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Abstract.  Elasticity solutions for bi-directional functionally graded beams subjected to arbitrary lateral 

loads are conducted, with emphasis on the end effects. The material is considered macroscopically isotropic, 

with Young’s modulus varying exponentially in both axial and thickness directions, while Poisson’s ratio 

remaining constant. In order to obtain an exact analysis of stress and displacement fields, the symplectic 

analysis based on Hamiltonian state space approach is employed. The capability of the symplectic 

framework for exact analysis of bi-directional functionally graded beams has been validated by comparing 

numerical results with corresponding ones in open literature. Numerical results are provided to demonstrate 

the influences of the material gradations on localized stress distributions. Thus, the material properties of the 

bi-directional functionally graded beam can be tailored for the potential practical purpose by choosing 

suitable graded indices. 
 

Keywords:  bi-directional functionally graded materials; analytical elasticity solutions; symplectic 
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1. Introduction 
 

Due to astonishing advances in science and technology, new structural materials have attracted 

attention of numerous researchers. Functionally graded materials (FGMs) are a new generation of 

special non-homogenous materials, which have striking advantages over traditional homogeneous 

materials. FGMs are generally made from a mixture of two or more materials, whose material 

properties are varied continuously and smoothly along certain direction(s), thus reducing cracking 

and delamination phenomenon often observed in conventional composite materials. Typically, 

FGMs made of ceramic and metal can survive in environments with high-temperature gradients 

because of better thermal resistance of the ceramic phase, while maintaining stronger mechanical 

performance of metal phase.  

The concept of FGMs was first introduced and proposed by a group of Japanese scientists 
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(Koizumi 1993) and the original application of FGMs is for thermal barrier system (Koizumi 

1997). In recent years, FGMs have been widely used in many engineering applications such as 

aircrafts, space vehicles, marine, civil construction, nuclear power plants and even 

micro/nano-electro- mechanical system. Many studies have been performed extensively to analyze 

the static behavior (Sankar 2001, Sallai et al. 2009, Simsek 2009, Neves et al. 2011, Simsek 

2013), bucking behavior (Huang and Li 2011, Shahba et al. 2011, Simsek and Reddy 2013) and 

dynamic behavior (Khalili et al. 2010, Simsek and Cansiz 2012) of functionally graded structures. 

It can be seen from the literature that considerable attention are focused on the functionally graded 

structures with properties graded in one direction, especially in thickness direction (Reddy 2000, 

Ferreira et al. 2006, Ding et al. 2007, Huang et al. 2009). Recently, Shahba et al. (Shahba et al. 

2011, 2012, Shahba and Rajasekaran 2012) presented the stability and free vibration analyses of 

axially functionally graded beams. The static analyses of FGM beams with material properties 

varying along the axial direction have also been presented (Zhao et al. 2012a, b). Chu et al. (2015) 

proposed a theoretical approach to solve the plane elasticity problems of FGMs with the material 

properties dependent on the thickness-wise direction or the width-wise direction in form of an 

exponential function. 

In advanced nowadays structures such as modern aerospace shuttles and craft, there are 

elements which subjected to thermal and mechanical loads varying in two or even three directions. 

In the practice occasions, the conventional FGMs are not qualified to resist severe variations of 

temperature in multi-directions. Therefore, FGMs with two-dimensional and three-dimensional 

dependent material properties have more effective material resistant (so-called Bi-directional 

FGMs and tri-directional FGMs). Recently, a few researchers have investigated the 

thermo-mechanical and dynamic behaviors of multi-directional FGMs using various mathematical 

models. Nemat-Alla (2003) investigated thermal stresses of bi-directional functionally graded 

aerospace shuttles and craft using finite element method. Hedia (2005) extended the finite element 

model to stress analysis of bi-directional FGM structures. Sutradhar and Paulino (2004) developed 

a simple boundary element method for the transient heat conduction in multi-dimensional FGMs. 

