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Abstract.  This paper assesses efficiency of the continuum method as the idealized system of building 

structures. A modified Coupled Two-Beam (CTB) model equipped with classical and non-classical damping 

has been proposed and solved analytically. In this system, complementary (non-classical) damping models 

composed of bending and shear mechanisms have been defined. A spatial shear damping model which is 

non-homogeneously distributed has been adopted in the CTB formulation and used to equivalently model 

passive dampers, viscous and viscoelastic devices, embedded in building systems. The application of 

continuum-based models for the dynamic analysis of shear wall systems has been further discussed. A 

reference example has been numerically analyzed to evaluate the efficiency of the presented CTB, and the 

optimization problems of the shear damping have been finally ascertained using local and global 

performance indices. The results reveal the superior performance of non-classical damping models against 

the classical damping. They show that the critical position of the first modal rotation in the CTB is reliable as 

the optimum placement of the shear damping. The results also prove the good efficiency of such a 

continuum model, in addition to its simplicity, for the fast estimation of dynamic responses and damping 

optimization issues in building systems. 
 

Keywords:  building structural systems; continuum model; replacement beam (RB); coupled two-beam 

(CTB); classical damping; non-classical damping; passive damping 

 
 
1. Introduction 
 

The real static or dynamic response of structures is commonly something different from the 

sum of the responses of the individual elements because structural integrity guarantees that the 

elements work together in a properly designed system and consequently, the structure develops 

some global response through the complex interaction of its elements (Zalka 2012). For this 

reason, a global approach, where the structure is imagined in a unitary fashion, may be of interest. 

In this case, the key point in structural design becomes selection of a suitable model truly 
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reproducing the actual characteristics of the original structure. 

Simple continuum models called Replacement Beams (RB) can be suitable models, as 

approximately equivalent systems, to capture basic features of dynamic response of regular 

buildings, especially of tall ones (Smith and Coull 1991, Zalka 2001, Potzta and Kollar 2003). This 

approach basically consists of the replacement of the complex building (3D) structure by a 

continuous equivalent (1D) beam. The main advantages of this approximate model compared with 

the exact analysis methods are to: (1) model the whole structure simply and avoid probable errors 

in this stage; (2) easily interpret the results because of dealing with less number of data; (3) focus 

on the most important structural characteristics and ignore those with no essential influence on the 

structural responses; (4) independently check the correctness of the exact analysis results; (5) 

preliminarily design the structural systems and determine dimensions of structural members.   

Depending on the structural characteristics of building systems, the RB is characterized by a 

proper kinematical model and equivalent stiffness parameters (Potzta and Kollar 2003, Tarjan and 

Kollar 2004), which properly represent the real stiffness of the system as a whole. It is however 

worth noticing that up to now the research works carried out on RBs seldom deal with the full 

dynamic response including consistent energy dissipation mechanisms. 

Given the significant influence of damping on vibration characteristics of building structures, it 

has been extensively reported in the literature (Keel and Mahmoodi 1986, Mahmoodi et al. 1987, 

Soong and Dargush 1997, Kareem et al. 1999, Madsen et al. 2003, Marko et al. 2004, Trombetti 

and Silvestri, 2004, 2006, Silvestri and Trombetti 2007, Hwang et al. 2006, 2008, Christopoulos 

and Montgomery 2013).  

From the structural engineering point of view, there are a few studies carried out on damping 

modeling in RBs. The classical damping has been frequently adopted (Tarjan and Kollar 2004, 

Miranda and Taghvai 2005) in order to model only the base structural damping in the RB 

formulation. Lavan (2012) has assessed the efficiency of viscous dampers as coupling elements of 

shear walls to result in viscously coupled shear walls. A shear-type damping has been proposed to 

model viscous dampers through a continuum approach. Lavan’s formulation contains only the 

flexural stiffness (i.e., an Euler-Bernoulli beam) due to the walls and gives the main structural 

responses of the viscously coupled walls. The proposed model was based on the fully distribution 

of identical dampers along the height and no optimization problems were afforded, where non-

identical dampers might be placed.  

From the mechanical engineering viewpoint, wide investigations on the effects of internal and 

external, distributed or lumped dissipation sources have been conducted in continuous beams. An 

exhaustive overview on the most used damping models can be found in the literature (De Silva 

2007, Adhikari 2000, Muravskii 2004, Zarubinskaya and Van Horssen 2005, Adihikari and 

Woodhous 2001). Conceiving damping properties as a mechanism of vibration reduction or 

suppression, many studies on the characterization of the vibrational behavior of externally damped 

beam structures have been proposed throughout the past decades (Kocatürk and Şimşek 2006, 

Kayacik et al. 2008). Also more recently, the effect of the location of damped segments on the 

vibrations of beams with partially distributed internal viscous damping (DIVD) was investigated 

(Tsai et al. 2009). The vibration equations of a Timoshenko beam with DIVD subjected to 

transverse loading were derived and the transfer matrix method (TMM) has been used to 

determine the frequency equations and to study the vibration characteristics. To demonstrate 

feature of DIVD effects, various damping and restraining conditions have been taken into account. 

The influence of the damping, length and location of damped segments on the vibration of beams 

with DIVD has been investigated and discussed. Some researchers (Chen 2011, Capsoni et al. 
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2013, Faridani and Capsoni 2014) extended this latter research with locally distributed Kelvin-

Voigt damping. Using a finite element approach by Chen, the quadratic eigenvalue problem of a 

damped system was formulated to evaluate the eigenfrequencies of the damped Timoshenko 

beams. The effects of damping amount, lengths and locations of the damped segment, of axial load 

and of restraint types on the damped natural frequency of beams have been investigated and 

discussed. Moreover, the investigation of Timoshenko beams and Sandwich beams with DIVD has 

been generalized referring to a shear slenderness parameter (Capsoni et al. 2013). The dependency 

of DIVD mechanism type is shown on the stiffness characteristics of beams and a general model 

has been proposed to choose a proper damping mechanism in beams. 

