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Abstract.  The second order analysis taking place due to non-linear behavior of the structures under the 

mechanical and geometric factors through implementing exact and approximate methods is an indispensible 

issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to 

its simplicity and efficiency of its relationships has always been in consideration. By solving the differential 

equations of the modified slope–deflection method in which the effect of axial compressive force is 

considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of 

computations with trigonometric functions causes replacement with their Maclaurin expansion. In most 

cases only the first two terms of this expansion are used but to obtain more accurate results, more elements 

are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the 

number of required elements and attaining more rapid convergence with less error is investigated for the 

Bernoulli beam with various boundary conditions. The results indicate that when using only one element 

along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in 

determining the critical buckling load and kinematic parameters in the second order analysis. 
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1. Introduction 
 

Study of structural stability and related constituent parts has always been among important 

issues discussed in engineering science. Among various explanations for the stability, one is the 

concept of buckling. If a structure in the equilibrium condition is subjected to axial compressive 

loading or temperature variation, there is a possibility of buckling and related instability. Hence the 

problem of buckling has turned into an influencing factor in the analysis and design of structures 

like beam-columns, slender columns, trusses and shells. This is very important not only in dealing 

with macroscopic-scale structures, but also in design of structures with micro and nano scales 
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(Eltaher et al. 2016), Structural analysis is performed linearly or nonlinearly. In linear analysis, the 

equilibrium equations are written based on the undeformed state of the member while the large 

deformations are ignored. In many cases this kind of analysis yields acceptable results but in 

reality the non-linear behavior of structural members under two general mechanical (such as 

materials characteristics, presence of crack, and time-variant characteristics of the material) and 

geometric categories, makes clear the necessity of non-linear analysis. When displacements in 

structural members due to their exerted loads are large so that the positions of the exerted loads 

change and new conditions in the equilibrium equations are established, then the geometric 

nonlinear analysis would be necessary. In this kind of analysis the stability, consistency and 

material criteria in the deformed state are established. These factors influence the stiffness and 

stability of each element in addition to that of the total structure (Aristizabal-Ochoa 2012), 

Investigation of pre and post buckling phases in addition to the moment at which buckling occurs 

is among advantages of non-linear analysis of structures. 

Analysis of structures is basically conducted using stiffness and force methods in which the 

displacements and the forces are unknown, respectively (Samuelsson and Zienkiewicz 2006), 

Exact analysis requires direct integration of the equilibrium equations, also complete satisfaction 

of the boundary conditions that in cases such as non-linear analysis produces enormous 

complexities. Hence using numerical and approximate methods is widely spread in the first and 

second order analyses. The non-linear geometric elastic behavior in connection with structures 

comprises of Bernoulli beam and beam-columns are generally examined by two second-order 

Finite Element Method (Zienkiewicz 1971, Bathe 1996) and the classical stability functions 

method (Aristizabal-Ochoa 1997), In analysis of structures, issues such as decreasing the volume 

and time of the calculations in addition to maintaining accuracy of the results are of vital 

importance. This issue has urged the scientists to develop methods and to implement innovation in 

deriving stiffness matrix of the structure, so that one could reach the desired results by applying 

the methods with least number of the elements resulting in reducing degrees of freedom and 

finally easing the calculations,. For the first time Al-Bermani and Kitipornchai (1990) proposed a 

matrix which included the effect between axial strength and lateral-torsional deformations as 

functions of element deformation, so that in most cases using just one element one could find the 

response for the problems. Chan and Zhou (1994, 1995) presented a new formulation for non-

linear analysis, based on the fifth order finite element method with only one element for deriving 

proper results and considering member imperfection. 