Kuo and Chen (2005) derived Green’s functions for steady-state or transient-state heat conduction 

in anisotropic bi-directional FGMs. Qian and Batra (2005) using the meshless local Petrove 

Galerkin method to obtain numerical solutions for static, free, and forced vibrations of a 

bi-directional cantilever beam. Lü et al. (2008, 2009) obtain semi-analytical elasticity solutions for 

bi-directional FGM beams and plates adopting differential quadrature method. Sobhani Aragh et 

al. (2011) presented the semi-analytical solution for free vibration and vibrational displacements of 

bi-directional FGFR curved panel. Nie and Zhong (2010) investigated the dynamic behavior of 

multi-directional functionally graded annular plates. Shariyat and Alipour (2013) employed the 

differential transform method to vibration analysis of circular plates with two-directionally graded 

materials. Ebrahimi and Najafizadeh (2014) analyzed the free vibration of a two-dimensional 

functionally graded circular cylindrical shell. Simsek (2015) studied free and forced vibration of 

BDFG beam due to a moving load by using the energy approach. Lezgy-Nazargah (2015) 

investigated the coupled thermo-mechanical behavior of bi-directional FGM beams using a 

modified finite element model. 
It is noted that in majority studies mentioned above, the bi-directional or tri-directional FGMs 

are modeled by employing numerical and semi-analytical theories. There are few of investigation 

available in the literature on structural response of bi-directional FGM structures by means of 

analytical method. The symplectic framework in the Hamiltonian system developed by Zhong 

(1995), Yao et al. (2009) has shown great superiority in revealing the structure of solutions and  
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Fig. 1 The rectangular domain of bi-directional FGM problem 

 

 

their physical essence as well as predicting the accurate local behavior. Zhao et al. (2012c) first 

proposed a symplectic formulation based on the state-space formalism for static analysis of 

bi-directional FGM beams with homogenous lateral conditions. This paper attempts to further 

extend the symplectic approach to the exact analysis of bi-directional FGM beams with various 

end conditions. On the basis of the particular solution which is derived from the eigen-function, 

analytical elasticity solutions of bi-directional FGM beams subjected to arbitrary distribution 

lateral loads are obtained in a systematically manner. Numerical results are presented to reveal 

effective and accurate of the present approach in predicting local stress distributions. The 

influences of the material gradient indices on the stress distributions are investigated. 

 
 
2. Theory and formulation 
 

We consider an isotropic elastic bi-directional functionally graded beam with length l and 

thickness 2h. A Cartesian coordinate system is introduced such that the x-axis is aligned with the 

thickness axis and z-axis with the longitudinal direction as shown in Fig. 1. 

As illustrated in Fig. 1, the Young’s modulus E is assumed to vary exponentially along the 

longitudinal and thickness directions, in the form of  

     0( , ) e z xE x z E    (1) 

where E0 is assumed to be a constant, while α and β are the inhomogeneity parameters along z and 

x axes, respectively. Meanwhile, the Poisson’s ratio ν remains constant, independent of any 

coordinate variable. 

With the plane stress assumption, the two-dimensional constitutive relations are 
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 (2) 

where σx, σz, and τxz are the normal and shear stresses, and ux and uz are the displacements in the x- 

and z-direction. For plane-strain problem, we should replace E(x,z) by  2( , ) 1E x z   and ν by 

ν/(1−ν). 
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In the absence of body forces, the equations of equilibrium are 

     
0x xz

x z

  
 

 
, 0xz z

x z

  
 

 
 (3) 

To facilitate the analysis in subsequent subsections, the following new stress variables are 

introduced 

     
ˆ e z x

x x

     , ˆ e z x

z z

     , ˆ e z x

xz xz

      (4) 

Making use of Eqs. (2) and (3), we can derive the matrix state equation as 

     z






v
Hv  (5) 

where Tˆ ˆ[ , , , ]z x z xzu u  v  is the state vector and the operator matrix H is given by 

        

2

0

0

2

0 02

1
0 0

2(1 )
0 0

0 0

0

x E

x E

x

E E
x xx






 

   

  
 

 
  
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   

 
   

     
  

H =  (6) 

When the inhomogeneous parameters equal zero, the operator matrix H becomes the same as 

the conventional Hamiltonian operator matrix for homogenous materials (Yao et al. 2009). 

