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Abstract. In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber
reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation
compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed
to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear
and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various
effects of Poisson’s ratio and Young’s modulus of adhesive. Such interfacial stresses play a fundamental
role in the mechanics of plated beams, because they can produce a sudden and premature failure. The
analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In
the present theoretical analysis, the adherend shear deformations are taken into account by assuming a
parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded
with a summary and recommendations for the design of the strengthened beam.

Keywords:  composites plates; interlaminar stresses; steel beam; strengthening; adherend shear
deformations; adhesive

1. Introduction

Strengthening beams and column by bonding plates to their surfaces is an effective method for
extending the life of ageing infrastructure. Plate bonding relies critically on the strength of the
adhesive joint, which must be designed to have adequate strength. The reliability of structural
adhesive joint depends on several factors. These factors include the design, materials and
manufacturing methods of the joints as well as accurate analysis of the strength of the structural
adhesive joints.

The behaviour of the interface between the steel beam and FRP can influence the performance
of hybrid beam and is influenced by many factors such as the properties and geometries of the
steel beam, FRP and adhesive layer. The interface transfers the stresses from steel to FRP plate.
Therefore, a comprehensive understanding on the stress state and the stress-transfer mechanism of
the interface is necessary for the design and application of the hybrid structures. The interfacial
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stress of the hybrid beam has been studied by experimental and theoretical methods. The
experimental technologies were applied to test the interfacial stresses (Jones et al. 1988). However,
the experimental test of interfacial stress fields seems to be difficult because of the complicated
distribution of local stresses. The analytical studies (Tounsi 2006) tend to develop a closed-form
solutions for the interfacial shear and normal stresses. The determination of interfacial stresses has
been researched for the last decade for steel or concrete beams bonded with either steel or
advanced composite materials. In particular, several closed-form analytical solutions have been
developed (Tounsi et al. 2009, Touati et al. 2015). All these solutions are for linear elastic
materials and employ the same key assumption that the adhesive is subject to normal and shear
stresses that are constant across the thickness of the adhesive layer. It is this key assumption that
enables relatively simple closed-form solutions to be obtained. In the existing solutions, two
different approaches have been employed. The interfacial stress of the hybrid beam has been
studied by experimental and theoretical methods (Guenaneche et al. 2014, Hassaine Daouadji
2013, El mahi et al. 2014). The analytical studies (Benyoucef et al. 2014, Oller et al. 2015,
Ziadani et al. 2015) tend to develop a closed-form solutions for the interfacial shear and normal
stresses.

We can also mention, in addition fiber composite matrix materials, and to reduce the maximum
interfacial stress that we can offer plates bonded with properties classified as FGM plates. Is
another alternative can be proposed to strengthen the structures that will be addressed in future
research, it is therefore the use of functionally graded materials FGM (Abdelhak et al. 2015,
Tounsi et al. 2013, Benferhat et al. 2015, Bourada et al. 2015, Belabed et al. 2014, Hassaine
Daouadji 2013, Hebali et al. 2014, Ait yahia et al. 2015, Ait amar et al. 2014, Bennoun et al. 2016,
Zidi et al. 2014, Bouderba et al. 2013, Tounsi et al. 2013, Bousahla et al. 2014), that in order to
improve and ensure the material continuity through the thickness of the reinforcing plate, aiming
as a parameter in the mechanical characteristics of FGM, all by passing laws adequately mixes to
better meet industrial requirements and the environmental condition.

In this paper, the influence of the characteristics of structural adhesives on the interfacial
stresses in FRP plated steel beams is investigated theoretically (Bouakaz et al. 2014). These
investigations are carried out by means of a new analytical method which takes into account the
adherend shear deformations (Krour et al. 2013). The importance of including shear-lag effect of
the adherends was shown firstly by Tsai et al. (1998) in adhesive lap joints. Tounsi (2006) has
extended this theory to study concrete beam strengthened by FRP plate. The basic assumption in
these two studies is a linear distribution of shear stress across the thickness of the adherends.
However, it is well known that in beam theory, this distribution is parabolic through the depth of
beam. In the present developed method this later assumption is taken into consideration. The
methods predicts stress distributions along the adhesive joint and can be used to analyse failure of
the adhesive, or the substrates in the immediate vicinity of the joint, failure modes typically
observed in adhesive joints involving metallic or FRP substrates.

