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Abstract.  A method of damage detection based on the moving harmonic excitation and continuous 

wavelet transforms is presented. The applied excitation is used as a moving actuator and its frequency and 

speed parameters can be adjusted for an amplified response. The continuous wavelet transforms, CWT, is 

used for cracks detection based on the resulting amplified signal. It is demonstrated that this identification 

procedure is largely better than the classical ones based on eigenfrequencies or on the eigenmodes wavelet 

transformed. For vibration responses, free and forced vibration analyses of multi-cracked beams are 

investigated based on both analytical and numerical methodological approaches. Cracks are modeled 

through rotational springs whose compliances are evaluated using linear elastic fracture mechanics. Based 

on the obtained forced responses, multi-cracks positions are accurately identified and the CWT identification 

can be highly improved by adjusting the frequency and the speed excitation parameters. 
 

Keywords:  multi-cracks identification; wavelet transform; differential quadrature method; moving 

harmonic excitation; free and forced vibration 

 
 
1. Introduction 
 

Vibration-based structural health monitoring consists on identifying health of structures or 

mechanical systems by using many methods based on dynamic behavior caused by damage. Modal 

information has long been used for damage identification Doebling et al. (1996), many methods 

were developed in this regard, using either mode shapes, or natural frequencies as detailed in   

Salawu (1997), the aim of vibrations based methods is to combine experimental data to vibration 

models for cracks detection, location, characterization, and quantification. During the last decades, 

modeling vibrations of damaged structures gained increasing attention from structural health 

monitoring researchers. In fact, a wealth of analytical, numerical, and experimental investigations 

now exists. Fracture mechanics has long been interested in propagation of cracks in materials. It 

                                           

Corresponding author, Professor, E-mail: l.azrar@um5s.net.ma 



 

 

 

 

 

 

Hajar Chouiyakh, Lahcen Azrar, Khaled Alnefaie and Omar Akourri 

was first founded by Griffith who gave a criterion for crack propagation in brittle materials and 

was succeeded by other demonstrations and generalizations enabling modeling different 

configurations of cracked materials Papadopoulos (2008), Fracture mechanics approach considers 

a crack as local flexibility that depends on crack dimensions and applied loads, this was modeled 

as a rotational spring linking two neighboring half-beams Dimarogonas (1996), The rotational 

spring model gives relatively better results in finding natural frequencies, and then it is largely 

used in vibration problems of cracked structural elements. Vibration-based methods in structural 

health monitoring mainly use these models, to better identify damages in structures. 

For structure‟s health monitoring, free and forced vibrations signals are analyzed using signal 

processing techniques. Wavelet transforms are widely used. Uses of wavelet transforms for 

detection of structure‟s defects have been investigated in many research works Ramon et al. 

(2012), Ovasenova and Suàrez (2004) demonstrated strength of wavelet transforms as a tool for 

detecting cracks in structures. In another work, two wavelet-based approaches for the detection of 

cracks locations based on beam‟s response are developed in Khorram et al. (2012), the beam was 

subjected to a concentrated moving load, contained one crack and the Gaussian 4 wavelet has been 

used. Loutridis et al. (2004) used mode shapes wavelet transformed to develop an intensity factor 

for estimating the relative depth of the cracks. Their positions are obtained from the sudden 

changes in wavelet coefficients. The same idea was adopted by Zhu and Law (2006) using forced 

response of the one cracked beam instead of mode shapes. Results are obtained from analytical 

method, where one has to solve an 8x8 algebraic system for one crack and a 12×12 one for a 

double cracked beam. Various methods are used to solve cracked beams vibration problem. 

Recently Nassar et al. (2013) make use of the differential quadrature method to study free 

vibrations of an Euler Bernoulli beam. The beam is considered to contain one crack, made of a 

functionally graded material and rests on a Winkler Pasternak foundation. Orhan (2007) studied 

free and forced vibrations of one cracked beam subjected to harmonic load by finite element 

method and showed that the forced vibration better describes changes in crack depth and locations 

than the free vibration. The effects of crack depth and position on the natural frequency of the 

beam using the analytical solution and the finite element method have been elaborated by Al-

Waily (2013), Based on the two-dimensional finite elements, the dynamics of cantilever beams 

with a breathing crack, simulated as a frictionless contact problem, has been investigated by 

Andreaus et al. (2007), The combination of the finite element method and some optimization 

techniques such as Artificial Neural Networks, Genetic Algorithm and Particle Swarm 

Optimization, was used to investigate the identification of cracks locations and depths on beams 

by Abolbashari et al. (2014), Vosoughi (2015) . 