However, this study has been devoted to exploit the damping models proposed for damped 

beams with applications in mechanical engineering and apply them in the RB systems suitable for 

civil engineering structures. To this end, a more general continuum system (RB) with damping 

effects, capable of modeling several building structures (e.g., frames, shear wall systems, and wall-

frames), has been developed in order to take both the inherent and passive (viscous and 

viscoelastic) damping into account. The Coupled Two-Beam (CTB) is used, as an efficient RB 

model, where a bending damping and a shear damping mechanism (Capsoni et al. 2013) are 

adopted for the flexural beam and shear beam as non-classical damping models, respectively. The 

classical damping has been already considered in the formulation of such a RB. Firstly, the 

vibration equations of the laterally loaded CTB are derived through Hamilton’s principle by taking 

into account the damping models. A closed-form solution is proposed based on modal analysis for 

both the damped free vibration analysis and forced vibration analysis.  

The present continuous model allows to deal with the presence of local damping devices in a 

smeared and kinematically coherent way, leading to a compact formulation which conducts simple 

approaches to the classical optimization problems. A general shear damping pattern is also 

proposed to take into account the non-uniform distribution of passive damping and suitable 

locations are suggested for the placement of this damping type based on the degree of coupling of 

the flexural and shear beams. Equivalent (continuum) properties of discrete passive devices 

(viscous/viscoelastic) are presented, where differently configured in frameworks. The application 

of the CTB for modeling the shear wall systems is specifically addressed, where some possible 

placements of passive dampers are described.  

A numerical example of coupled shear walls is investigated using the present RB model. The 

modal damping ratio resulted by the classical and non-classical damping models are compared, 

showing that the bending damping is dominantly efficient in comparison with the classical one. 

The shear damping is used to investigate the optimal characteristics of viscous and viscoelastic 

dampers through the CTB. Some comparative investigations and sensitivity analyses are 

conducted using some proper structural indices, resulting in the position of the maximum 

rotational field as the first estimation of the optimum location of damping. Further investigations 

are then devoted to evaluate the optimum amount and length of the shear damping.  

The results show that the proposed RB system accompanied by the non-classical damping 

models can be useful and simple tools for the dynamic investigation of building structures. It is 

also worth noticing that this approach has been primarily conceived as a first step in dealing with 

structural problems such as approximate dynamic modeling of high-rise and tall buildings, where 

the (continuous) shear damping density reflects the additional dissipation phenomenon.  

 

 

2. The Coupled Two-Beam (CTB) model 
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Fig. 1 Damped CTB model composed of a flexural beam and a shear beam 

 

 

In this section, an idealized model of building systems, the so-called Coupled Two-Beam 

(CTB), is introduced with a single kinematical field u (i.e., transversal displacement) and total 

height of L. The CTB model (Fig. 1) (Smith and Coull 1991, Miranda and Taghavi 2005) is 

composed of an Euler-Bernoulli Beam (EBB) and a Shear Beam (SB). The flexural stiffness and 

shear stiffness of this model can be estimated according to the literature (Potzta and Kollar 2004) 

or be given from the identification approach (Taghavi and Miranda 2005).  

Concerning the dissipation mechanism in the CTB, the classical damping is solely addressed 

(Miranda and Taghavi 2005). As a main goal of this study, the CTB has been modified by 

introducing suitable non-classical damping models, in addition to the classical one, in order to take 

into consideration the inherent damping and passive dissipating phenomena in building structural 

systems. 

Dealing with the steady-state dynamic response of the CTB system, resulted by a harmonic 

homogeneously distributed external force 𝑓(𝑥, 𝑡) = 𝑞𝑒𝑖𝜔𝑡, a time-independent functional can be 

introduced. Considering 𝑞 = 𝑢, the Hamilton’s principle is given by 
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where the Lagrangian L of the system is determined as the sum of the Total Kinetic Energy T of 

the system, the Potential Energy V, and the work Wf produced by the external load. The 

Lagrangian function is given by 
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Applying the L2-norm associated to the above functional in order to minimize the Total 

Potential Energy, stationarity gives the governing uncoupled equation of the steady-state dynamic 

response as 
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(5) 

It should be noted that flexural stiffness kb(x), bending damping cb(x), shear stiffness ks(x), 

shear damping cs(x), classical damping c(x), and mass density m(x) may be all space-dependent in 

the formulations depending on the existing mechanical properties in the reference building system. 

 
2.1 Damped free vibration analysis 
 

Substituting q=0, ω=ωj and u(x)=ϕj(x) into Eq. (5) and assuming constant stiffness, damping, 

and mass properties, the governing equation of the free vibration analysis is as follows 
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Here, ϕj(x) is the amplitude of the j th complex mode shape of vibration and ωj refers to the j th 

complex eigenfrequency. A closed-form solution is developed for the CTB, including the damping 

properties, by imposing the consistent boundary conditions. The general solution of ϕj(x) is given 

by 

 

   

 
         

         

sin / sinh cosh cos

sin / sinh cosh cos

j j j j j j j

j

j j j j j j j

x x x x
x

      


      

   
 
   
 

 (8) 

where 
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Note that γj is the complex eigenvalue parameter and is obtained by solving the following equation  
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Since the latter equation is a function of the complex frequencies ωj, an additional equation is 

required to calculate γj. Therefore, using the boundary condition corresponding to zero shear force 

at the top gives the new equation for computing eigenvalue parameter γj, associated with the j th 

mode which is a function of the complex parameter α2. The governing equation reads 
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According to Eq. (10), α2 can be obtained as the function of γj and be substituted into Eq. (11), 

consequently resulting in an equation to calculate the eigenvalue parameter γj. The solution gives 

two values of γj associated with two conjugate eigenmodes. The minimum positive root 

corresponds to the fundamental eigenproblems, and orderly higher roots help to determine higher 

modes characteristics.  

