fluid velocity increase. It is due to the fact that with increasing volume fraction of 

nanoparticles in fluid, the velocity of fluid decreases and consequently the stability of system 

increases. 

Nonlinear to linear frequency (ΩNL/ΩL) versus maximum amplitude (wmax) for different FG 

gradient index and boundary conditions is demonstrated in Fig. 16. As can be seen, increasing 

amplitude, the effect of nonlinear terms in motion equations increases. Furthermore, with 

increasing FG gradient index, the frequency ratio increases. Meanwhile, considering CC boundary 

condition decreases frequency ratio. In conclusion, considering pipe with FG gradient index zero  
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Fig. 17 Nonlinear to linear frequency versus maximum amplitude for different mode numbers 

 

 

and CC boundary condition, the frequency ratio decreases and consequently, the nonlinear 

frequency reaches to linear one. However, in the mentioned case, the effect of nonlinear terms in 

motion equations may be ignored. 

Fig. 17 illustrates the ΩNL/ΩL versus wmax for the first three modes of vibration. It can be seen 

that with increasing mode numbers, the frequency ratio decreases. Hence, the effect of nonlinear 

terms in motion equations in higher modes can be eliminated. 

 

 

5. Conclusions 
 

Temperature-dependent nonlinear vibration and instability of FG pipe conveying fluid-

nanoparticel mixture were presented in this study. The FG pipe was located in a temperature-

dependent elastic medium which was simulated by Pasternak foundation. Based on Reddy shell 

theory, the motion equations were derived using energy method and Hamilton's principle. GDQM 

is applied for obtaining the frequency and critical fluid velocity of system so that the effects of the 

mode numbers, internal fluid velocity, volume percent of nanoparticle in fluid, gradient index, 

Pasternak medium, temperature, nonlinear terms in motion equations and boundary conditions 

were considered. Results indicate that fluid velocity plays an important role on the instability of 

pipe since it can lead to divergence and flutter instabilities. Considering Pasternak medium 

increases frequency and critical fluid velocity of the FG pipe. Furthermore, with increasing 

gradient index and decreasing volume percent of nanoparticle in fluid, the frequency and critical 

fluid velocity of the FG pipe decrease. In addition, the frequency and critical fluid velocity of the 

FG pipe decrease with increasing temperature gradient. Meanwhile, considering CC boundary 

condition, higher vibration modes and decreasing FG gradient index, the effect of nonlinear terms 

in motion equations may be ignored. The results of this study were validated as far as possible by 

Shen (2003), Pradyumna and Bandyopadhyay (2008), Neves et al. (2013), Fazzolari and Erasmo 
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Carrera (2014). Finally, it is hoped that the results presented in this paper would be helpful for 

study and design of pipes conveying fluid with applications in oil pipelines, heat exchangers, 

nuclear reactor components and pump discharge lines. 
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