Recently, more attention was given to multi-cracked beams. Khorram et al. (2013) presented a 

multi-crack detection of beams subjected to a moving load. The classical analytical method for 

free vibrations problem was used which limited their study to three cracks because of complexity 

of the resulting algebraic equation. Shifrin and Ruotolo (1999) used Dirac‟s delta function to 

express the governing equation for free vibration of multi-cracked beam. The frequency equation 

can be determined from a system of (n+2) linear equations. Otherwise, numerical approach based 

on differential quadrature element method (DQEM) was proposed by Torabi et al. (2014) in order 

to solve the free vibration problem of multi-cracked non-uniform Timoshenko beams with general 

boundary conditions. 

This paper aims to provide a new procedure of cracks identification in beams containing an 

arbitrary number of cracks, based on the forced response of a multi-cracked beam subjected to 

harmonic travelling excitation. The beam is modeled as multi span beam and Euler-Bernoulli 
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model is adopted for each span. The cracks are modeled as an equivalent torsional springs. A 

numerical procedure based on the differential quadrature method is elaborated for multi-cracked 

beams as well as analytical approaches. The forced vibration response is obtained for beams 

subjected to a harmonic moving excitation that is used here to get an amplified signal to be 

analyzed. The identification procedure is based on the continuous wavelet transform of 

eigenmodes and time forced responses. With a judicious choice of the excitation frequency and 

speed parameters, the locations of the cracks can be better identified. 

 

 

2. Mathematical modelling 
 
2.1 Crack modelling 

 
Let us consider a cracked homogeneous uniform and viscoelastic isotropic beam with thickness 

h, width b, and length L, subjected to transverse vibrations. According to fracture mechanics, a 

crack introduces a local flexibility due to the strain energy concentration in the vicinity of the 

crack tip. The rotational spring model was used to quantify, in a macroscopic way, the relation 

between the applied load and the strain concentration Dimarogonas (1996), In the presence of a 

crack, additional displacement resulted and calculated by applying the Castigliano theorem 



a

0

* dz)z(J                                 (1) 

where J(z) is the Strain Energy Release Rate (SERR),„a‟ is the depth of the crack and z is the beam 

height. J(z) depends on the crack depth and applied generalized forces that are responsible for the  

modes of fracture (opening, shearing or tearing), For the considered problem, the cracked beam is 

subjected to bending moment M. The strain energy density can thus be written as 
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                          (2) 

where E is the Young modulus and ϑ is the Poisson ratio, KI , KII, KIII are the stress intensity factors 

corresponding to the opening, shearing and tearing modes of fracture. For a single edge cracked 

beam under pure bending specimen, J(z) is reduced to Tada et al. (2000) 
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where σ0 
is the applied stress due to the bending moment and F1(z) is the configuration correction 

factor for the stress intensity factor. According to fracture mechanics analysis, the additional 

rotation θ
*
 is given by Tada et al. (2000) 
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By considering the moment of inertia of the beam 
12

3bh
I   and 

2
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Mf
0  , expression of 

additional rotation related to the bending moment is written as 
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It should be noted that the rotational spring model relates the additional rotation to the applied 

bending moment. Thus, compliance of the rotational spring is Tada et al. (2000) 
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This rotational spring model will be used here for free and forced vibration analyses of multi-

cracked beams under a moving harmonic excitation, as well as for cracks identification. The multi-

cracks identification will be first based on the free vibration characteristics and wavelet 

transforms. The investigation is then focused on the time and space responses due to the harmonic 

moving load, in order to elaborate a powerful cracks identification procedure. 

 

2.2 Governing equation  
 

A homogeneous and uniform continuous beam with „r‟ cracks and subjected to a travelling 

excitation F(x,t) is considered. Euler-Bernoulli beam model is used for the beam, which is 

subdivided into (r+1) segments joined by r rotational springs as shown in Fig. 1. The transverse 

displacement of each segment of the beam is denoted by yi(x,t) and the partial differential equation 

governing the motion of each sub-beam is given by 
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   (10) 

where ρ, A, c and α are mass density, cross sectional area, damping coefficient and viscoelastic 

coefficient respectively. F(x,t) is a harmonic travelling excitation force along the beam with a 

constant speed V and frequency Ω. δ denotes the Dirac delta function.  