2. Methods of analysing adhesive joints

Bonded joints have been used since the 1930s, but it is only relatively recently that this
technology has been transferred to the construction industry. Adhesive joints in construction are
often on a larger scale than those in the automotive or aerospace industries, and behave in different
ways. Furthermore, construction projects are one-offs and it is not economic to base design on test



Elastic analysis effect of adhesive layer characteristics in steel beam... 85

Steel beam Adhesive laver

//

> A

Soffit plate

? ) Lp
-

Y

A

A

t

t:
t

y
A-A

Fig. 1 Simply supported beam strengthened with bonded composite plate

results, unlike other industries with long production runs. Consequently, it is important to have
realistic models for the adhesive joint strength. Two approaches can be used to predict the failure
of adhesive joints: a stress analysis, or a fracture mechanics approach. Fracture mechanics
examines the energy required for unstable crack propagation along the joint; however, this
approach has yet to be successfully applied to infrastructure strengthening applications
(Herakovich 1998). After the adhesive has cured, the strengthening plate and beam act
compositely, with load transferred between them by a combination of shear stresses (parallel to the
joint) and peel stresses (normal to the joint). A stress analysis can be used to predict the
distributions of shear and peel stress along the strengthened beam, for comparison to the limiting
strength of the adhesive joint. Several closed form stress analyses are available that predict the
distribution of bond stresses along a plate bonded to a beam. These all assume that the adhesive is
linear-elastic, but involve a variety of simplifying assumptions.The motivation behind the
approach presented in this paper was the lack of guidance for designing FRP strengthening bonded
to metallic structures. The reliability of structural adhesive joint depends on several factors.
Among these factors, the adhesive characteristics play an important role in the integrity and
reliability of hybrid structure.
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Fig. 2 Forces in infinitesimal element of a soffit-plated beam

3. Mathematical formulation of the present method

A differential section dx, can be cut out from the FRP reinforced steel beam (Fig. 1), as shown
in Fig. 2. The composite beam is made from three materials: steel beam, adhesive layer and FRP
reinforcement. In the present analysis, linear elastic behaviour is regarded to be for all the
materials; the adhesive is assumed to play a role only in transferring the stresses from the concrete
to the FRP reinforcement and the stresses in the adhesive layer do not change through the direction
of the thickness.

3.1 Basic equation of elasticity

The strains in the steel beam near the adhesive interface can be expressed as

1= 290)_ o152 o) &

Where uy(X) is the longitudinal displacement at the base of steel beam. &"(x) is the strain
induced by the bending moment at the adherend 1 and it is written as follow
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glM (X) = Ey_ll M 1(X) (2)

Where M;(x) is the bending moment applied in the steel beam; E; is Young’s moduli of the steel
beam; I, is the second moment area; y, is the distance from the bottom of adherend 1 to its
centroid. &,"(x) is the unknown longitudinal strain of the steel beam, at the adhesive interface and
it is due to the longitudinal forces. This strain is given as follow

&' (x)= d“gx(x) @3)

Where u,"(x) represents the longitudinal force induced adhesive displacement at the interface
between the steel beam and the adhesive.

To determine the unknown longitudinal strain ;"(x) shear deformations of the steel beam is
incorporated in this analysis. It is reasonable to assume that the shear stresses, which develop in
the adhesive, are continuous across the adhesive-adherend interface. In addition, equilibrium
requires the shear stress be zero at the free surface. Using the same methodology developed by
Tounsi (2006), Tsai et al. (1998), this effect is taken into account. A cubic variation of longitudinal

displacement U¥ (x,y) through the thickness of adherend 1 is assumed

U (%, y) = ALO)Y® +By ()Y +Cy(X) (4)

Where y is a local coordinate system with the origin at the top surface of the upper adherend Fig.
2.
The shear stresses in adherend 1 is given by

Tym =C17y (5)
With
aul awN
Vxy@ = WJF o (6)

G; is the transverse shear modulus of the adherend 1. Neglecting the variations of transverse
displacement W;" (induced by the longitudinal forces) with the longitudinal coordinate x.

ouN

Yo S (7
And the shear stresses are expressed as
Ty = G1BAN)Y? +B(X) ®)
The shear stresses must satisfy the following conditions
Oy (X t) =7(X) =7, 9

Ty (%0)=0 (10)
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ty, is the thickness of adherend 1.