Because of the dependency of the parameters α2 and β2 on ωj through Eq. (10), the conjugate 

eigenfrequencies of each eigenmode is given by 
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Correspondingly, the damped and free oscillating modes can be directly obtained by 

substituting the resulted α2 and γj into Eq. (8).  

According to Eq. (12), the modal damping ratio associated to each mode is expressed by 
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As mentioned before, the mechanical properties for the damped free vibration analysis were 

assumed uniform. Concerning non-uniform properties, a FE method can be adapted to solve Eq. 

(6). When the stiffness and mass properties are uniform, while the damping models are non-

uniformly distributed, the following expression is proposed for the estimation of the modal 

damping ratio  
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where Rj
(c), Rj

(cb), and Rj
(cs) are modal Rayleigh Dissipation functions; Vj is the potential energy 

associated with the j th mode; Rj is the sum of modal Rayleigh functions. Using the modal 

response 𝑢𝑗 = 𝜙̅𝑗(𝑥)𝐷𝑗(𝑡) in the second term of Eq. (2), Vj is subsequently defined. Also, the 

modal Rayleigh function Rj is obtained by adopting 𝑢𝑗 in Eq. (3). Then, substituting Rj and Vj into 

Eq. (15), after performing some manipulations, the modal damping ratio is given by the following 

expression 
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Here, 𝜔̅𝑗 , 𝜙̅𝑗(𝑥), and α0
2 are undamped frequency, undamped mode, and non-dimensional 

stiffness ratio, respectively. Note that α0
2 can be achieved by omitting the damping coefficients in 

the definition of α2 expressed by Eq. (7). 

It has been recently demonstrated (Lavan 2012) that a constant shear-type damping can be 

employed to properly model the uniform distribution of viscous dampers in the structures 

composed of shear walls. Based on the latter equation, the level of damping caused by the viscous-

type dampers can be estimated; hence, the shear damping cs(x) in the present CTB is expected to 

be a more general model to analyze dynamic responses of building structural systems affected by 

the local distribution of non-identical passive dampers. Considering that the overall modal 

damping ratio is the summation of the inherent modal damping δ0,j and the additional modal 

damping δd,j , the latter one is expressed by 
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where cs(x) is distributed in the range x0≤x≤x0+Ld. For the sake of simplicity, cs(x) is assumed to be 

a linear function in order to practically approximate the distribution of passive damping.  

 

2.2 General patterns for shear damping modeling 
 

In order to present a general function for the shear damping, one possibility is to utilize the 

distribution of undamped modal rotation associated to the fundamental mode. It is expected that a 

fixed length Ld around the maximum modal rotation may be the most efficient location for the 

placement of passive damping. This location may vary, depending on a controlling parameter 

called degree of coupling α0
2.This parameter can be expressed through Eq. (7), where the damping 

coefficients are neglected. Such a parameter controls the degree of participation of overall flexural 

and overall shear deformations in the CTB model and thus controls the lateral deflected shape of 

buildings. A value of α0
2 equal to zero represents a pure flexural model like an Euler-Bernoulli 

beam and a value equal to ∞ corresponds to a pure shear model. An intermediate value of α0
2 

corresponds to the case that combines shear and flexural deformations. However, it can be argued 

that positioning the cs(x) around the location of most critical rotation with a compatible pattern 

with respect to the distribution of rotation may represent a suitable strategy for damped CTB 

models.  

The root of following expression, derived based on the fundamental rotation mode, gives the 

position of maximum modal rotation along the CTB model 

          2 2 2 2 2 2 2 2 2 2

1 1 1 0 1 1 0 1 1 0 1 0 1 1 1cos cosh sinh sin 0x x x x                       (18) 

where γ1 and ε1 should be obtained from Eqs. (9)-(10) by substituting j=1. 

Consequently, in general, a pentagon-shape model is proposed (Fig. 2(a)) which may be 

proportionally consistent with the linearized equivalence of the rotation shape at the most critical 

locations (see Figs. 2(b)-(c)). To introduce this model, a peak shear damping coefficient cs,max must 

be chosen and be located at the maximum rotation position. The damping distribution can be then 

expressed as follows 
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Fig. 2 Non-uniform shear damping model adopted (a) general pattern (b) for CTB with very small α0
2 

(c) for CTB with intermediate α0
2 
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where Ld1 is the damped length under the peak rotation elevation. Herein, μ1 and μ2 may be 

selected based on the distribution of passive damping along the original building. It should be 

remarked that a triangular damping shape is achieved when μ1= μ2=0 and a uniform distribution is 

resulted with μ1= μ2=1.  

Fig. 3 shows some viscous-based dampers and relevant configurations which are applicable in 

frames, coupled shear walls, and wall-frame systems. The equivalent shear damping cs and shear 

stiffness ks,eq coefficients, corresponding to various passive dampers and structural systems, are 

presented in Table 1. These coefficients are given by equating the energy dissipation and strain 

energy of the discrete devices and their continuum equivalences. It is worth noticing that the 

influence of the additional stiffness ks,eq due to viscoelastic dampers can be taken into account in 

the definition of the strain energy in Eq. (17). The dampers vertically installed (Fig. 3) perform 

based on the relatively vertical velocity created between the left and right members, where 

transversal loads enforce the system to deflect. 