The main objectives of this paper are on one hand, the free and harmonic moving forced 

vibration analyses of beams with an arbitrary number of open cracks. On the other hand, a 

multicracks identification procedure is elaborated based on space and time responses, with  
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(a) Cracked beam geometry (b) rotational spring model 

 
(c) Multi-cracked beam carrying moving harmonic excitation 

Fig. 1 Multi-cracked beam under moving harmonic excitation and crack modeling 

 

 

particular choices of the excitation frequency and speed. The harmonic moving excitation is 

adopted here in order to elaborate an accurate and powerful identification crack procedure with 

adjusted frequency Ω and speed V of the applied excitation force. The free vibration of beams with 

an arbitrary number of cracks will be first investigated based on the classical and reduced 

analytical approaches as well as on a numerical procedure. 

 

 

3. Free vibration analysis 
 

The natural frequencies and eigenfunctions are widely used to find the cracks locations in 

damaged continuous beams. To determine the natural eigenmodes and eigenfrequencies of the 

considered multi-cracked beam, the forcing, damping and viscoelastic effects are disregarded and 

the following boundary value problem has to be solved in each sub beam “i” 
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where wij is the local transverse displacement associated to the j
th 

vibration mode of the i
th
 sub-

beam and ωj is the j
th
 eigenfrequency. 

Based on the presented rotation massless spring model, the displacement, bending moment, and 

shear force at boundaries of two neighboring segments are continuous 
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                  (12-a) 

At the crack location xi, the model of massless rotational spring is adopted with flexibility iC  
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that depends on the depth of the crack and given by Eq. (9), The slope has thus a jump given by 
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where ai is the depth of the i
th
 crack. The j

th
 eigenmode of the whole beam is then given by the 

following compact relationship 
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where x0 corresponds to the right hand boundary and H(x) is the Heaviside step function. Various 

procedures can be used to compute the sub-beams vibration modes wij(x), the commonly used 

approach for cracked beams vibration, called here classical approach is presented in the appendix. 

Let us note that for a beam containing n cracks, this procedure will lead to solve a highly nonlinear 

(4n+4)×(4n+4) algebraic system. This drawback is thus limiting this classical analytical method to 

a small number of cracks. Other methods allowing the vibration analysis of beams with a larger 

number of cracks should be used. 

 
3.1 Reduced analytical method 

 

This method allows one to have a factorized algebraic equation system of order 2×2 for any 

number of cracks by using initial boundary conditions and fundamental solutions to express mode 

shapes. The general solution of Eq. (11) corresponding to the i
th
 sub-beam is rewritten as Li (2002) 
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Considering the continuous conditions of displacements, bending moments and shear forces as 

well as the jump of the slope at the boundaries of the i
th
 and the (i+1)
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 segments, the solution is 

expressed as 
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Having w1j(x), the j
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For the sake of clarity, a multi-cracked cantilever beam will be explicitly developed. 

Substituting the boundary conditions for the right end of the beam (x=L) into Eq. (11) and using 

some mathematical manipulations, one gets the following 2×2 algebraic system 











0),()0(),()0(

0),()0(),()0(
'''

1

''

1

'''

1

''

1

LDwLCw

LBwLAw

jjjj

jjjj




                    (17) 

Note that the coefficients A, B, C and D depend on the frequency parameter μj. For natural 

frequencies, one has to solve the following simplified nonlinear transcendental equation 

0),(),(),(),()(  LCLBLDLAµF jjjjj                 (18) 

For a double cracked cantilever beam (r=2), explicit expression of A(μj,L), D(μj,L), B(μj,L) and 

C(μj,L)
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The j

th
 eigenmode of the whole beam is finally given by 






 
1r

1i

i1iijj )]xx(H)xx(H)[x(w)x(w                (19) 

For the considered boundary conditions, the eigenfrequencies can be obtained by numerically 

solving the resulting nonlinear algebraic transcendental equation. Note that for a large number of 

cracks, this equation is highly nonlinear. A numerical procedure based on the Newton-Raphson 

algorithm has been elaborated for numerical results. Based on this method, one is able to obtain 

the eigenfrequencies and explicit expressions of eigenmodes for beams containing a moderate 

number of cracks in a reduced CPU time and space in comparison with the classical method. 