 
 
3. Symplectic framework 
 

In this section, a brief review of the symplectic approach for bi-directional functionally graded 

materials problems with lateral traction-free boundary conditions is given firstly. Then, a particular 

solution for plane beams subjected to arbitrary form tractions on the upper and lower surfaces is 

presented. The two ends of the beam are subjected to the combinations of the boundary conditions 

as below:  

(1) Simply supported end: σz=0, ux=0 

(2) Clamped end: uz=0, ux=0 

(3) Free end: σz=0, τxz=0 

As the plane problem has been reformulated in the state space, the method of separation of 

variables along with the eigenfunction expansion technique is employed to reduce the original 

problems to analyzing eigenvalues and their eigensolutions. The complete elasticity solution for 

generally supported beam is formed by eigensolutions of the homogeneous problem and particular 

solution corresponding to nonhomogeneous boundary conditions on the lateral surfaces. 

To obtain the general solutions for the bi-directional FGM beam, we consider the following 

homogenous boundary conditions on the lateral surfaces as 

104



 

 

 

 

 

 

Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions... 

 

 

     x h  : 0
ˆ ˆ 0x

x z

u
E

x
 


  


, ˆ 0xz   (7) 

The method of separation of variables is possible for Eq. (5)  

     
T( , ) ( ) ( ) ( )[ ( ), ( ), ( ), ( )]x z z x z w x u x x x    v Φ  (8) 

Substitution of Eq. (8) into Eq. (5), we can get 

     

 

 

( )( )

( ) ( )

i

i

xz

z x





 

HΦ

Φ
 (9) 

where T

1 2( ) ( ( )  ( )   ( ))nx x x xΦ Φ Φ Φ . Eq. (9) leads to an analytical solution about the variation 

with z 

     
( ) e zz    (10) 

and gives rise to the eigen-equation 

     ( ) ( )x xHΦ Φ  (11) 

where μ is the eigenvalue of the operator matrix H, and ( )xΦ  is the corresponding eigenvector. 

Similar to the analytical procedure of axial functionally graded materials (Zhao et al. 2012b), 

we can derive that zero and −α are the eigenvalues of the operator matrix H. It can also be found 

that, if μ is an eigenvalue of H, then −μ−α is also an eigenvalue. It should be noted that the stresses 

for two particular eigenvalues 0 and −α do not decay exponentially with z and the solutions are 

known as the Saint-Venant solutions, while the stresses for other eigenvalues (μ≠0, −α) vary 

exponentially with z and the solutions are usually dominant only near the ends of a beam. 

The eigenvalues of the operator matrix H can be divided into two classifies:  

(1) Particular eigenvalues: zero and −α, which are multiple, theirs fundamental eigensolutions 

and Jordan form eigensolutions need to be considered respectively. 

(2) General eigenvalues: μi and −μi−α are the conjugate pair of eigenvalues. All eigenvalues 

can be divided into two groups of (a) and (b) as follows 

(a)-group: i , Re( ) / 2i    or Re( ) / 2i     Im 0i    ( 1 , 2 , ,i n  )      (12a) 

 (b)-group: i i                                (12b) 

 
3.1 The eigensolutions of eigenvalues zero and−α 
 
From the eigen-Eq. (11), explicit expressions of the eigenvectors and eigensolutions for 

eigenvalues zero and −α are obtainable.  

When μ=0, the eigen-equation becomes HΦ(x)=0 and the corresponding eigenvectors are 

     
(0) T

0,1 [1,0,0,0]Φ , (0) T

0,2 [0,1,0,0]Φ , (1) T

0,2 [ ,0,0,0]x Φ
 (13) 

Similarly, the eigenvectors of the eigenvalue −α can be obtained as 

T
(0) 2

,1 0

T
(0) 2

,2 0

cosh( ) / , sinh( ) / ( ), cosh( ),0

sinh( ) / ( ),cosh( ) / , sinh( ) / ,0
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     
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   
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 
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 

 
 

 (14) 

in which    . It should be noted that the first subscripts 0 and −α in Eq.(14)indicate the  

eigenvalues zero and −α, the second subscripts 1 and 2 indicate the first and second Jordan chain, 

the superscripts (0) and (1) indicate the fundamental eigenvectors and first order Jordan normal  

form eigenvectors, respectively. Meanwhile, it should be noted that (1)

Φ  has been determined by 

means of Jordan chain (1) (1) (0)

    HΦ = Φ +Φ , in which (0)

Φ  was reconstructed as (Zhao et al.  