 

2.3 Forced vibration analysis 
 

The response of the non-uniform CTB model subjected to a general force f(x,t), accounting for 

the non-uniform damping mechanisms, is given by the following partial equation of motion 
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Fig. 3 Various configurations of viscous and viscoelastic dampers in frames and coupled walls 

 
Table 1 Equivalent stiffness and damping coefficients for a single passive damper   

Type of dissipative 

device 

Installation 

direction 
Type of structure 

Equivalent 

damping cs 
Equivalent stiffness ks,eq 

viscous damper 

diagonal 

frame/wall-frame 
 2 2

2
*

d

hb
c

h b
 __ 

coupled shear walls 
 

 
1 2

2 2

2
/ 2 / 2 


d

h B B b
c

h b
 

vertical coupled shear walls 
 

2

1 2

2
1



 
 
 

d

b b
c

ht B B
 

__ 

viscoelastic damper 

diagonal 

frame/wall-frame 
 2 2

2
*

d

hb
c

h b
 

 2 2

2


d

hb
k

h b
 

coupled shear walls 
 

 
1 2

2 2

2
/ 2 / 2 


d

h B B b
c

h b
 

 

 
1 2

2 2

2
/ 2 / 2 


d

h B B b
k

h b
 

vertical coupled shear walls 
 

2

1 2

2
1



 
 
 

d

b b
c

ht B B
 

 

2

1 2

2
1



 
 
 

d

b b
k

ht B B
 

* cd: viscous damping coefficient in dampers 

 

 

Here, all the mechanical properties (i.e., m, c, cb, cs, kb, and ks) are previously defined in section 

2. The right-hand side of Eq. (20), when the CTB is excited by a horizontal acceleration at the 

base, should be defined as      2 2, /   gf x t m x u t t .  

Having assumed that the mass and stiffness properties are uniform along the system, a modal 

analysis approach (Miranda and Taghavi 2005) is employed to calculate the overall responses with 

superposition of the responses of all the modes of vibrations. Hence, the displacement response 

u(x,t) in the CTB model is given by   

h

b

cd

kd
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B1 B2b
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cd
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h
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 (21) 

where Dj(t) associated to j th mode can be calculated by solving the following equation 

 

   

     
 

 
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:
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/ :
  
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   



g

j j j j j j

j

u t Ground Acceleration
D t D t D t

f t m Dynamic Force
 (22) 

It should be noted that the contribution of various damping mechanisms to the response must 

be taken into account through Dj (t), using the definition of damping ratio δj expressed by Eqs. 

(14)-(16).  

When the non-uniform shear damping is employed to model the passive damping, the modal 

damping factor in Eq. (22) reads 

 
   0, ,   j j d j  (23) 

where the inherent modal damping δ0,j may be calculated using Eq. (16) and the additional damping 

δd,j due to the non-homogeneous shear damping is given by Eq. (17). 

The inter-story drift ratio, IDR(x,t), is an important measure of nonstructural damage and can be 

evaluated by the derivative of the displacement 
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

 (24) 

The absolute acceleration that is a measure of damage to nonstructural acceleration sensitive 

equipment as well as contents’ movement along the floor area 
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 (25) 

The time-dependent bending moment M(x,t) is expressed as 

 

   
         

1 1

1 1
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n n
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 
     (26) 

Also, the shear force V(x,t) is given by 

 

   

         
1 1

1 1

, ,
n n

j j b j s j j

j j x x

V x t V x t k x dx k x dx D t 
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 
     

 
     (27) 

When the mechanical properties vary along the height (e.g. additional stiffness and damping 

due to viscoelastic dampers installed in some positions or the variation of stiffness due to absence 
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of coupling beams), the dynamic characteristics of the continuum model were computed by 

employing a 1D FE method. For this aim, the CTB model was discretized into elements with the 

lengths equal to the inter-story height. This FE model can be used also for the analysis of 

responses where the damping mechanisms are non-uniformly distributed. Some dynamical 

responses such as vibration energy (D) (Huang and Zhu 2013) and the sum of transfer functions of 

inter-story drifts (V) (Takewaki 2009), can be also calculated using the FE model. 

 
2.4 CTB models for shear wall systems supported by dampers 
 
Amongst load-resisting structural systems of tall buildings, shear walls and coupled shear walls 

are commonly efficient ones. In addition to high strength and inherent dissipation capability, they 

are also prone to be properly equipped by passive damping systems for mitigating wind and 

seismic vibrations. For a single-bay coupled shear wall (see Fig. 4), the equivalent shear stiffness 

ks to be adopted for the CTB can be expressed by 

 

   

1 2
2

1 21
1

12 2



   
     

   

b b

s

b b b

B B
k

h EI G A
 (28) 

where B1 and B2 are the widths of the left and right shear walls; ℓb is connecting beams length; h is 

the inter-story height; Ib and κAb are the moment of inertia and shear area of connecting beams; E 

and G are the elastic modulus and shear modulus, respectively. The flexural stiffness kb is assumed 

to be the summation of the flexural stiffness EI of each single shear wall (i.e., 𝑘𝑏 = ∑ (𝐸𝐼)𝑖
𝑁
𝑖=1 ). 

The images illustrated in the upper part of Fig. 4 indicate some possible applications of passive 

dampers, i.e., (S1) diagonal viscous dampers non-homogeneously distributed; (S2) diagonal 

viscous dampers fully distributed; (S3) diagonal viscoelastic dampers non-homogeneously 

distributed; (S4) vertical viscoelastic dampers non-homogeneously distributed; (S5) vertical 

viscoelastic dampers fully distributed, coupling single shear walls or coupled shear walls. 

Correspondingly, the CTB models with the bending damping cb in the flexural beams and the shear 

damping cs as the distributed equivalence of passive dampers are depicted in the lower part of Fig. 

4. Also, the CTB model of a wall-frame system supported by viscous dampers is illustrated in Fig. 

5. According to the relations presented in Table 1, the suitable shear stiffness and damping, 

associated with every damping system shown in Figs. 4 and 5, can be used. Note that depending 

on the amount of damping coefficient cd in each damper, the relevant shear damping may be 

different and correspondingly the shear damping function cs(x) may be distributed non-uniformly 

along the CTB.  