Numerical simulations are performed to show the effectiveness of this procedure. It should be 

noted that for a large number of cracks this methodological approach is too heavy to handle. As an 

alternative, a numerical procedure based on the differential quadrature method is elaborated herein 

for beams with an arbitrary number of cracks. 

 

3.2 Numerical procedure based on Differential Quadrature Method 
 

To analyze vibration of beams with a large number of cracks, a well-adapted numerical 

procedure is needed. It should to be noted that for thin structures such beams, plates, and shells, 

the finite element method is the mostly used one. But, cracks modeled by rotation jumps, as 

presented in Eq. (12-b), cannot be correctly handled by the FEM unless a local very refined mesh 

is used around each crack. For the considered cracks model and used boundary connections, the 

differential quadrature method is adopted here for numerical investigations. 

The DQM requires to discretize the domain of the problem into N points. The derivatives at 

any point are approximated by a weighted linear summation of all the functional values along the 
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discretized domain, as follows Zhang and Zhi (2008) 
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where „m‟ is the order of the highest derivative appearing in the problem, )( kzf  are the values of 

the function at the sampling points kz  relating the m
th
 derivative to the functional values at kz .  

These coefficients can be determined by making use of Lagrange interpolation formula as follows 
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The second, third and higher derivatives can be calculated as 
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For accurate results, we adopt the Chebychev-Gauss-Lobatto mesh distribution given for 
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These discretization points ikz  are presented in Fig. 2. The multi-cracked beam is divided into 

sub-beams where the i
th
 crack at xi is located between the i

th
 and the (i+1)

th
 sub-beams. 

For the i
th
 sub-beam, the equation of motion is defined on the interval [xi, xi+1] by 
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Fig. 2 Gauss Lobatto-Chebychev discretization points of sub-beams 

 

 

This can be rewritten using DQM as 
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Using DQM, every i sub-beam is discretized into N sampling points. The compatibility 

equations at crack location xi given by equations Eq. (12-a), Eq. (12-b) are written, using DQM, as 

follows 
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where il is the length of the i
th
 sub-beam and iC  is the flexibility at the i

th
 location of crack. In 

addition, the following boundary conditions are also incorporated. 

For example, for a simply supported beam: 
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For Clamped-Clamped beam: 
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For Clamped-Free beam 
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Based on these mathematical developments the free vibration of a cracked beam with an 

arbitrary number of cracks is reduced to the following eigenvalue problem. 
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(32) 

Numerical solution of the resulting eigenvalue problem allows one to get numerically the 

eigenfrequencies and associated eigenmodes of multi-cracked beams with a large number of 

cracks. Various beams boundary conditions can be easily considered. 

The strength and accuracy of this methodological approach is numerically tested herein by 

comparing the obtained numerical results with those obtained by analytical methods. For multi-

cracked beams with a large number of cracks, the presented numerical approach is a powerful tool 

to get easily eigenfrequencies and associated eigenmodes. 

Based on the presented methodological approaches, the free vibration characteristics of multi-

cracked beams can be obtained. The variation of eigenfrequencies and associated eigenmodes with 

respect to the depth, location, and number of cracks can be easily analyzed. The cracks 

identification, elaborated by many authors, is based on the wavelet transforms and the free 

vibration characteristics. This identification procedure and analysis can be easily treated here. 

 

 

4. Forced time response 
 
Using the modal expansion theory, the forced response of the system can be expressed as 





N

1j

jj )t(q)x(w)t,x(y                     (33) 

where wj(x) is the j
th
 eigenmode of the multi-cracked beam that can be obtained either from 

analytical methods for a small number of cracks or from DQM for more general cases. qj(t) is the 

generalized modal coordinate for either small or large number of cracks. Substituting Eq. (33) into 

the main partial differential equation (Eq. (10)), multiplying both of sides by wj(x) and integrating 

from 0 to L, the following decoupled second order differential equations are resulted 
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(34) 

where Mjj, and wj(Vt) are respectively the modal mass coefficients, and the j
th
 eigenmode of the 

multi-cracked beam. These decoupled equations are obtained based on the orthogonal property of 

considered eigenmodes. It has to be pointed out that the right hand side of Eq. (34) is piecewise 

defined in ]
V

L
,0[ . This type of equation has been solved analytically using convolution method in 