IU and Bradford (2010), using higher order finite element including geometric non-linearity, 

with an updated Lagrangian formulation introduced a technique which was suitable for second 

order elastic analysis of plane and spatial steel structures using only one element per member. The 

rigid body movements are eliminated from the local load-displacement relationships and the total 

secant stiffness is formulated for evaluating the large member deformations. Second order analysis 

of plane frame using an element was performed by Balling and Lyon (2010), by concentration on 

non-linear geometry (large deformations) and considering the axial strains due to displacement and 

rotation of two ends of the member. Also, the sum of elastic and geometric stiffness matrices was 

converted to a tangent symmetric stiffness matrix which is in fact the differentiation of the overall 

resistance vector with respect to the overall displacements vector. The other approach is reducing 

the number of the elements, simplifying the geometric stiffness matrix to constant and compacted 

geometric matrices (Senjanović et al. 2012), the beam element with simply support and triangular 

and square plate elements is evaluated. The results indicate suitability of using simplified and 

compacted geometric stiffness matrix, simultaneously. Ibearugbulem et al. (2013) presented a new 
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matrix with less number of elements to analyze the structure. In addition to two ends of the beam 

element (two degrees of freedom), they considered a degree of freedom corresponding to the mid 

span displacement of the beam. Applying higher-order beam theory, Nguyen and Lee (2015) 

obtained appropriate results by analyzing deflections and stresses of cantilever beams considering 

shear deformation and the warping effects in bending. 

In this article, to develop the research work and with respect to the advantages of slope-

deflection such as its easy application in design, attempt is made to use less numbers of elements 

but increase the accuracy of the results. The slope-deflection method which is among stiffness 

methods was introduced by Wilson and Maney (1915) in 1915 by considering flexural deformation 

and ignoring axial and shear forces in investigation of beams with rigid connections. The slope-

deflection equations for the Timoshenko beam including shear deformations and transverse loads 

were developed by Bryant and Baile (1977), In continuation researchers developed, modified and 

added further capabilities for this method such as variation in the cross section along the member 

length and accounting for connection flexibility (Ermopoulos 1988, Saffari et al. 2008, Aristizabal-

Ochoa 2008), After that, the relationships were modified by accounting the axial force and the 

beam stiffness matrix entries were obtained using exact solution of the differential equation. The 

obtained entries were trigonometric functions which regarding their cumbersome computations 

they were replaced by Maclaurin expansions. The slope-deflection method, because of its 

simplicity and its high capability in the structural analysis among the stiffness methods known 

today, is taught in elementary analysis courses (Norris and Wilbur 1960, Kassimali 1998) and is 

also widely used in practice (Salmon and Johnson 1996) because it gives sufficient insight 

concerning internal moments and corresponding displacements. In common beam stiffness matrix 

derived from the slope-deflection relationships considering the effect of the axial force in reducing 

the stiffness, only the first two terms of Maclaurin expansion are taken into account and to attain a 

more exact response with less error there is a need to increase the number of elements which 

consequently increases the number of degrees of freedom and computation process. 

 Therefore in the present paper, the effect of higher order terms of the Maclaurin expansion to 

reduce the relative error in determination of critical buckling load and kinematic parameters in 

second order analysis of beams with varying boundary conditions is investigated. First the 

constituent functions of the stiffness matrix entries with varying number of Maclaurin expansion 

terms are extracted. To ensure the usefulness of increasing the number of the terms employed in 

increasing accuracy of the stiffness matrix, the convergence of the mentioned functions in both 

exact and approximate cases (replacement of trigonometric terms with the Maclaurin expansion) 

are evaluated using a few examples. 

 

 

2. Modified slope-deflection relationships considering the axial force 
 

Considering the axial force in slope-deflection equation, elastic relationship between force and 

nodal displacement is as follows 

(1) F KD      

in which the vector of degrees of freedom (D) and forces (F) are defined as 

(2)    
T T

1 1 1 2 2 2 1 1 1 2 2 2u v u v p s m p s m  D F
     

 

where pi, si, mi, ui, vi, θi (i=1,2) are axial force, shear force, flexural moment, horizontal 
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displacement, vertical displacement and rotation, respectively. Considering the axial force in 

slope-deflection relationships, the stiffness matrix ([K]) for the beam element would be as follows 

(Lui and Chen 1987) 