Condition (9) follows from continuity and assumption of the uniform shear stresses (z(x)=t,)
through the thickness of adhesive. Condition (10) states there is no shear stresses at the top surface
of the adherend 1 (i.e., at y=0). These conditions yield

T
Ty =5V’ (115)
tl

Then with a linear material constitutive relationship the adherend shear strain y; for the
adherend 1is written as

Vxy@ =71 = y (12)

Ta
Gyt
The longitudinal displacement functions U, for the upper adherend, due to the longitudinal
forces, is given as

y
UM () =08 @+ [ (ndy =Us* ©)+ y? (13)
0

3G1t12
Where U,'(0) represents the displacement at the top surface of the upper adherend (due to the

longitudinal forces).
Note that due to the perfect bonding of the joints, the displacements are continuous at the

interfaces between the adhesive and adherends. As a result, the ulN (the adhesive displacement at
the interface between the adhesive and upper adherend) should be the same as the upper adherend
displacement at the interface. Based on Eq. (13) the ulN can be expressed as

7oty

M“=UF(y=u)=UP(®+3Gl (14)
Using Eq. (14), Eq. (13) can be rewritten as
UN(v)=uN 4_fa 3 _Tali
1 (Y)=u + 3G1t12 y 3G, (15)
The longitudinal resultant force, N, for the upper adherend, is
N, =b Io-lN (y)dy +b, _[o-f‘ (y)dy +b, IalN (y)dy (16)

o t—t

Where o' is longitudinal normal stress for the upper adherend. By changing these stresses

into functions of displacements and substituting Eq. (15) into the displacement, Eq. (16) can be
rewritten as

duX dU % oduM

N, _Ebj

dy (17)

ti—to

Hence, the longitudinal strains induced by the Iongltudinal forces Egs. (3) can be expressed as

du¥ N d
e (x) = :X = E;1+1261t1Al( [ tg -t +(t, —t, ) + 8t ]+bo[4t1 (t,—2ty)-(t,—t,) +t§])% (18)
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Substituting Egs. (18) and (2) into Egs. (1), this latter becomes
0= 240
(19)

= E)lllll M (x)+ gi(AtL 12611th1 [bl(—tg‘ —tf 4 (t —to)* +8t3t, )+ by (4t13 (t, - 2t ) (t, —t)* +t5‘)]dgg(x)
Where N(X) are the axial forces in each adherend, A; the cross-sectional area.

Since the composite laminate is an orthotropic material, its material properties vary from layer
to layer. In current study, the laminate theory is used to determine the stress and strain behaviours
of the externally bonded composite plate in order to investigate the whole mechanical performance
of the composite-strengthened structure. The effective moduli of the composite laminate are varied
by the orientation of the fibre directions and arrangements of the laminate patterns. The laminate
theory is used to estimate the strain of the symmetrical composite plate, i.e.

. 1 . 1
g)? = Alle — and kx = DllM X . (20)
b2 b2
[AT=[A"] is the inverse of the extensional matrix [A]; [D']=[D] is the inverse of the flexural
matrix; b, is a width of FRP plate.

Using CLT, the strain at the top of the FRP plate 2 is given as
t2

‘("Z(X):‘gf(J _kxE (21)
Substituting Eg. (20) in (21) gives the following equation
_du,(x) _ 5t - N, (x)
L2p (X) = dx =—-Dy, 2b, M 2(X)+ Ay b, (22)
Where
NZ(X):NX and MZ(X):MX (23)

M(x), N(x) and V(x) are the bending moment, axial and shear forces in the adherend.
By adopting the equilibrium conditions of the steel beam, we have:

Along x-direction:
dN, (%) _

dx —7z(X)b, (24)
Where z(X) is shear stress in the adhesive layer.
Along y-direction:
dv,(x)
g~ Lo (0b, +d] (25)

Where V;(x) is shear force applied in the steel beam; o,(x) is normal stress in the adhesive layer
and g is the uniformly distributed load.

Moment equilibrium:

daM, (%)

=52 =V, 00— 700b, v, (26)
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The equilibrium of the external FRP reinforcement along x-, y-direction and moment
equilibrium can be also written as:

Along x-direction:
dN,(x) _

20 =7(0b, (27)
Along y-direction:
L= o, Gob, (28)
Moment equilibrium:
% —V, (x) — z(x)b, %2 (29)

Where V,(x) is shear force applied in the external FRP reinforcement.
3.2 Shear stress distribution along the FRP-beam interface

Here, it is considered that the bending stiffness of the external FRP reinforcement is far less
than of the beam to be strengthened and the bending moment in the external FRP reinforcement
can be neglected for simplicity in the derivation of shear stress.