 

 

3. Numerical investigations 
 

3.1 Assessment of the CTB model 
 

First of all, the accuracy of proposed solutions for the CTB model is examined with respect to a 

13-story RC shear wall (Lavan 2012) retrofitted by identical viscous dampers which are diagonally 

coupling the walls. The building is excited by the LA07 ground acceleration. The structure 

corresponds to the case S2 shown in Fig. 4, thus, CTB2 illustrated in Fig. 4 is chosen as the 

equivalent RB (i.e., the degree of coupling is zero α0
2=0 and the flexural stiffness solely exists).  
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Fig. 4 Shear wall systems equipped with various passive dampers and their equivalent CTB models 

 

 

Fig. 5 A wall-frame system equipped with viscous dampers and its equivalent CTB model 

 

 

Regarding the type and arrangement of dampers, the suitable relation is selected from Table 1 to 

calculate the equivalent shear damping. Hence, a constant shear damping cs=28000 kN.s is 

obtained based on the original damping coefficient of identical dampers. Table 2 gives some of 

important structural responses presented by Lavan (2012) and those calculated by the present CTB 

solution. In the analysis, both the inherent damping and additional damping are examined. It 

should be remarked that the shear damping is solely modelling the passive damping, while the  
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Table 2 Structural responses by CTB solution and Lavan (2012), obtained for both 5% inherent damping and 

additional (viscous) damping 

Damping sort 
5% inherent 

 damping 

Passive damping (viscous damper) 

Discrete approach 

 (Lavan 2012) 

Continuous 

approach 

Response 
Lavan 

(2012) 

Present 

CTB 

Time history 

analysis 

Modal spectral 

analysis 

Lavan 

(2012) 

Present 

CTB 

Natural period [s] 3.69 3.69 - 3.76 3.74 3.59 

Damping ratio of first mode 0.05 0.05 - 0.265 0.266 0.267 

Roof displacement [m] 0.386 0.4 0.165 0.159 0.163 0.176 

Max. inter-story drift ratio [%] 1.37 1.35 0.62 0.57 0.58 0.52 

Max. absolute acceleration [m/s2] 8.21 7.12 4.38 5.34 5.55 4.53 

Total base shear [kN] 9453 9635 5620 4980 5014 6228 

Total base moment [kN.m] 230600 238000 126000 112500 113600 114400 

 

 

 

bending and classical damping are neglected. The inherent damping is directly considered identical 

for all the modes. Table 2 indicates that the CTB solutions are reliable against those responses 

obtained from other methods.  

 

3.2 Numerical examples 
 

In this study, a coupled shear wall presented in the literature (Smith and Coull 1991, 

Takabatake 2010, Bozdogan 2012) is considered (see Fig. 6) and the efficiency of proposed 

damping mechanisms (i.e., bending and shear damping) is investigated, where the external load 

uniformly distributed is a harmonic one, f(t)=16500sin(0.9ω1t). This force will be updated with 

respect to the fundamental frequency ω1 of the system. A CTB system with equivalent stiffness 

properties is modeled based on the reference structure. To compare the modal damping ratios 

calculated using Eqs. (14)-(16), a certain amount of shear damping (i.e., cs=6×106 N.s/m2) fully 

distributed in the reference system is considered. This may be the equivalent (continuous) damping 

of distributed dampers along the system. Different values of the degree of coupling are obtained by 

changing the shear stiffness ks as the controlling parameter, in order to realize the trend of variation 

in the damping factor against the degree of coupling. Fig. 7(a) shows this trend using Eqs. (14)-

(16) by the first three modes. A very good agreement can be observed from the graphs in Fig. 7(a), 

showing that Eq. (16) is a reliable definition of the modal damping ratio where a building system 

is idealized with a CTB model.  

The classical damping and bending damping are other energy dissipation mechanisms used in 

the CTB formulation. To compare the behavior of different damping models, damping ratios 

associated with the first three modes against the degree of coupling are plotted in Fig. 7(b) and 

Figs. 8(a)-(b), respectively. Three damping coefficients (i.e., classical, bending, and shear 

damping) are fixed in such a way that 1% damping ratio be resulted in the fundamental mode. 

Consequently, the effect of the change in the degree of coupling is identified on the three modal 

damping factors. It should be remarked that each diagram corresponds to a single damping model 

solely applied in the analysis. According to Fig. 7(b), the first damping ratio δ1 decreases by the  
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Fig. 6 An asymmetrical coupled shear walls system 

 

  

(a) (b) 

Fig. 7 (a) Comparison of modal damping ratios due to shear damping computed by Eqs. (14)-(16) 

versus α0
2 (b) first mode damping ratio against α0

2 with various damping models 

 

  

(a) Second mode damping ratio (b) Third mode damping ratio 

Fig. 8 Modal damping ratios versus α0
2 obtained from several damping models 
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(a) (b) 

Fig. 9 (a) Distribution of normalized static and modal rotation in coupled walls of the reference structure 

(b) Trend of position of peak static and modal rotations along the height versus α0
2 

 

 

degree of coupling for every damping mechanism, while the diagram associated to the bending 

damping shows higher values than other two diagrams. It can be seen from Figs. 8(a)-(b) that the 

modal damping ratios resulted by the classical damping c are significantly less than those obtained 

by the bending damping cb. This is also observable by comparing the diagrams affected by the 

shear cs and bending cb damping. This observation demonstrates that the classical damping in the 

CTB formulation is incapable of providing identical modal damping ratios, where this assumption 

is usually assumed in the design.  

 
3.2.1 The investigation of damping optimization 
First, to ascertain the optimum place of the shear damping, the distribution of rotation induced 

by the static force and of the first modal rotation along the reference structure is shown in Fig. 

9(a). It can be observed that the peak responses of each diagram are identified at the normalized 

elevations 0.4 and 0.45, respectively, with respect to the base. The distribution of static rotation is 

obtained under the uniform load. Also, the general position of the maximum static rotation (refer 

to Eq. (29)) and first modal rotation (refer to Eq. (18)) against the degree of coupling α0
2 are 

plotted in Fig. 9(b). Neglecting the time-dependent terms in Eq. (20), where the structure is 

subjected to a constant static load (i.e., static force due to wind), the root of following equation 

gives the location of peak static rotation 

 
   

00 0cosh 1 sinh 0
x x

L L
  
    
    

     

    (29) 

Depending on the problem that is subjected to wind or earthquake load, Fig. 9(b) can be applied 

to initially estimate the suitable location for the placement of shear (passive) damping. Note that 

the effect of higher modes (i.e., peak rotation position associated to higher modes) is neglected.  