(3)  
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In which EA/L, k
*
 and c

* 
are the axial stiffness, flexural stiffness and modified transfer 

coefficient because of presence of axial compressive load, respectively. The parameter q
*
 is also 

defined by Eq. (4) 

(4) 

     

 *

*

*

2

2 1 p
q

k c

L L




 

in which p is axial compressive load of the beam. By assuming p EI L  , the stiffness matrix 

entries would be 

(5-a) 
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(5-b) 
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Using the above matrix in the analysis of structures would yield exact response. But matrix 

operations with the above mentioned trigonometric terms are complex. Therefore, attempt is made 

here to reach out results with acceptable level of accuracy implementing a more simple solution. 

One useful way is to use the Maclaurin series. Implementing the Maclaurin expansion terms would 

yield a good approximation of a function around the point α=0 up to the radius of convergence. To 

attain an acceptable accuracy of a function by the Maclaurin expansion up to its radius of 

convergence, there is a need for implementing more terms. Each of the above functions based on 

the Maclaurin expansion could be presented in two forms. In the first form the Maclaurin 

expansion is written separately for the numerator and denominator of each function (Eq. (6)) (Lui 

and Chen 1987) 

(6-a) 
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(6-b) 
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(6-c) 
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(6-d) 
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The other form of representing these functions is by implementing the general form of the 

Maclaurin expansion. The first six terms of the Maclaurin expansion with the radius of 

convergence of the above four functions are as following 

(7-a) 
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(7-c) 

 * *

2 4 6 8 10

2 2 2 2 3 2 4 2 5 2

1 6 37 59

10 14 10 126 10 38808 10 504504 10
... 2.86

k c EI EI EI EI EI EI

L L L L L L
R

L
     


      




    
 * *

2 4 6 8 10

2 2 2 2 3 2 4 2 5 2

1 6 37 59

10 14 10 126 10 38808 10 504504 10
... 2.86

k c EI EI EI EI EI EI

L L L L L L
R

L
     


      




  
 

(7-d) 

* 2 4 6 8 10

3 3 3 3 3 32 3 4 5

12 6 37 59

5 7 10 63 1
...

0 19404 10 25
2

2252
.

0
86

1

EI EI EI EI EI EI
q R

L L L L L L
          

   
  
 

* 2 4 6 8 10

3 3 3 3 3 32 3 4 5

12 6 37 59

5 7 10 63 1
...

0 19404 10 25
2

2252
.

0
86

1

EI EI EI EI EI EI
q R

L L L L L L
          

   
    

 

 

  
(a) (b) 

  

(c) (d) 

Fig. 1 Comparison of convergence of two forms of Maclaurin expansion values per first 5 terms 
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(a) k

*
L/EI (b) c

*
 

Fig. 2 Comparison of exact diagram of functions with diagrams obtained from different number of terms 

of the second form of Maclaurin expansion; i.e., No 

 

 

R, is the first root of the equation tan(α/2)=α/2 which is approximately equal to 2.86π. In order to 

investigate the convergence of those two represented forms of the Maclaurin expansion of the 

mentioned functions, their differences with respect to the exact values are shown in Fig. 1. 

Dimensionless forms of the functions are used in these graphs. 

In addition to the simplicity of the second form of the polynomial, as observed from the above 

figure in all functions, compatibility with the exact value in the second form is better achieved 

than that in the first form (per first 5 terms of the Maclaurin expansion), With respect to the 

advantages of implementing the second form of the Maclaurin expansion, in continuation its 

application effect on k
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L/EI and c
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 function values would be examined. 

Fig. 2, which is a comparison between exact diagram of k
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L/EI and c
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 functions and diagrams 

obtained from the terms of the second form of the Maclaurin expansion, indicates that in case of 

using the Maclaurin expansion, with increasing the value of α, difference between the real and 

approximate values increases so that in proximity of the upper bound of the radius of convergence, 

to attain lower levels of error there is a need for higher order terms of the Maclaurin expansion. 