2012c) 

      
(0) (0) (0)

0 ,1 ,2A    Φ = Φ Φ  (15) 

where   0 0 sinh( )cosh( ) / cosh( )sinh( ) sinh( )cosh( )C E h h h h h h          and

    0 sinh( )cosh( ) cosh( )sinh( ) / cosh( )sinh( ) sinh( )cosh( )A h h h h h h h h               . The 

coefficients ξi (i=1,2,3,4) are listed in Appendix A. 

The eigensolutions corresponding to the zero eigenvalue can be constructed as 

      
(0) (0)

0,1 0,1v Φ , (0) (0)

0,2 0,2v Φ , (1) (1) (0) T

0,2 0,2 0,2 [ , , 0, 0]z x z   v Φ Φ  (16) 

The original solutions of the original homogeneous problem corresponding to eigenvalue   are 
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 
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 
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 v M Φ , (1) (1) (0)e ( )z

t z

  



  
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where diag[1,1,e ,e ]z x z x

t

    M  is the transform (diagonal) matrix between the eigensolution 

and the original solution. 

 

3.2 General eigensolutions 
 

To obtain the eigensolutions of the general eigenvalues (μ≠0, −α), we can assume the solution 

of the eigen-equation HΦ(x)=μΦ(x) in the form of 
 

     ( ) e xx Φ V  (18) 
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where V is an undetermined constant vector, and η is the eigen-root of the following characteristic 

polynomial 

The eigen-root η can be obtained as  
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(19) 

The corresponding eigen-vector can be written as 
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Substituting the eigen-vector in Eq. (20) into eigen-equation HΦ(x)=μΦ(x), the relations 

between coefficients Ai, Bi, Ci and Di are 
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Thus, a nontrivial solution Di (i=1,2,3,4) can be deduced from homogeneous boundary 

conditions on the lateral surfaces as follows 
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 (22) 

Then, the general eigenvalue μ can be obtained from the following transcendental equation  

      

1 2 3 4 1 4 2 3 1 2 3 4

1 3 4 2 1 2 3 4

( )( )cosh(2 ) ( )( )cosh[( ) ]

                 ( )( )cosh[( ) ] 0

h h

h

            

       

       

      
 (23) 
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Thus, the eigen-solution and the corresponding original solution for any particular eigenvalue 

μn can be obtained as 

      
z

e n

n n


v = Φ , n t n

v = M v  (24) 

in which the components of Φn are given in Eq. (20). 

 
3.3 Particular solutions 

 
Next, we investigate the particular solutions for bi-directional FGM beams subjected to 

arbitrary form tractions on the lateral surfaces. The conditions at the upper and lower surfaces are 

assumed as 
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(25) 

Following similarly the procedure presented in literature (Zhao and Gan 2015), the  

displacement and stress components of the particular solution Φ  are obtained from the equation
(1)k    HΦ Φ Φ  as 
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The coefficients ξi and mi in Eq. (26) are listed in Appendix A. 

The particular solution of the original plane problem can be constructed as 
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The elasticity solutions of bi-directional functionally graded beams with various boundary 

conditions are formed by eigensolutions of eigenvalues zero and −α, general eigensolutions and 

the particular solution mentioned above. The complete analytical solution can be described as 
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    v = v v + v + v + v + v + v + v v  (28) 

It should be mention that N is a truncated number, which should be large enough to make sure 

the accuracy of the symplectic expansion. The unknown constants ci (i=1,2,...,6), ai and bi can be 

determined by a linear system of equations resulted from the Hamiltonian variational principle as 

follows (Leung and Zheng 2007) 
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Take the simple supported beam as example, the boundary conditions at z=0 and z=l are 
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 (30) 

In order to accord with Eq. (29), the boundary conditions above can be expressed as 
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Substituting Eq. (31) into the Eq. (29), the coefficients ci, ak and bk can be determined. 