The shear stress in the adhesive can be expressed as follows

7(x) = K Au() = K, [u, (x)—u, (x)] (30)
Where Kj is shear stiffness of the adhesive per unit length and can be deduced as
T(X) 7(X) 1 G,

T AU(X)  Au()/t, t,  t, (31)
Au(x) is relative horizontal displacement at the adhesive interface; G, is the shear modulus in the
adhesive and t, is the thickness of the adhesive.

Substituting Egs. (19) and (22) into Eg. (30) and differentiating the resulting equation once
yields

dz(x) — Y2 A1l Y1 N, (X)
=K D M N — M _
dx SI: b, 11 M5 (X) + b, 2(X) E,l, 1(X) E, A (32)
1 4 L4 4 3 3 4 a)\dz(X)
— b, |-ty —t; +(t; —t + 8ttty |+ b |4t (t, — 2t )—(t; —t +1
126,12 (1[ o —t +(ty —to) 1 o] o[ 2t 0)—(t, —tg) 0]) dx }

Assuming equal curvature in the beam and the FRP plate, the relationship between the
moments in the two adherends can be expressed as

M, (x) = RM (x) (33)
With

— ElllDil
b,

R (34)
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Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives
MT(X):Ml(x)+M2(X)+N(X)[y1+y2+ta] (35)

Where, M+(x) is the total applied moment and from Egs. (24) and (27), the axial forces are
given as

Ny (x) = =N (x) = —b, [ #(x) and N, (x) = N() = b, | 7(x) (36)

The bending moment in each adherend, expressed as a function of the total applied moment and
the interfacial shear stress, is given as

ML6O = 55| My 0=, ey, + v, +tJax| (37)
And
M2 00 = s M G0 b, [t v, e dax (39)
The first derivative of the bending moment in each adherend gives
IMLC) _ R, ()~ bur Xy + v + 4] (39)
And
M0 _ L[y, () bar Gy + ¥z +t,)] (40)

Differentiating Eq. (32)

dZT(X):K Ay AN, (X) Yy D' dM, (%) ya dMy(x) 1 dNy(x) |
dx? b, dx b, ' dx E,l;, dx EA dx

d?7(x)
2

(41)

— S | to ) —td —t} +8t3t, J+ by 4t3(t, — 2ty )— (t; —ty )* +1t
o Pl —t0)* 18t it Jo o et -2t ) t0)* 415

Substitution of the shear forces (Egs. (39) and (40)) and axial forces Eq. (36) into Eq. (41)
gives the following governing differential equation for the interfacial shear stress.

dzz'(X) B Klbz[(y1 + yz)(y1 + Y5 +ta) AL Eb;l JT(X)"_ [()ﬁ + yz)Dll}/ (X) 0 (42)
1

dx? E,I,D',+b, E,I,D';,+b,
Where
KoL
[tang (43)
G, 4G,
and ¢ is a geometrical coefficient which is given as
1
¢ = 3 [bl(_tg —t +(t —to)* +8tot? )+ by (4t13 (t; —2tg)—(ts —to)* +t5 )] (44)

3At



92 Tahar Hassaine Daouadji, Lazreg Hadji, Mohamed Ait Amar Meziane and Hadj Bekki

For a rectangular section (b;=hy), £&=1, however, for I-beam section (present case) we have ¢<1.

For simplicity, the general solutions presented below are limited to loading which is either
concentrated or uniformly distributed over part or the whole span of the beam, or both. For such
loading, d°V+(x)/dx*=0, and the general solution to Eq. (42) is given by

7(x) = B, cosh(Ax)+ B, sinh (Ax)+m,\V; (x) (45)
Where
2 _ (y1+y2)(Y1+Y2 +ta) ' b,
A= Klbz( E,1,D',+b, Aut E, ] (46)
And
_ Ky ((y1+Yy2)D'yy
M= 22 ( E 1Dy +b, j (47)

B, and B; are constant coefficients determined from the boundary conditions.