Regarding the shear damping model and its possible adaption in the CTB model, the equivalent 

damping of supplementary dissipating devices in coupled walls (e.g., viscous or viscoelastic 

dampers) is investigated. For this purpose, the investigation is devoted to controlling dynamic 

magnification factor (DMF) of tip displacement as a local index and two other global performance 

indices, which are vibration energy (D) and sum of transfer function of inter-story drifts (V). 
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Furthermore, the overall damping factor associated with the fundamental model is considered. 

  

Optimization of Viscous Dampers  

Using the shear damping as the additional dissipation mechanism in the CTB, the optimization 

of its distribution length Ld, while the inherent damping is set to 5% with a fully distributed 

bending damping cb,5% [N.s/m2], is evaluated. The cantilever CTB model of the reference problem 

is loaded by an external distributed sinusoidal dynamic load, f(t)=16500sin(ωt), and excitation 

frequency ω=0.9ω1, is worth noticing that only the fundamental mode contribution is considered 

in the response analysis. Concerning a non-uniformly shear damping model with distribution 

length of Ld, as presented in Fig. 2(a), considering its maximum amount cs,max to assign the 

damping value, two main damping contributions are conceived acted upon by the CTB system and 

defined as follows 
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 (30) 

where (A1+A2)L=(0.3×5+0.3×7)×56=201.6 m3 is the equivalent volume of the EBB and 

tℓb=0.3×2=0.6 m2

 is the equivalent area of the SB cross-section in the CTB. According to Eq. (30), 

the parameter ε is defined as the ratio between the resultant shear (passive) damping Cs due to the 

damped segment in the SB and the resultant bending damping Cb in the EBB, in order to 

comparatively change the shear damping with respect to the bending one.  

The effect of the shape of shear damping is investigated on the CTB response by using a 

constant length Ld=0.2L. For the sake of simplicity, two lengths (i.e., Ld1, Ld2) and controlling 

coefficients (i.e., μ1, μ2) to define the damping shapes are assumed identical (see Fig. 2(a)). The 

DMF of tip displacement is graphed (Fig. 10) versus the maximum damping parameter ε, which is 

associated with the maximum damping coefficient cs,max located at the position of maximum modal 

rotation. It can be seen that for ε greater than about 0.004 and also for very low values of ε, all of 

the damping shapes show almost a similar influence on the response. The most significant  

 

 

 

Fig. 10 Dynamic magnification factor (DMF) of tip displacement versus damping parameter η for 

different shear damping shapes (Ld=0.2L) 
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Fig. 11 The CTB system with 5% inherent bending damping cb and three arrangements of uniform 

shear damping cs distributed from (a) top (b) maximum rotation position (c) base 

 

 

now on, the uniform shear damping (i.e., μ1=μ2=1) is employed in order to analyze the optimal 

characteristics of damping. Note that the pattern of damping can be the further step after 

specifying its optimal properties such as the optimum position, amount, and length.  

In order to evaluate the efficiency of the proposed strategy related to the optimum placement of 

damping, a comparative investigation is firstly carried out. For this purpose, a constant shear 

damping with a fixed amount ε=0.0004 and the variable length Ld is considered. Three different 

locations (i.e., the top, around the peak modal rotation, and the base) are proposed for the initiation 

of damping (see Fig. 11), respectively, named Arrangement (a), Arrangement (b), and 

Arrangement (c). The damping model can be distributed downward or upward depending on its 

initial location. The structure is subjected to the same uniformly harmonic load applied before. To 

compare the efficiency of aforementioned three arrangements, several responses are plotted in 

Figs. 12(a)-(d). It can be observed that for all the responses the best efficiency is related to the 

Arrangement (b), which is based on the shear damping (passive) distributed from the position of 

maximum rotation. The worst performance belongs to the damping distributed from the base (i.e., 

Arrangement (c)). 

According to the plots shown in Fig. 12, it can be observed that the Arrangement (b) is more 

efficient than other arrangements even by using a very short damping length (e.g., Ld=0.1L), while 

Arrangements (a) and (c) give the optimum responses with larger lengths, e.g., Ld=0.65L and 

Ld=0.95L, respectively, with respect to the DMF response. This means that the application of 

Arrangement (b) is not only more efficient but also is significantly affordable in comparison with 

other arrangements. Hence, from now on, the Arrangement (b) is used for the optimization 

analysis of shear damping in this study.  

A sensitivity analysis is also carried out to more confidently demonstrate the superiority of 

Arrangement (b). Therefore, the same responses shown in Fig. 12 are graphed (see Figs. 13(a)-(d)) 

against the position of the shear damping Lg/x(ϑmax), normalized with respect to the position of 

maximum rotation x(ϑmax). According to the graphs shown in Fig. 13, lengths of the curves are 

different for each damping value ε, because the optimum length of damping associated to each ε 

may be different in the sensitivity analysis. It can be seen from Fig. 13(a) that the forced responses 

and the optimum values decrease with increasing ε. The optimum positions of shear damping are  
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(a) dynamic magnification factor of tip displacement (b) fundamental damping ratio ζ1 

  
(c) total vibration energy (d) sum of transfer function of inter-story drifts 

Fig. 12 Evaluation of various responses versus the normalized damping length Ld/L for three 

Arrangements (a), (b), and (c) 

 

 

specified by small circles shown on each curve. Performing the sensitivity analysis, the optimum  

value of DMF is almost located around [L
g
/x(ϑ

max
)]=1 for every ε. In this case, the optimum 

position of damping can be defined in the range 1.075<L
g
/x(ϑ

max
)<1.0917.  