Khorram et al. (2013) for a moving force. For a large number of cracks, the excitation term is too 
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complicated to be handled analytically. Numerical method is adopted herein. To do so, Eq. (34) 

had split in sub-domains with the adjusted initial conditions as follows 
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(35) 

Numerical solution of Eq. (35) allows one to determine the piecewise solution qji(t) for j=1,2,...,

N and i=1,2,3,...,r 

A closed form of the time modal response qj(t), associated to fixed parameters F0, Ω and V, is 

thus given by 

)t(q)]
V

x
(H)

V

x
(H[)t(q)t(q )1i(j

i
r

1i

1i
1jj 



                     (36) 

This multi-modal solution can be used on one hand to analyze the effects of the moving 

excitation parameters, F0, Ω and V on the forced response of multi-cracked beams. On the other 

hand, the obtained forced response can be used for cracks identification. 

 

 

5. Multi-crack identification procedure 
 

5.1 Moving harmonic excitation technique 
 

The basic idea of this procedure is to subject the beam, to a moving harmonic excitation 

F(x,t)=F0sin(Ωt)δ(x-Vt). This excitation acts on the structure by two effects: the velocity and 

harmonic frequency. Each of those effects is represented by the parameters β and γ, which are 

introduced here.  

β is the speed parameter represented by 
crV

V
                (37) 

where Vcr is the critical speed defined by: 





L
V

j
cr        

The effect of excitation frequency Ω is represented by the frequency ratio 
j


  where ωj the 

j
th
 natural frequency of the considered beam. 

The main objective of using this kind of excitation is to improve the crack detection, for every 

position or depth of existing cracks. The moving harmonic excitation which acts on the whole 

considered beam as a moving actuator leading to an amplified response. The speed and the 

frequency parameters can be adjusted for a better signal amplification. The continuous wavelet 
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transform data analysis is adopted here for signal analysis. The forced harmonic moving response 

associated to various frequency and speed parameters are used for detecting cracks positions with 

various depths.  

 
5.2 Continuous wavelet transforms (CWT) 

 

The continuous wavelet transform of a function g(x) is Ovanesova (2004) 







 dx)

a

bx
()x(g

a

1
)b,a(C *                                       (38) 

where ψ
*
(x) denotes the complex conjugate of wavelet ψ(x). It has to fulfill the admissibility 

condition, which implies that the wavelet must change sign at least once along its support. It can 

be expressed by the following equation: 



 





   d
)(ˆ

a

1
)b,a(C

2

 where )(ˆ 
 
is the 

Fourier transform of the wavelet. The function ψ(x) is called, analyzing wavelet. The parameter, 

„a‟ is called scale, controls the width of the wavelet. A high value of „a‟ corresponds to wavelets 

with large support, so that low-frequency components can be looked through, while a low value of 

„a‟ corresponds to “small” wavelets, suitable for the analysis of high-frequency components. 

Analyzing wavelets can be shifted using parameter b to cover the range over which function g is 

defined (or the signal is sampled), In other words, a multiscale and well-localized analysis of the 

function is possible looking at the function‟s interesting features through a wavelet window. 

The continuous wavelet transform (CWT) is then, the sum over all time (or space) of the signal 

multiplied by a scaled and shifted version of a mother wavelet where the scale „a‟ and the position 

„b‟ real numbers. The results of the transform are wavelet coefficients that show how well a 

wavelet function correlates with the signal analyzed. Hence, sharp transitions in g(x) create 

wavelet coefficients with large amplitudes and this precisely is the basis of the proposed 

identification method. 

 

 

6. Numerical results and discussion 
 

6.1 Free vibration analysis of multi-cracked beams 
 

The differential quadrature method aims to solve differential equations, using a discretizing 

procedure, by means of coefficients cij. This method makes the solution much easier than finite 

elements method, which is the most commonly used method. It has been applied here for free and 

forced vibration analysis of multi-cracked beams. To test the performance and efficiency of this 

method, the free vibration of uncracked beam is first analyzed. A slender beam with the following 

characteristics is considered: Young modulus E=210 GPa, material mass density ρ=7800 Kg/m
3
, 

height h=0.01 m, thickness b=0.01 m, and length L=1 m. Eigenmodes and associated natural 

frequencies are obtained by the presented analytical approaches as well as by the DQM method. 