In the present study, a simply supported beam is investigated which is subjected to a uniformly
distributed load.
Considering the boundary conditions:

1. Due to symmetry, the shear stress at mid-span is zero, i.e.

L L . L L
{ij =B, cosh{i ij +B, smh(z TPJ +mVy [ij =0 (48)

Where L; is the length of the FRP plate (see Fig. 1).
2. At the end of the FRP plate, the longitudinal force [N;(0)=N,(0)] and the moment M,(0) are
zero. As a result, the moment in the section at the plate curtailment is resisted by the beam
alone and can be expressed as

M, (0) = M. (0) = (L - a) (49)
Applying the above boundary condition in Eg. (30)
dr(x=0 K
r(dx ) _ -m,M;(0) avec m,= Eilyll (50)
From the above three equations
—Mm,ga m
B, =— 21 (L-a)+ L q (51)
B, — B, tanh| =2 | v.[Z2]—0 52
=B, 2= (52)

. AL AL .
For practical cases T">10 and as a result tanh[zpjzl. So the expression for B; can be

simplified to

B,=-B, (53)
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Substitution of B; and B, into Eq. (45) gives an expression for the interfacial shear stress at any
point

r(x):(mzza (L_a)_mlj qe;1X +m1q(%—a—xj 0<x<L, (54)

Where q is the uniformly distributed load and x, a, L and L, are defined in Fig. 1.
In the case where the beam is subjected to a two symmetric point loads, the general solution for
the interfacial shear stress is given by the following expressions Tounsi (2006)

M2 pae + mPcosh(x)e ™ 0<x<(b-a)
a<b 7(X) = A L (55)

% Pae™™ +m,Psinh(k)e ™  (b-a)<x< 7‘)

a>b : r(x)=%Pbe‘“ 0<x<L, (56)

Where P is the concentrated load and k=i(b—a). The expression of m; and m, takes into
considerations the shear deformation of adherends.

4. Numerical verification and discussions

The present analytical solution is verified in this section by comparing its predictions with
experimental results obtained by Jones et al.. , with analytical solutions by Smith and Teng 2001,
Tounsi 2006, Yang and Wu 2007 and Hassaine Daouadji 2013.

4.1 Comparison with experimental results

To validate the present method, a rectangular section (¢=1) is used here. One of the tested
beams bonded with steel plate by Jones et al. (1988), beam F31, is analysed here using the present
improved solution. The beam is simply supported and subjected to four-point bending, each at the
third point. The geometry and materials properties of the specimen are summarized in Table 1.

The interfacial shear stress distributions in the beam bonded with a soffit steel plate under the
applied load 180 kN in Fig. 3, are compared between the experimental results and those obtained
by the present method. As it can be seen from Fig. 3, the comparison shows encouraging
agreement with the experimental results.

4.2 Comparison with approximate solutions

The present simple solution is compared, in this section, with some approximate solutions

Table 1 Dimensions and material properties
Concrete b;=155 mm ;=225 mm E;=31000 MPa

Steel b,=125 mm t,=6 mm E,=200000 MPa
Adhesive b,=123 mm t;=1.5 mm E,=280 MPa, G,=108 MPa
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Fig. 3 Comparison of interfacial shear stress of the steel plated RC beam with the
experimental results from Jones et al.

Table 2 Geometric and material properties

Component Width Depth Young’s Poiss_on’s Shear modulus
(mm) (mm)  modulus (MPa) ratio MPa
RC beam b,=200 t,=300 E;=30 000 0.18 -
Adhesive layer RC beam b,=200 t.=4 E,=3000 0.35 -
GFRP plate (bonded RC beam) b,=200 t,=4 E,=50 000 0.28 G1,=5000
GFRP plate (bonded steel beam) b;=150 t,=2 E,=50 000 0.28 G1,=5000
GFRP plate (bonded Aluminium beam)  b,=20 t,=2 E,=50 000 0.28 G1,=5000
CFRP plate (bonded RC beam) b,=200 t,=4 E»=140 000 0.28 G1,=5000
CFRP plate (bonded steel beam) b;=150 t,=2 E,=140 000 0.28 G1,=5000
CFRP plate (bonded Aluminium beam)  b,=20 t,=2 E,=140 000 0.28 G1,=5000
Steel plate (bonded RC beam) b,=200 t,=4 E,=200 000 0.3
Aluminium plate (bonded RC beam) b,=200 t,=4 E,=65 300 0.3
Aluminium beam (wall thickness 2mm)  b;=20 £,=30 E,=65 300 0.3
Adhesive layer (Aluminium beam) b,=20 t,=2 E,=2 000 0.35
Steel I- beam (IPE300) b,=150 t,=300 E,=200 000 0.3