 

 

  
(a) dynamic magnification factor of tip displacement (b) fundamental damping ratio 

Fig. 13 Sensitivity analysis results versus the normalized position of shear damping with respect to 

position of maximum modal rotation for different damping parameters ε 
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(c) total vibration energy (d) sum of transfer function of inter-story drifts 

Fig. 13 Continued 

 

 

The trend of variation in damping ratio δ1 associated to each ε (see Fig. 13(b)) shows that the 

peak ratio is obtained when the center of shear damping is located around the position of 

maximum rotation. Fig. 13(b) also shows when the shear damping is located far from the position 

of maximum rotation the level of δ1 decreases, especially when it is closer to the base (i.e. [L
g
 

/x(ϑ
max

)]<<1). The positions which are in vicinity of the top (i.e. [L
g
 /x(ϑ

max
)]>>1) are not also 

prone to obtain the considerable levels of δ1 as those are around the positions of  maximum 

rotation.  

Concerning the vibration energy (see Fig. 13(c)), the optimum position of damping varies in the 

range 0.91<L
g
/x(ϑ

max
)<1.077 and is coincided to L

g
/x(ϑ

max
)=1 for the sum of transfer function of 

inter-story drifts (see Fig.13(d)). However, it can be proved that the application of shear damping 

around the peak modal rotation is reliable in mitigating significantly the vibration and 

consequently in controlling the responses.  

Based on the Arrangement (b), the influence of damping length Ld with different values of ε is 

investigated on the responses of the reference structure. Therein, Ld is gradually distributed to 

affect the whole height. Consequently, the responses are presented in Figs. 14(a)-(d). It can be seen 

from Fig. 14(a) that, in general, the optimum damping length Ld associated with the minimum 

DMF, which are indicated by small circles on each curve, increases with increasing the damping 

amount ε. For instance, for ε=0.0002 the optimum length is about 0.1L (i.e., Ld=5.6 m), but it is 

equal to 0.3L (i.e., Ld=16.8 m) for ε=0.002. It is also obvious that even a small damping length, 

e.g., Ld=5.6 m, corresponding to every ε, can suppress the dynamic response significantly. This 

demonstrates once more the dominant efficiency of Arrangement (b) as a proper solution to 

control dynamic responses.  

The overall damping ratios δ1 associated with the fundamental mode, obtained from Eqs. (17)-

(23), are graphed in Fig. 14(b). As it is obvious from Fig. 14(b), the minimum damping ratio is the 

inherent damping δ0,1=0.05 corresponding to the 5% of critical bending damping. It can be seen 

that δ1 increases upon improving the additional damping ε, but its increase also depends on the 

damping length Ld, showing a specific peak (optimum) value. For example, the maximum 

damping ratio δ1=0.0875 is identified for ε=0.0002 with Ld=0.1L, but δ1=0.323 is achieved for 

ε=0.002 where Ld=0.5L (see Fig. 14(b)). 
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(a) dynamic magnification factor of tip displacement (b) fundamental damping ratio 

  
(c) total vibration energy (d) sum of transfer function of inter-story drifts 

Fig. 14 Trend of various responses versus the normalized damping length Ld/L for different damping 

parameters ε 

 

 

Figs. 14(c)-(d) indicate, respectively, the total vibrational energy and the sum of transfer 

functions of inter-story drifts for different values of ε. The plots exhibit almost similar trends, as 

shown in Fig. 14(a) for the DMF of tip displacement, with different optimum lengths Ld. The 

efficiency of the proposed strategy is significant, where the shear damping is considerably 

concentrated (e.g., Ld/L=0.1-0.2) around the location of maximum modal rotation.  

With regard to a more general investigation, the variations in DMF of tip displacement and 

damping ratio δ1 are shown for different degrees of coupling α0
2 (see Figs. 15(a)-(b)). For this 

purpose, a uniform shear damping with a fixed amount (ε=0.0002) and length (Ld=0.25L) is 

employed with a variable position Lg from the base of the CTB. The inherent damping is set to the 

5% of bending damping. According to Fig. 15, the optimum locations of additional damping 

values are found by some small circles. It can be seen from the graphs that the optimum location 

of damping is lowered with increasing α0
2. Moreover, upon improving α0

2, the level of DMF and δ1 

goes up and down, respectively. It means that, using the shear damping, the systems with smaller 

α0
2 are capable of providing greater dissipation mechanism in comparison with those have larger 

α0
2. 

 

Optimization of Viscoelastic Dampers  

In addition to the viscous dampers modeled using the shear damping, viscoelastic dampers are 

also analyzed based upon the CTB formulation. To this end, the Viscoelastic Coupling Damper 

(VCD) developed (Christopoulos and Montgomery 2013) at the University of Toronto is  
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(a) dynamic magnification factor of tip displacement (b) fundamental damping ratio 

Fig. 15 Sensitivity analysis results versus the position of shear damping for different α0
2 

 

 

considered. The VCD can mitigate both wind and earthquake vibrations and achieve significantly 

more efficient and more resilient high-rise building designs. A simple model used to represent such 

a damper is illustrated in Fig. 3, which is a spring and a viscous damper in parallel. Despite the 

fact that during earthquake or wind loading some self-heating is expected in the viscoelastic 

material as it is strained, it was shown that the viscoelastic material properties are very stable and 

predictable for the targeted service wind-level and earthquake-level strain amplitudes, frequencies, 

and loading durations. According to the relevant expression presented in Table 1, to analyze VCD 

models using the CTB, the distributed equivalent stiffness ks,eq and damping cs associated with a 

single VCD can be obtained easily.  

A designed VCD (Christopoulos and Montgomery 2013) is selected to analyze the reference 

structure including damping. The viscoelastic material properties used in such a device were based 

on the expected average properties at the natural period of vibration, a damper material strain of 

100% and an average viscoelastic material temperature T=24°C. The stiffness and damping 

coefficients of the VCD in shear were calculated as kVCD=162.4 kN/mm and cVCD=134.1 kN.s/mm, 

respectively. Note that an additional story mass equal to 500 ton is taken into account to tune the 

fundamental frequency associated to the dominant mode of the structure as consistent with the 

vibration frequency in the viscoelastic material. Also, 1 % of bending damping is assigned to the 

system as the inherent damping. Therein, a controlling parameter αVCD is considered instead of ε in 

order to simultaneously take into account a wider range of the stiffness and damping properties of 

VCDs. This parameter may play the role of change in the physical quantities such as the shear area 

or the ratio between the area and thickness in viscoelastic materials, as the size parameter 

characteristics.  