For the sake of comparison, the finite elements method based on ANSYS software, is used 

where and the adopted finite element is BEAM189 with 6 degrees of freedom per node. The first 

three natural frequencies µ j of an uncracked cantilever beam, obtained by the analytical approach,  
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Table 1 First three natural frequencies of uncracked cantilever beam using analytical, DQM and FEM 

(ANSYS) 

Natural 

frequencies 

Analytical 

approach 

DQM FEM (ANSYS) 

N=8 N=10 N=15 N=8 N=15 N=100 

ω1/2π 8,38190255 8,38177708 8,381903 8,38190254 8,392 8,3844 8,3813 

ω2/2π 52,5284866 52,4777909 52,5286085 52,5284866 54,323 53,014 52,511 

ω3/2π 147,081283 149,385947 146,901307 147,081292 162,39 151,14 146,98 

 
Table 2 Relative positions and depths of the four cracks 

Crack number Crack position Crack depth 

1 x1=0.2 a1/h=0.2 

2 x2=0.4 a2/h=0.15 

3 x3=0.6 a3/h=0.1 

4 x4=0.8 a4/h=0.1 

 
Table 3 First three natural frequencies of beams containing four cracks with various boundary conditions 

Boundary 

conditions 

Reduced analytical approach DQM (N=150) Error % 

µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 

Pinned- 

Pinned 
3,1340997 6,2652589 9,3978741 3,1340999 6,2652588 9,3978742 6,7324E-08 -7,661E-09 

Clamped-

Free 
1,8701409 4,6874925 7,8405544 1,8701414 4,6874920 7,8405548 2,513E-07 -1,051E-07 

Clamped-

Clamped 
4,7255210 7,8408701 10,968782 4,7255209 7,8408700 10,968782 -1.227E-08 -1,300E-08 

Clamped-

pinned 
3,9215767 7,0563020 10,1870383 3,9215768 7,0563018 10,1870386 3,57E-08 -2,522E-08 

 

 

the DQM with 8, 10, and 15 points as well as with the FEM-ANSYS with 8, 15 and 100 nodes are 

presented in Table 1. It is clearly demonstrated that DQM converges to analytical solutions with a 

largely reduced number of discretization points in comparison with the FEM. Moreover, this 

method is suited to cracked beam problem because it handles correctly the rotational spring model 

in opposition to the finite element method that requires a finite element node must be placed at the 

crack location. Indeed, the finite element method has been largely developed and widely used for 

many engineering problems and particularly for static and dynamic analysis of thin structures. For 

cracked structures, some models are developed such as reduction of stiffness, or simply by 

removing elements from the structure Friswell and Penny (2002), 

To test the efficiency and the accuracy of the DQM for multi-cracked beams, a beam with four 

cracks with positions and depths, given in Table 2, is considered. The following classical boundary 

conditions, Pinned-Pinned, Clamped-Free, Clamped-Clamped, Clamped-pinned, are considered. 

The beam is divided into five sub-beams and each sub-beam is discretized by 30 nodes. The DQM 

is thus used with 150 nodes. 

Table 3 shows the first three natural frequencies µ j for the considered depth values and 

positions of the cracks given in Table 2, and for various boundary conditions. Exact solutions are  
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Table 4 Relative positions and depths of the seven cracks 

Crack number Crack position Crack depth 

1 x1=0.1 a1/h=0.2 

2 x2=0.2 a2/h=0.1 

3 x3=0.3 a3/h=0.1 

4 x4=0.4 a4/h=0.1 

5 x5=0.6 a5/h=0.1 

6 x6=0.7 a6/h=0.1 

7 x7=0.8 a7/h=0.1 

 
Table 5 First three eigenfrequencies of an eight equally spaced cracked beam 

 µ1 µ2 µ3 

Simply supported 3.1113694 6.2257783 9.3442528 

Clamped-Clamped 4.7046164 7.8005252 10.915135 

Clamped-Free 1.8601738 4.6558802 7.790633 

Clamped-Pinned 3.8957558 7.0155609 10.1375497 

 

 

also performed based on the presented reduced analytical approach. Comparing the DQM results 

and exact solutions, the applicability, accuracy, and convergence of the differential quadrature 

method are confirmed. 

It should to be noted that for four cracks, a system of (4×(4+1)=20)  algebraic equations have 

to be solved for the classical analytical method and only a 2×2 system for the reduced one. This 

leads to a large mathematical developments reduction. However, a hardly nonlinear transcendental 

equation has to be solved even for the reduced method.  