Therefore, the more the α value is close to zero, to attain better accuracy less number of terms in 

the Maclaurin expansion is needed. 

In Tables 1 and 2 also the exact and approximate values of k
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L/EI and c
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 for different number of 

terms of Maclaurin expansion, in the range of zero to vertical asymptote of them, are given. 

As obtained from the results of the table, for a small α value, convergence to the exact response 

is attained rapidly and the more the α value increases, to attain higher accuracy more Maclaurin 
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is hardly attainable. Calculations have shown that in case that p/pE<0.4((α/π))
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expansion would differ less than one percent from the real value. In case that p/pE>0.4 the error 
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Table 1 Value of k
*
L/EI with respect to the number of terms in the Maclaurin expansion (No) 

k
*
L/EI α 

No 0.5π π 1.5π 1.99999π 

2 3.6710 2.6841 1.0391 -3.9850 

3 3.6604 2.5140 0.1781 -3.9850 

4 3.6598 2.4784 -0.2275 -6.2637 

5 3.6598 2.4701 -0.4401 -8.3876 

6 3.6598 2.4681 -0.5560 -10.4456 

Exact 3.6598 2.4674 -0.7020 -199999 

 
Table 2 Value of c

*
 with respect to the number of terms in the Maclaurin expansion (No) 

c
*
 α 

No 0.5π π 1.43029π 

2 0.5617 0.7647 1.0048 

3 0.5697 0.8743 1.5386 

4 0.5707 0.9382 2.0857 

5 0.5708 0.9697 2.6379 

6 0.5708 0.9852 3.1919 

Exact 0.5708 1.0000 59662 

 

 

beam fixed at both ends with the value of p/pE equal to 4. In case of using 3 elements for the beam 

fixed at both ends, in stiffness matrix the length L is turned into L/3
 
and causes reduction of p/pE 

from 4 to 0.44. In this case the error corresponding to the first two terms of the Maclaurin 

expansion would amount to less than one percent and yields acceptable results. 

 

 

3. Elastic and geometric stiffness matrices 
 

When implementing more elements to attain better accuracy, due to increasing degrees of 

freedom, the order of the matrix is increased which results in increased volume and time of 

calculations. Therefore to prevent such problem, in this research instead of using several elements, 

more terms of the Maclaurin expansion are used. By considering the first two terms of Maclaurin 

expansion for each matrix entry and substituting p EI L  , the stiffness matrix is separated 

into two elastic stiffness and geometric stiffness matrices (Eq. (8-a)) 

(8-a) 
          E G K K K
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(8-d) 
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The first terms of Maclaurin expansion make the elastic stiffness matrix ([KE]) which is in fact 

the same stiffness matrix without presence of the axial load. 
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The second terms in the Maclaurin expansion also are the matrix entries of the geometric 

stiffness matrix in which the effects of stiffness reduction due to the axial compressive load are 

considered in the elastic stiffness matrix. Zero values of the 1
st
 and 4

th
 row and column in the 

geometric stiffness matrix indicate that the axial load induces no change in the axial stiffness of the 

members and only causes stiffness change at axes perpendicular to the member axis. 

(10) 
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Implementing more terms of the Maclaurin expansion, results in stiffness matrices with more 

complete terms. Using the 3
rd

 term of the Maclaurin expansion, the stiffness matrix is separated as 

shown in Eq. (11) in which [K′G] matrix corresponds to 3rd terms of the Maclaurin expansion. By 

application of higher order terms of Maclaurin expansion, the number of geometric stiffness 

matrices would increase. 

