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Abstract.  This study analyses the seismic response of a three-dimensional (3-D) rigid massless square 

foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to 

harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation 

interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary 

element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis 

of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking 

into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the 

Green’s function obtained from the TLM. This approach has been applied to analyze the effect of soil-

structure interaction on the seismic response of the foundation as a function of the kind of incident waves, 

the angles of incident waves, the wave’s frequencies and the embedding of foundation. The parametric 

results show that the non-vertical incident waves, the embedment of foundation, and the wave’s frequencies 

have important impact on the dynamic response of rigid foundations. 
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1. Introduction 
 

The analysis of the behavior of foundations under dynamic loads has grown considerably over 

the past four decades. Stringent security requirements imposed on design of certain types of 

structures have played a particularly important role in the development of analytical methods. The 

key step in studying the dynamic response of foundation is the determination of the relationship 

between forces. This relationship which results in displacement is expressed using impedance 

functions (dynamic stiffness) or the compliance functions (dynamic flexibility). The consideration 

of the soil-structure interaction in the analysis of the dynamic behaviour of the foundations allows 

                                           

Corresponding author, Professor, E-mail: badreddine.sbartai@univ-annaba.dz 
a
Ph.D, E-mail: smessioud@yahoo.fr 

b
Professor, E-mail: daniel.dias@ujf-grenoble.fr 



 

 

 

 

 

 

Salah Messioud, Badreddine Sbartai and Daniel Dias 

to take realistically into account the influence of soil on their vibrations. 

A myriad of methods has been proposed to solve the soil-structure interaction problem. To 

simplify the problem linear-analysis techniques have been developed. One of the most commonly 

used approaches is the substructuring method that allows the problem to be analyzed in two parts 

Kausel et al. (1978), Aubry and Clouteau (1992), Pecker (1984). In this approach the dynamic 

response of superstructure elements and substructure are examined separately. The analysis of 

foundation systems can be reduced to the study of the dynamic stiffness at the soil-foundation 

interface (known as impedance function) and driving forces from incident waves. The kinematic 

interaction of the foundation with incident waves is implemented in the form of a driving-force 

vector  

Determining the foundation response thereby becomes a wave propagation problem. Due to the 

mixed-boundary conditions of the problem (displacement compatibility with stress distribution 

underneath the foundation and zero tension outside) solutions are complex. The determination of 

impedance functions and forces of movement related to the incident waves is a complex process. 

Several studies have been conducted on the dynamic response of foundation using the finite-

element and boundary-element methods. Wong and Luco (1978) have shown the importance of the 

effect of non-verticality of SV, SH harmonics on the response of a foundation. 

Apsel and Luco (1987) used an integral-equation approach based on Green’s functions for 

multilayered soils determined to calculate the impedance functions of foundation. Using this 

approach, Wong and Luco (1986) studied the dynamic interaction between rigid foundations 

resting on a half-space. Boumekik (1985) studied the problem of 3-D foundations embedded in 

soil limited by a rigid substratum. The finite-element method was applied by Kausel et al. (1978), 

Kausel and Roesset (1981), Lin et al. (1987) to determine the behavior of rigid foundations placed 

on or embedded in soil layer limited by a rigid substratum. A formulation of the boundary-element 

method in the frequency domain has been developed to address wave-propagation problems of 

soil-structure interaction and structure-soil-structure which limits the discretization at the interface 

soil-foundation. In this approach, the field of displacement is formulated as integrals equation in 

terms of Green’s functions Beskos (1987), Aubry and Clouteau (1992), Qian and Beskos (1996), 

Karabalis and Mohammadi (1991) and Mohammadi (1992). Celebi et al. (2006) used the 

boundary-element method with integral formulation (BIEM) to compute the dynamic impedance 

of foundations. In this context, the analytical solutions of 3-D wave equations in cylindrical 

coordinates in layered medium with satisfying the necessary boundary conditions are employed by 

Liou (1992), Liou and Chung (2009). However, Chen and Hou (2015) used a modal analysis to 

evaluate dynamic vertical displacements of a circular flexible foundation resting on soil media 

subjected to horizontal and rocking motions. 

Sbartai and Boumekik (2008) used the BEM-TLM method to calculate the one hand, the 

dynamic impedance of rectangular foundations placed or embedded in the soil layered limited by a 

substratum and also the propagation of vibrations in the vicinity of a vibrating foundation. In this 

study, the method has been applied to analyze the effect of some parameters on the dynamic 

response of the foundations (depth of the substratum, embedding, masses and shape of the 

foundation, soil heterogeneity and frequency). However, Sbartai (2015) have studied the dynamic 

response of two square foundations placed or embedded in soil layered limited by a substratum. 

Spryakos and Xu (2004) have developed a hybrid BEM-FEM and have conducted several studies 

for parametric analysis of soil-structure interaction.  

McKay (2009) used the reciprocity theorem based on the boundary integral element method 

(BIEM) to analyze the influence of soil-structure interaction on the seismic response of 
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foundations. However, Suarez et al. (2002) applied the BIEM to determine the seismic response of 

an L-shaped foundation.  