Thus, for a large number of cracks, the classical analytical approach is not adequate since high 

size matrices have to be manipulated. The reduced analytical method is an alternative for a 

moderate number of cracks. For a high number of cracks, the presented DQM is more suited. 

These three methods are tested here for free vibration of beams containing seven cracks. Their 

relative depths and positions are presented in Table 4. The DQM shows superiority, effectiveness 

by its ease and reduced CPU time. The obtained numerical results based on the DQM are 

presented in Table 5. 

 
6.2 Forced vibration under harmonic moving load 

 

The previously obtained eigenmodes are used to solve the forced vibration of the multi-cracked 

beam subjected to a moving harmonic excitation. The harmonic excitation is travelling along the 

beam at constant velocity V and with excitation frequency Ω. Figs. 3 and 4 depict the forced 

responses q1(t) and q2(t) with respect to normalized time t/T, (
V

L
T  ), and γ for different values of 

β and γ associated to a simply supported one cracked beam at mid span.  

It is obvious that for high values of β (high travelling speed V), intervals of time will be 

reduced. In other hand, for small values of β, frequency effect of the applied excitation force seems 

to be predominant. In fact the less is the speed the more the beam is oscillating with high  

1100



 

 

 

 

 

 

Multicracks identification in beams based on moving harmonic excitation 

 
 

(a) β=0.1 (b) β=0.5 

 
(c) β=1 

Fig. 3 Time response q1(t) of a simply supported beam at the mid span with respect to normalized time 

t/T (T=L/V) and frequency ratio γ 

 

  

(a) β=0.1 (b) β=0.5 

 
(c) β=1 

Fig. 4 Time response q2(t) of a simply supported beam at the mid span with respect to normalized time 

t/T (T=L/V) and frequency ratio γ 
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(a) Mode shape (b) Forced response at mid span β=0.1; γ=0.5 

Fig. 5 Wavelet transform of the mode shape and forced response at mid-span 

 

 

Fig. 6 Maximum of continuous wavelet transform coefficients of q1(t) with respect to β and γ 

 

 

amplitudes. This kind of excitation allows the choosing three parameters F0, β and γ for an 

amplified signal response that can be used for cracks detection.  

 
6.3 Cracks identification 

 

The use of moving harmonic excitation aims the detection of small defects by analyzing the 

amplified response. The maximum of continuous wavelet transform coefficients at a given scale 

„a‟ is an indicator about the presence of the cracks. For sake of clarity, a numerical simulation has 

been performed for the aforementioned beam with a single crack at the mid span for β=0.1 and 

γ=0.5. Both of the first mode shape and the associated forced response have been wavelet 

transformed. A coefficient line plot at scale a=2 is plotted with respect to relative depths of the 

crack and either relative position x/L, or position of the moving load Vt/L. 

It is clearly demonstrated from Fig. 5 that the coefficients of the forced response wavelet 

transformed, are 10 times larger than those of the mode shape. On the other hand, cracks with 

small relative depths (around a/h=0.01 ) are detected by analyzing the forced response time signal, 

which is not possible if the classical wavelet procedure based on the mode shapes is used. This 

allows one to perform a crack identification procedure based on an amplified forced response, by a 

judicious selection of the moving harmonic excitation parameters F0, Ω, V. 
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(a) based on the first eigenmode 

 
(b) based on forced response q1(t) 

Fig. 7 Wavelet based multi-cracks identification 

 

 

For more detailed study, impact of the moving harmonic excitation on the detection of damages 

in beams is investigated in order to find combinations (βi, γi) that indicate better positions of 

cracks. For a simply supported beam with one crack at mid span, the maximum values of the 

continuous wavelet transform coefficient of q1(t) with respect to β and γ, are presented in Fig. 6. It  

is demonstrated that a better detection can be obtained for 2.00    and 9.08.0   .  

In this zone of (β, γ), the CWT (q1(t)) is amplified. A deep analysis of can be conducted for 

optimized values if required. 

To demonstrate the effectiveness of this procedure, the concept of using moving harmonic 

excitation force cracks detection is applied to multi-cracked beams. Numerical simulations have 

been performed for a simply supported beam containing four cracks which positions and relative 

depths are listed in Table 2. Free and forced responses are obtained based on the DQM. 