(11-a) 
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(11-b) 
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4. P-Delta effects 

 
The P-delta effects include two parts of p−Δ

 
and p−δ. The effect of p−Δ induces an extra 

moment due to eccentricity of axial load p with respect to its lateral displacement. On the other 

hand, presence of the axial load reduces the stiffness of the beam which is called the p−δ effect. By 

eliminating the row and column related to axial force and displacement of stiffness matrix (1) and 

separating the geometric stiffness matrix into three following matrices, the effects of p−Δ and p−δ 

are shown in separate matrices (Eq. (12)) 
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(12-d) 
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Combination of [KE] and ][
1GK  matrices indicates the p−δ effect (Eq. (13)) 
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Reduction in the elastic stiffness due to the presence of the axial compressive load is obtained  

through the (1−(pL
2
/60EI)) coefficient. The stiffness matrix ][

2GK  which corresponds to θ1 and  

θ2 degrees of freedom has negligible effect in the analysis results of the frames, because in frames 

usually θ1≈θ2, consequently 

(14) 
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And finally the ][
3GK  matrix is related to the p−Δ effect. Utilizing more terms of the 

Maclaurin expansion in the geometric stiffness matrix only causes changes in the entries of ][
1GK  

and ][
2GK  matrices increasing the accuracy of the stiffness reduction coefficient due to presence 

of the axial load. For example, using 3rd term of the Maclaurin expansion modifies the stiffness  

reduction coefficient and concerning the ][
2GK matrix causes addition of another term to its non-
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zero entries. 
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(16) 

 
 
5. Numerical study 
 

5.1 Determining the critical load 
 
The critical buckling load for a two-end simply supported beam is equal to n

2
π

2
EI/L

2

 
(Timoshenko and Gere 1961) that for n=1,2

 
its critical buckling loads in the first and second 

modes would be obtained. The critical buckling load value is determined by solving the eigenvalue 

problem [K]{D}=0. If determinant of the stiffness matrix is zero |K|=0 , the equation has non-

trivial answer. By assuming a single element and using two terms of the Maclaurin expansion, the 

critical load value is determined as follows 

(17) 
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By selecting the 3
rd

 and 6
th
 rows 

(18) 
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The critical load is obtained when determinant of the above matrix is equal to zero 
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The error percentage for the first and second modes would be 

(20) 
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In case of adding the third term of the Maclaurin expansion, the first two modes of the critical 

buckling load would be 

(21-a) 
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And the error percentage is equal to 

(23) 
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Using 4 terms of the mentioned expansion 

(24-a) 
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And the error percentage in this case is as follows 

(25) 
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Using 5 terms, the error for the first mode is 0.21% and for the second mode is 2.52%. 

The relative error for 3 different boundary conditions: S-S(simple-simple), C-F(clamped-free) and 

C-S(clamped-simple) per a single element and the number of the Maclaurin expansion terms are 

shown in Table 3.  
Noticing Table 3, the following results are deducted: 

(1) For all boundary conditions, an increase in the number of Maclaurin expansion terms 

reduces the relative error. Meanwhile the relative error per initial terms compared with the 

higher order terms, decreases with a sharper slope. 

(2) With higher number of the degrees of freedom or lower critical load, convergence to the 

exact response is faster attained. For example in the C-F beam, per 4 expansion terms, the first 

mode critical load up to 4
th
 decimal place is compatible with the exact solution. While with 

larger critical load (larger α value) more Maclaurin expansion terms are needed for 

convergence. The largest relative error per 7 terms for the second mode critical load of the C-F 

beam which has the largest α value with respect to the other cases has been obtained. 

(3) The number of buckling modes is obtained based on the existing degrees of freedom of the 

beam. For the case C-S, due to the only rotational degree of freedom of the simply support per  
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Table 3 Variation in the relative error with increasing the number of the Maclaurin expansion terms (No) for 

the beam with different boundary conditions 

 
Errors of (pcrL

2
/EI)(%) 

No. 

Boundary 

condition 

Mode 

number 
(pcrL

2
/EI)Exact 2 3 4 5 6 7 

S-S 
1 9.8696 21.5854 3.8461 0.8774 0.2127 0.0526 0.0131 

2 39.4784 51.9818 14.8111 5.7839 2.5267 1.1631 0.5501 

C-F 
1 2.4674 0.7497 0.0405 0.0000 0.0000 0.0000 0.0000 

2 22.2066 44.9150 13.6247 5.8212 2.8324 1.4680 0.7876 

C-S 1 20.1907 48.5830 14.1380 5.6841 2.5708 1.2296 0.6056 

 

  
(a) (b) 

 
(c) 

Fig. 3 Schematic views of the beams being studied 

 

 

one single element, only its first mode is attainable. Therefore to attain other modes, more 

elements should be utilized. It should be noted that in the first step of matrix analysis of the 

beam with two-end-clamped condition (C-C), at least two elements are needed. 