available in the literature. These include Smith and Teng (2001), Tounsi (2006), Yang and Wu
(2007), Hassaine Daouadji (2013) solutions uniformly distributed loads. A comparison of the
interfacial shear and normal stresses from the different existing closed-form solutions and the
present solution is undertaken in this section. An undamaged beams bonded with GFRP, CFRP,
Steel and Aluminium plate soffit plate is considered. The beam is simply supported and subjected
to a uniformly distributed load. A summary of the geometric and material properties is given in
Table 2. The results of the peak interfacial shear and normal stresses are given in Table 3 for the
beams strengthened by bonding GFRP, CFRP, Steel and Aluminium plate. As it can be seen from
the results, the peak interfacial stresses assessed by the present theory are smaller compared to
those given by Smith and Teng (2001), Tounsi (2006), Yang and Wu (2007), Hassaine Daouadji
(2013) solutions. This implies that adherend shear deformation is an important factor influencing
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Table 3 Comparison of peak interfacial shear and normal stresses (MPa): Uniformly Distributed Load- UDL

Reinforced Concrete Beam bonded with a thin plate subjected to a uniformly distributed load
RC beam with RC beam with RC beam with RC beam with

Model CFRP plate GFRP plate steel plate aluminum plate
Shear Normal Shear Normal Shear Normal Shear Normal
Present Model 1998 1.188 1.121 0913 2340 1.282 1.439 1.002

Tounsi et al. (2009) 1968 1169 1194 0.899 2304 1.261 1.417 0.985

Smith and Teng (2001) 2740 1484 1975 1244 369 1.713 1.973 1.251

Hassaine Daouadji (2013) 1.962 1.162 1108 0.893 2.297 1253 1413 0.980

Yang and Wu (2007) 2168 1225 1255 1112 2539 1.321 1561 1.033
Steel Beam bonded with a thin plate subjected to a uniformly distributed load

Model Steel beam with CFRP plate Steel beam with GFRP plate
Shear Stress Normal Stress Shear Stress Normal Stress
Present Model 2.385 1.355 1.477 1.055
Tounsi et al. (2009) 2.349 1.332 1.454 1.037
Yang and Wu (2007) 2.580 1.397 1.597 1.087
Hassaine Daouadji (2013) 2.342 1.325 1.459 1.031
Smith and Teng (2001) 3.270 1.691 2.025 1.316

Aluminium Beam bonded with a thin plate subjected to a uniformly distributed load
Aluminium beam with CFRP plate  Aluminium beam with GFRP plate

Model Shear Stress Normal Stress Shear Stress Normal Stress
Present Model 1.610 0.889 0.903 0.683
Tounsi et al. (2009) 1.586 0.875 0.962 0.672
Yang and Wu (2007) 1.748 0.917 0.987 0.832
Hassaine Daouadji (2013) 1.580 0.869 0.891 0.667
Smith and Teng (2001) 2.091 1.081 1.172 0.980

the adhesive interfacial stresses distribution.

Fig. 4 plots the interfacial shear and normal stresses near the plate end for the example steel
bonded with a CFRP plate for the uniformly distributed load case. Overall, the predictions of the
different solutions agree closely with each other. The interfacial normal stress is seen to change
sign at a short distance away from the plate end. The present analysis gives lower maximum
interfacial shear and normal stresses than those predicted by Tounsi 2006, indicating that the
inclusion of adherend shear de formation effect in the beam and soffit plate leads to lower values
of omax and 7. HOwever, the maximum interfacial shear and normal stresses given by Tounsi
2006 method’s is lower than the results computed by the present solution. This difference is due to
the assumption used in the present theory which is in agreement with the beam theory. Hence, it is
apparent that the adherend shear deformation reduces the interfacial stresses concentration and
thus renders the adhesive shear distribution more uniform. The interfacial normal stress is seen to
change sign at a short distance away from the plate end.