 
 
4. Numerical examples 
 

4.1 Example 1 
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(a) z (b) xz 

  

(c) z (near the simply supported end) (d) xz (near the simply supported end) 

Fig. 2 Contours of normal and shear stresses for homogenous beam (αh=0, βh=0) 

 
 

Consider the plane stress problem of the simple supported isotropic beam of thickness 2h=1 m 
and length-to-thickness ratio l/(2h)=5, which is subjected to prescribed normal tractions q1=-10 

(kN/m) at its upper surface. The Young’s modulus varies exponentially both along the z- and 

x-axes with its value at the point O(0,0) being E0=2.0×1011 N/m2, and the Poisson’s ratio v=0.29 

keeps constant. The axial material gradient index αh and the transverse one βh are investigated in 

details. The unit of normal and shear stresses in the contour plots is 1.0×104 N/m, the same as that 

of the normal and shear stresses distributing alone the length direction. 

In Figs. 2-5, Figs. (a) and (b) show the contours of normal and shear stresses for whole beams, 

while Figs. (c) and (d) display the local normal and shear stresses near the simply supported end. 

Besides, Fig. 6 below presents the distributions of normal and shear stresses alone longitudinal 

direction. It should be noted that the numerical example emphasizes on the effectiveness of 

symplectic approach in obtaining analytical elasticity solutions. Only particular solution, six  
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(a) z (b) xz 

  
(c) z (near the simply supported end) (d) xz (near the simply supported end) 

Fig. 3 Contours of normal and shear stresses for axial FGM beam (αh=0.01, βh=0) 

 

 

particular eigensolutions and 40 general eigensolutions in Eq. (28) are retained to ensure the 

computational efficiency in the numerical examples. 

Fig. 2 (a) and (b) display the contours of normal and shear stresses for homogeneous beam 

(αh=0, βh=0), which agree well with the solutions in Timoshenko and Goodier (1970). To obtain 

highly accurate local stress and displacement distributions, e.g., at the simply supported end, 

general eigen-solutions have also be taken into consideration. Fig. 2 (c) and (d) show the local 

contours of normal and shear stresses near the simply supported end (0≤z≤0.1). It can be seen from 

Fig. 2(c) that, the normal stress on the simply supported end fluctuates around zero, but does not 

vanish. The symplectic approach involves the expansion in terms of eigensolutions and the 

truncated number N does influence on the accuracy of the symplectic expansion. Another reason 

may be the numerical error due to the limited precision of the floating-point representation of a 

numerical quantity imposed by the digital computer. 
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(a) z (b) xz 

  

(c) z (near the simply supported end) (d) xz (near the simply supported end) 

Fig. 4 Contours of normal and shear stresses for bi-directional FGM beam (αh=0.01, βh=1×10−10) 

 

 

When the transverse gradient index β equals zero, the bi-directional FGM beam degenerates to 

the conventional axial FGM beam (αh=0.01, βh=0). The normal and shear stresses distributions of 

the functionally graded beam are displayed in Fig. 3 (a) and (b), which match excellently with the 

corresponding results in Zhao and Gan (2015).  

For comparison, the stress contours are also presented in Fig. 4 for bi-directional functionally 

graded beam with transverse gradient index β approaching zero (αh=0.01, βh=1×10−10). It can be 

seen from Figs. 2-4 that, the well matches of stress distributions are obtained for the smaller 

inhomogeneous parameters αh=0.01 and βh=1×10−10. Hereto, the capability of the symplectic 

framework developed in bi-directional FGM beam has been assessed. 

The contours of normal and shear stresses for bi-directional FGM beam with material gradient  
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(a) z (b) xz 

  
(c) z (near the simply supported end) (d) xz (near the simply supported end) 

Fig. 5 Contours of normal and shear stresses for bi-directional FGM beam (αh=1, βh=0.001) 

 

 

indices αh=1 and βh=0.001 are given in Fig. 5 which are obvious different from the ones in Figs. 2 

-4. From the figures, we can find that the material inhomogeneities do have a significant influence 

on the elastic field in the strip.  