Fig. 7(a) displays the wavelet transform identification based on the first eigenmode. Note that 

the four cracks locations are identified, but the amplitude of the signal is too small, Fig. 7(b) 

presents the wavelet transform of the forced response q1(t) associated to a moving excitation with 

β=0.1, γ=0.85, F0=10
2
 kN. These results clearly demonstrate that the crack locations are better 

identified. The signal amplitude is around 10 times the previous one. This leads to a more practical 

crack identification procedure.  

In order to show the robustness and the efficiency of proposed methodological approaches, the 

number of cracks was increased to 7 for which positions and relative depth ratios are shown in 

Table 4. The obtained signals were wavelet transformed based on first eigenmode (Fig. 8(a)) and 

on forced response (Fig. 8(b)) for F0=10
2
 kN, β=0.1 and γ=0.85. It is clearly demonstrated that the 

seven locations were accurately predicted by both procedures and the amplitude of the wavelet 

coefficient based on the eigenmode is around 1.5 10
-4

. Furthermore, signals resulted from forced 

response give largely better detections of cracks locations. The obtained signal amplitude is 

increased and is around 100 times the eigenmode based one, as clearly presented in Fig. 8(b), by 

adjusting the harmonic moving excitation parameters (Ω, V), the wavelet coefficient amplitude, 

based on the time response, can be amplified. 
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(a) based on the first eigenmode 

 
(b) based on forced response q1(t) for β=0.1 and γ=0.85 

Fig. 8 Wavelet based multi-cracks identification 

 

  
(a) Simply supported (b) Clamped-Clamped 

 
(c) Clamped-Free 

Fig. 9 Double-cracked beam under considered boundary conditions 

 

 
7. Conclusions 

 
Vibration analysis of multi-cracked beams is investigated using analytical and numerical 

approaches. The presented analytical approaches are forwards but limited to few numbers of 

cracks. For an arbitrary number of cracks, the differential quadrature method was adapted. 

Accuracy, convergence and efficiency of the presented method were proved. Based on the modal 

expansion, forced responses due to a moving harmonic excitation are obtained for various 

boundary conditions. A new identification procedure based on the wavelet transform of the forced 

time response due to a moving harmonic excitation is proposed. This excitation is used as a 

moving actuator leading to an amplified response. It was demonstrated that the proposed 

procedure leads to a better cracks detection than the classical ones based on eigenfrequencies and 

the wavelet transforms of eigenmodes. The moving harmonic excitation parameters β and γ can be 

used as adjusters for the cracks detection amplitude. This new procedure can be adopted for health 

monitoring of structures. 
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Appendix 
 

The commonly used approach for cracked beam vibration, called here classical approach, is 

first used to compute analytically wij(x), The following analytical expression is used. 

)xcos(D)xsinh(C)xcos(B)xsin(A)x(w jijjijjijjijij             (A.1) 

where Aij, Bij, Cij, and Dij are constants to be determined from the considered boundary conditions 

and the sub-beams connections. For the sake of clarity, a double cracked beam (r=2) is considered 

and the mathematical developments are explicitly given for simply supported, clamped and 

clamped-free cases. The boundary conditions are: 

For Simply Supported:   










0)L( w; 0)L(w

0)0( w; 0)0(w
''
3jj3

''
1jj1

  

For Clamped-Clamped:  











0)L( w; 0)L(w

0)0( w; 0)0(w

'
3jj3

'
1jj1

  

For Clamped -Free:     










0)L( w; 0)L(w

0)0( w; 0)0(w
'''

3j
''
j3

'
1jj1

   

The internal nodes compatibility conditions Eq. (12) are used for i=1, 2 (r=2), the eigen mode 

is thus given by 

))xx(H)xx(H)(x(w)x(w

3

1i

i1iij


                      (A.2) 

in which 

 

(A.3) 

The insertion of Eq. (A.3) in Eq. (12-a) and Eq. (12-b) leads to a (12×12) homogeneous 

algebraic linear system of matrix M. The eigenfrequencies, 2
4

jj
EI

AL



   are obtained by solving 

the resulting nonlinear transcendental equation. 

0)Mdet()(F j                             (A.4) 
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



)xcosh(D)xsinh(C)xcos(B)xsin(A)x(w

)xcosh(D)xsinh(C)xcos(B)xsin(A)x(w

)xcosh(D)xsinh(C)xcos(B)xsin(A)x(w
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