The results of the peak interfacial shear and normal stresses are given in Table 3 for the RC
beam with a GFRP, CFRP, Steel and Aluminum soffit plate. Table 3 shows that, for the UDL case,
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Fig. 4 Comparison of interfacial shear and normal stresses for an RC beam with a bonded
CFRP soffit plate subjected to a uniformly distributed load
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the present solution gives results which generally agree better with those from Smith’s and Teng
2001, Yang’s and Wu 2007, Tounsi’s 2006, Hassaine Daouadji’s 2013 solutions. The latter two
again give similar results. In short, it may be concluded that all solutions are satisfactory for RC
beams bonded with a thin plate as the rigidity of the soffit plate is small in comparison with the
that of the RC beam. Those solutions which consider the additional bending and shear
deformations in the soffit plate due to the interfacial shear stresses give more accurate results. The
present solution is the only solution which covers the uniformly distributed loads and considers
this effect and the effects of other parameters.

4.3 Parametric studies
For each of the five Poisson’s ratios of the adhesives, results for edge stresses, corresponding to

various Young’s modulus of adhesive E,, ranging between 0.001 and 30 GPa are presented in
graphical forms.
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The two edge stresses (shear and normal stress) corresponding to Poisson’s ratio v,=0.3 are
shown in Fig. 5. From Fig. 5, it is seen that both shear and normal interfacial stress increase
gradually as the Young’s modulus of adhesive increase from 0.001 to 30 GPa. Figs. 6 to 9 show
that when Poisson’s ratio v,=0.35, 0.4, 0.45 and 0.5, similar variations of the maximum interfacial
stress with Young’s modulus as in the case of v,=0.3 (Fig. 5) are obtained. The interfacial stresses
shown in Fig. 5 for Poisson’s ratio »,=0.3 and Young’s modulus, E,, greater than 5 GPa are
representative of those that will be obtained when very hard adhesives such as ceramic glue are
used. Similarly, the interfacial stresses shown in Figs. 6 and 7 for Poisson’s ratios v,= 0.35 and 0.4
and for Young’s modulus, E,, within the range 0.05-5 GPa apply to adhesives comprising of
multiple part epoxies. On the other hand, the interfacial stresses shown in Figs. 8 and 9 for
Poisson’s ratios »,=0.45 and 0.5 and for Young’s modulus, E, less than 0.05 GPa are
representative of those manifested by rubber-like or elastomeric adhesives.
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4.3.2 Effect of Poisson’s ratio

The two maximum adhesive stresses (shear and normal stress) versus Poisson’s ratio of
adhesive for different value of Young’s modulus of adhesive (E.=1, 2, 5, 10 and 30 GPa) are
shown in Fig. 10. It can be seen from the presented results that the Poisson’s ratio of adhesive has
almost no effect on the variation of the maximum adhesive stresses. However, these stresses
increase gradually with the Young’s modulus of adhesive. We note that the adhesives with Young’s
modulus smaller than 1 GPa are not commonly used in practice. In addition, the adhesives with
Young’s modulus E;=30 GPa is used only for theoretical comparison.

5. Conclusions

A systematic rigorous general approach for the analysis of interfacial stresses in steel beams
strengthened with externally bonded hygrothermal aged FRP plate has been presented. This
approach is based on elastic foundation model in which the adherend shear deformations have
been included by assuming a linear shear stress through the depth of the steel beam. By comparing
with  experimental results, the present closed-solution provides satisfactory predictions to the
interfacial shear stress in the plated beams. The influence of adhesive properties on the adhesive
stresses in beams strengthened with FRP plates has been investigated using an improved analytical
model. The adherend shear deformations are taken into account by assuming a parabolic shear
stress through the thickness of both the steel beam and bonded plate. By comparing with
experimental results, the present closed-solution provides satisfactory predictions to the interfacial
shear stress in the plated beams. The maximum interfacial stresses have been analysed using
adhesives of various Young’s modulus and Poisson’s ratio properties. In general, the maximum
interfacial stress increase with an increase in the Young’s modulus of adhesive, but does not appear
to change significantly with an increase in the Poisson’s ratio.

In conclusion, we can say that in addition to matrix composite fiber materials, another
alternative may be proposed for strengthening structures, this will involve the use of functionally
graded materials FGM (Abdelhak et al. 2015, Tounsi et al. 2013, Benferhat et al. 2015, Bourada et
al. 2015, Belabed et al. 2014, Hassaine Daouadji 2013, Hebali et al. 2014, Ait yahia et al. 2015,
Ait amar et al. 2014, Bennoun et al. 2016, Zidi et al. 2014, Bouderba et al. 2013, Tounsi et al.
2013, Bousahla et al. 2014) in order to ensure continuity properties lift through the thickness of the
reinforcement plate.
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