Accomplishing a sensitivity analysis, the application of shear damping with regard to its 

location is firstly examined. Hence, a certain number of VCDs, e.g., Nd=4 (i.e., the length of 

damped segment equal to Ld=11.2) is assumed, and the DMF of tip displacement and damping 

ratio δ1 are graphed (Figs. 16(a)-(b)) for several values of αVCD with respect to the normalized 

position of damping. Similarly to the plots indicated for viscous dampers, it can be found from the 

latter plots that the strategy proposed based on the position of peak static rotation is yet reliable 

where viscoelastic materials are used. According to Fig. 16, slight differences are visible which 

may be due to the addition of VCD stiffness to the system. 

Some of those structural indices studied for viscous dampers are plotted (Figs. 17(a)-(c))  
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(a) dynamic magnification factor of tip displacement (b) equivalent damping ratio 

Fig. 16 Sensitivity analysis results versus normalized position of shear damping with respect to position of  

maximum static rotation for different properties of VCDs 

 

 

against αVCD for different numbers Nd of VCDs. It should be remarked that Nd is the number of 

VCDs located around the position of peak static rotation under the uniform static load. It can be 

observed from Fig. 17(a) that the DMF for every Nd initially decreases with increasing αVCD but 

again increases with passing through a certain value of αVCD, associated to the minimum DMF. 

Therefore, the optimum value of αVCD can be achieved for every number of devices (see Fig.  

 

 

  

(a) dynamic magnification factor of tip displacement (b) equivalent damping ratio ζeq1 

 
 

(c) total vibration energy (d) optimum dynamic magnification factor 

Fig. 17 Trend of dynamical responses versus the viscoelastic property coefficient αVCD for different 

number Nd of VCDs and corresponding optimal curves against Nd 
 

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2

D
M

F

Lg/x(ϑmax)

αVCD=0.2

αVCD=0.4

αVCD=0.6

αVCD=0.8

αVCD=1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2

O
v
er

a
ll

 D
a
m

p
in

g
 R

a
ti

o
 ξ

1

Lg/x(ϑmax)

αVCD=0.2

αVCD=0.4

αVCD=0.6

αVCD=0.8

αVCD=1

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2

D
M

F

αVCD

Nd=0

Nd=2

Nd=20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2D
am

p
in

g
 R

at
io

 d
u

e 
to

 V
E

 d
am

p
er

s 

ξ e
q

1

αVCD

Nd=0

Nd=2

Nd=20

0

100

200

300

400

500

600

0 0.5 1 1.5 2V
ib

ra
ti

o
n

 E
n

er
g
y
 D

 (
Jo

u
le

)
x
 1

0
0

0
0

0

αVCD

Nd=0

Nd=2

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18 20

O
p

ti
m

u
m

 D
M

F

Nd

926



 

 

 

 

 

 

A modified replacement beam for analyzing building structures with damping systems 

  

(e) optimum damping ratio ζeq1 (f) optimum vibration energy 

Fig. 17 Continued 

 

 

Fig. 18 Average optimum curve of the viscoelastic property against Nd 

 

 

17(d)). Correspondingly, the trend of damping ratio δ1 (Fig. 17(b)) provided by the VCDs indicates 

a peak value on each diagram, resulting in a single curve related to the optimum (maximum) 

damping ratio versus Nd (see Fig. 17(e)). Concerning the total vibration energy D (see Fig. 17(c)), 

in general, a similar trend as resulted for the DMF is found. For small values of αVCD, a different 

behavior can be seen in the response, where the diagrams are intersected at given values of αVCD 

depending on every Nd. For example, comparing the diagrams associated to Nd=2 and Nd=10, a 

greater vibration energy is generated using 10 VCDs where 0<αVCD<0.0375, but less energy is 

resulted for αVCD>0.0375 with the same number of devices (i.e., Nd=10) in comparison with the 

energy under 2 VCDs. The optimum curve associated to the total vibration energy is shown against 

Nd in Fig. 17(f). According to all performance indices investigated, an averaged optimum curve is 

achieved (see Fig. 18) with respect to the number of VCDs located around the position of 

maximum static rotation. 

 
 
4. Conclusions 
 

The continuum models can be approximate tools to simply capture some essential dynamic 

characteristics of ordinary and tall building structural systems. Although these models are usually 

characterized by proper stiffness parameters; moreover, this study is devoted to generalize them by 
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introducing appropriate damping mechanisms (bending and shear damping) in addition to the 

classical viscous damping. This study established that building structural systems might be 

idealized using a CTB model, where non-classical damping models were accounted for. The 

application of the CTB in modeling shear wall systems was specifically discussed. Having defined 

a reference example, it was shown that the bending damping may be more effective dissipation 

mechanism against the classical one, especially when dealing with higher modes, responses. The 

shear-type damping is a suitable dissipation mechanism to equivalently model passive dissipating 

devices with various configurations. Such a damping model is more efficient where the degree of 

coupling is smaller. A shear damping model distributed non-homogeneously and non-uniformly 

was proposed, and the damping optimization problems were investigated with respect to the value, 

the length, and the position. The location of maximum rotation due to the static force and the first 

rotational mode were suggested as the first optimum estimations of the shear damping position. 

The numerical investigations and sensitivity analyses established the reliability of these 

suggestions for both viscous and viscoelastic dampers. This study showed that the application of 

the continuum-based method including the non-classical damping is simple enough and efficient to 

model the systems accounting for both inherent and additional damping. The CTB formulations 

proposed in this paper can be primarily conceived as a first step in dealing with structural 

engineering problems such as approximate dynamic modeling and pre-design of tall building 

structural systems. 
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