For comparison, Fig. 6 (a) and (b) present the distributions of normal stress at x=0.5 and at 

x=−0.5 alone the longitudinal direction, respectively. While Fig. 6(c) display the shear stress 

distribution at x=0 alone the longitudinal direction. It is obvious that, when the material 

inhomogeneity parameters αh and βh both take extremely small value, the normal and shear 

stresses are similar to that of the homogenous materials (αh=0, βh=0). When the axial 

inhomogeneity parameter αh=1, the normal and shear results begin to deviate obviously from 

those of the homogenous material. 
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(a) The normal stress distribution at x=0.5 

 
(b) The normal stress distribution at x=−0.5 

Fig. 6 The normal and shear stress distribution along the longitudinal direction 

 

 
4.2 Example 2 
 
Consider the cantilever bi-directional FGM beam with the length l=5 m and the thickness 2h=1 

m, subjected to a linear normal traction q(z)=−q0(z−2l)/l (q0=1000 kN/m) at its upper surface  
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(c) The shear stress distribution at x=0 

Fig. 6 Continued 

 

 

Fig. 7 The bi-directional FGM cantilever beam subjected to distribution lateral loads 

 

 

and a prescribed simple tensile stress 100(kN / m)l   at the free end. The Poisson’s ratio v and  

parameter E0 are the same with those of the bi-directional FGM beam in example 1. The transverse 

material gradient index is taken to be βh=0.00001, and the axial one takes the values αh=−0.2 and 

αh=−0.1. 

The contours of stress and displacement for homogeneous material are showed in Fig. 8 which 

accord with the solutions of classical elasticity theory (Timoshenko and Goodier 1970). Fig. 9 

displays the contours of stress and displacement for clamped-free bi-directional FGM beam 

(αh=−0.2, βh=0.00001) by expansion of Eq. (28). The results are obtained by retaining particular 

solution and 36 eigen-solutions in the expansion. It can be seen from Fig. 9 that, the symplectic  
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(a) z  (Unit: 1.0×106 N/m) (b) xz  (Unit: 1.0×106 N/m) 

  

(c) uz (Unit: m) (c) ux (Unit: m) 

Fig. 8 Contours of stress and displacement for homogeneous material beam (αh=0, βh=0) 

 

 
framework enable us to obtain the highly accurate local stress and displacement distributions, 

especially at the clamped end of the cantilever beam.  

For comparison, Fig. 10 suggests that the bi-directional FGM beam with a small material 

gradient index (αh=−0.1, βh=0.00001) behaves more reasonable for normal and shear stresses at 

the vicinity of clamped end. It is seen from Figs. 9 and 10 that, the axial gradient index αh plays an 

obvious effect on the normal and shear stress distributions. The influence of the transverse 

gradient index can also be investigated similarly when necessary. These essential results indicate 

that the selection of material gradient indices of the bi-directional FGM beams can be tailored to 

meet the desired goals in practice engineering.  
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(a) z  (Unit: 1.0×106 N/m) (b) xz  (Unit: 1.0×106 N/m) 

  
(c) uz (Unit: m) (c) ux (Unit: m) 

Fig. 9 Contours of stress and displacement for bi-directional FGM beam (αh=−0.2, βh=0.00001) 

 
Table 1 Normal stress z at x=−0.5 along the longitudinal direction  

Material 

gradient 

index 

Length coordinate (m) 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

αh=0 

βh=0 
10.4359 6.1776 5.1149 4.2119 3.4710 2.8500 2.3041 1.7882 1.2573 0.6677 -0.0384 

αh=−0.1 

βh=0.0001 
32.5920 21.9455 18.5557 15.2624 12.3697 9.9517 8.0417 6.6577 5.7911 5.3834 7.2901 

αh=−0.2 

βh=0.00001 
71.6405 48.2017 37.9374 28.0233 18.9330 10.9716 4.4793 -0.1591 -2.5266 -2.1604 2.7039 

Note: The unit of normal stress z is 1.0×106 N/m. 
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(a) z  (Unit: 1.0×106 N/m) (b) xz  (Unit: 1.0×106 N/m) 

  

(c) uz (Unit: m) (c) ux (Unit: m) 