 

5.2 Second order analysis of the beam 
 
Using higher order Maclaurin expansion terms for determining the kinematic parameters in a 

second order analysis could result in increased accuracy. In continuation, to investigate the effect 

of the number of Maclaurin expansion terms in the non-linear analysis, the kinematic parameters 

of 3 types of beams with various boundary conditions subjected to the loadings according to Fig. 3 

would be compared in two exact and approximate cases. 

The beam displacement relationship is obtained by solution of moment equilibrium differential 

equation and applying the boundary conditions (for determining response parameters of the 

differential equation), The moment equilibrium equation for the general case regarding each beam 

being studied is according to Eq. (26) 

(26) 
     

2

2
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( ) ( )

d w x
EI p w x f x
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f(x) is the internal moment due to the transverse loading. Assuming p/EI=λ
2
 and solving the 
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differential equation and replacing the boundary conditions, the vertical displacement functions for 

each model are obtained as follows  

(27-a) 
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 The angle change for end beams no. 1 and 2 and displacement of the end beam no. 3, 

respectively, are in the following order 

(28-a) 
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(28-c) 
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 Another method for exact determination of kinematic parameters in nodal points of a beam is to 

utilize the stiffness matrix obtained from the slope-deflection method. Implementing fewer number 

of the Maclaurin expansion terms in entries of this matrix, instead of the original functions, causes 

distancing of kinematic parameters from the exact values. Assuming the material and geometric 

properties also the loading values as follows, the relative errors for the number of the Maclaurin 

expansion terms for beams of Fig. 3 are given in Table 4. 

L=200 cm A=25π cm
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Table 4 The relative errors of kinematic parameters with respect to the number of Maclaurin expansion terms 

(No) 

 

Model Exact 

Errors of kinematic parameters (%) 

 No. of Maclaurin expansion terms 

 2 3 4 5 

w′ (rad) 
1 0.0246 28.74 9.72 1.13 0.40 

2 0.0036 4.84 0.90 0.20 0.05 

w (rad) 3 7.6979 4.70 0.4482 0.04 0.01 

964



 

 

 

 

 

 

Effect of higher order terms of Maclaurin expansion in non-linear analysis of the Bernoulli... 

As the results in Table 4 show, implementing larger number of the Maclaurin expansion terms 

has reduced the error. In case of using 5 terms, with one element, the error is reduced to less than 

0.5%. On the other hand, the initial terms were more effective in reducing the error compared to 

the higher order terms.  

 
 
6. Conclusions 
 

Non-linear analysis of structures to provide greater compatibility with reality has always been 

in consideration studied using exact and approximate methods. One of these exact methods is the 

slope-deflection method which has the advantage of being straightforward and deriving its 

relationships is simple. Considering the effect of axial compressive load on stiffness reduction and 

using the mentioned method, the stiffness matrix of the beam with trigonometric entries is 

obtained and to reduce computational complexity they are replaced by limited number of the 

Maclaurin expansion terms. In most problems only the first two terms are used and to attain a 

suitable response, more elements are utilized. 

In this paper, in order to reduce the number of elements which results in reduced volume and 

time of computations, the effect of higher order terms of the Maclaurin expansion is investigated 

to attain rapid convergence and meanwhile obtain results with less relative error. The numerical 

results indicated that using higher order terms of Maclaurin expansion has caused error reduction 

in determining the critical buckling load and kinematic parameters of the non-linear analysis. Also 

with larger axial loads, to attain a constant accuracy, there is a need for larger number of the 

Maclaurin expansion terms. 
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