Fig. 10 Contours of stress and displacement for bi-directional FGM beam (αh=−0.1, βh=0.00001) 

 
Table 2 Normal stress z at x=0.5 along the longitudinal direction 

Material 

gradient 

index 

Length coordinate (m) 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

αh=0 

βh=0 
-9.8275 -6.0472 -4.9449 -4.0340 --3.2902 -2.6664 -2.1176 -1.5988 -1.0650 -0.4724 0.2355 

αh=−0.1 

βh=0.0001 
-12.2641 -11.2153 -8.4630 -6.0918 -4.1721 -2.6958 -1.6727 -1.0966 -0.9439 -1.1673 -1.8646 

αh=−0.2 

βh=0.00001 
-64.7702 -43.2337 -33.1484 -23.5908 -14.9387 -7.4743 -1.5393 2.4805 4.1747 3.1206 -2.5332 
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Different from Fig. 6, Tables 1 and 2 present the values of normal stress at eleven points alone 

the longitudinal direction at x=−0.5 and at x=0.5, respectively. The results in bold correspond to 

the homogenous materials and are calculated within symplectic framework (Zhao and Gan 2015). 

From the comparison, we can see that the axial gradient index αh plays a significant influence on 

the normal stress distribution in the strip. 

 

 

5. Conclusions 
 

The symplectic approach based on Hamiltonian system was effectively extended to obtain 

exact elasticity solutions for bi-directional FGM beams subjected to arbitrary distributed lateral 

loads. Considering homogenous boundary conditions on the lateral surface, the eigensolutions of 

two special eigenvalues (zero and −α) and general eigenvalues (μ≠0, −α) were obtained from 

eigen-function. Furthermore, a particular solution satisfying the lateral distribution loads on the 

upper and bottom surface was derived in a systematic manner. The complete analytical solution is 

obtained by the theorem of superposition. Numerical results reveal that the present approach is 

effective and accurate in predicting local stress distributions. From the numerical investigation, it 

can also be concluded that the material gradient indices play a significant influence on the stresses 

of the bi-directional FGM beams. Furthermore, maximum value and uniformity of stress 

distributions can be modified to a required manner by selecting appropriate material properties. 

It should be noted that, the present symplectic scheme can be established a well-structured 

analytical procedure for functionally graded beams with material properties varying respectively 

exponentially in the length or thickness direction, and also for bi-directional functionally graded 

beams with material properties varying exponentially in both length and thickness directions. But 

for functionally graded beams with material properties varying arbitrarily, numerical technique is 

necessary to facilitate numerical solution in the symplectic framework. Besides, further endeavors 

could be made to seek numerical solutions for bi-directional FGM beams subjected to 

concentrated force and other type of discontinuous loads on the lateral surfaces. 
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Appendix A 
 

2 2 2 2

1 ( ) / ( )        , 2 2

2 (1 ) / ( )      , 

2 2

3 ( ) / (1 )       , 2 2 2 2

4 [ ( 1) 2 ] / ( )          , 

 2 2 2 2

5 0 0(1 ) ( / ) (1 ) / ( )A A               , 

 2 2 2 2

6 0 0(1 ) ( / ) (1 ) / ( )A A               , 

2 2 2

7 0( ) 2 A       , 2 2

8 02 ( )A      , 

   2 2 2 2

1 1 2 0 1 2/ + / ( )m A            
 

, 

   2 2 2 2

2 0 1 2 1 2/ + / / ( )m A              
 
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2 2 3 2 2 2

3 1 2 0 0 1 2( )(2 ) ( / ) / ( )m A A                 , 

2 2 2 2 2 2 2 2

4 0 1 2 1(1+ )[2 ( )] ( ) / / [ ( ) ]m A                    , 

2

5 2 1 0 22 (1 ) /m m A           , 2

6 2 0 2 1 3 12 ( ) 2(1 )m A m              , 

  2 2

7 1 4 0 2 3 5/ 2(1 )m A m              ,   2

8 0 2 1 4 6/ 2(1 )m A m             , 

 2

9 0 2 0(1 ) 4 1 /m C E          ,     2 2 2

10 2 0 0 02 1 2 (1 ) /m C C D F E              
 
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