In addition, experimental work has been carried out by researchers in Japan to determine the 

effect of soil-structure interaction on the response of real structure Fujimori et al. (1992), Akino et 

al. (1996), Mizuhata et al. (1988), Watakabe et al. (1992), Imamura et al. (1992). 

Recently, Lee et al. (2012) have proposed a procedure that combines a consistent transmitting 

boundary with continued-fraction absorbing boundary conditions to compute the impedance 

functions and input motions of foundations in layered half-space. However, Kazakov (2012) 

proposed elastodynamic infinite elements with united shape functions (EIEUSF) to study its 

effectiveness in solving soil-structure interaction problems. 

In our study, the solution is derived from the BEM in the frequency domain with constant 

quadrilateral elements and the TLM is used to analyze the influence of soil-structure interaction on 

the response of seismic foundation. The results are presented as coefficients of movement and in 

terms of displacement as a function of dimensionless frequency, angle of incidence (vertically and 

horizontally) and embedding of foundation. This paper represents a continuation of the paper was 

previously published in Sbartai and Boumekik (2008) where the impedance functions have been 

well studied in details, but they will not be discussed in this article. 

 

 

2. Harmonic seismic response of the foundations 
 

2.1 Physical model and basic equations 
 
Thegeometry of the calculation model is shown in Fig. 1. Considering a 3-D rigid massless 

square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The soil is 

characterized by its density ρ, shear modulus µ, damping coefficient β and Poisson’s ratio ν. The 

foundation is subject to harmonic oblique-incident waves that are time-dependent: P, SV, SH and 

R. 

The movement of a not-specified-point “ζ” can be obtained from solving the wave equation 

0)( 2

,

2

,

22  ijjiSijjSP uuCuCC  ,                        (1) 

where, 

Cs, and Cp are the velocities of shear and compression waves and ω the angular frequency of 

excitation; ui 
is the component of the harmonic displacement-vector in the x-direction; uj,ij

 
is the 

partial derivative of the displacement field with respect to x and y and uj,ij is the second partial 

derivative of the displacement field with respect to y. 

The solution of Eq. (1) may be expressed by the following integral equation 

 
S

iijj dsTxGxu  ),(),,(),(                     (2) 

where, 

Gij denoting the Green’s functions at point i due to unit-harmonic load (vertical and horizontal) of 

at point j and Ti being a load (traction) distributed over an area of soil. 

If the medium is continuous the Eq. (2) is very difficult to assess. However, if the soil mass is 

discretized appropriately, this relationship can be made algebraic and displacement can be  
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Fig. 1 Geometry of a foundation subjected to harmonic seismic 

 

 

calculated. The key step of this study is to determine the impedance matrix linking the harmonic 

forces applied to the resulting harmonic displacement. With a continuous medium the 

determination of the impedance matrix is still very difficult due to the wave propagation problem 

and of the mixed-boundary conditions. However, if the medium is discretized vertically and 

horizontally then it is possible to making the problem algebraic by considering that the variation of 

interface displacement is a linear function. 

 
2.2 Discretization of the model 

 

The principle of horizontal and vertical discretization of soil mass is shown in Fig. 2. The 

principle of vertical discretization based on the division of every soil layer into a number of sub-

layers of height hj with similar physical characteristics. Each sublayer is assumed to be horizontal, 

viscoelastic, and isotropic, and characterized by constant of Lame λj, a shear modulus μi and a 

density ρj. The bedrock at depth Ht is considered infinitely rigid wherethe reflection of waves is 

assumed to be total and the displacements are null.  

Within a given sublayer, the displacement is assumed to be a linear function. This is true when 

the thickness of the sublayer is small in relation to the wavelength considered (in the order of 

λ/10). This method is comparable to the finite element method (FEM) in the sense that the 

movements within each sublayer are completely defined from the displacements in the middle of 

the interfaces. The interaction between the elements is done only through the nodes. The degrees 

of freedom of the soil mass are reduced to the degrees of freedom of the nodes.  

The stiffness matrix of soil mass is obtained in a similar manner to that obtained by the FEM. 

This technique has been developed by Lysmer and Waas (1972) and is known as the thin-layer 

method (TLM) and is used mainly for horizontal soil layers. This method has the advantage to 

making the problem algebraic and thus obtains the Green's functions by applying the BEM in the 

soil-foundation interface. For this reason a horizontal discretization of the interface soil-foundation 

is established. The horizontal discretization subdivides any horizontal interface by square elements 

of sections Sk. By seeking the simplicity of integration calculation and economy of computing 

time, the square elements are approximated by disc elements. If the units loads (along the direction 

x, y, z) are applied to disc j, the Green’s functions at the center of disc i can be determined. By 

successively applying these loads on all discs, the matrix of flexibility of soil at a given frequency  
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Fig. 2 The model of calculation 

 

 

ω can be formed.The discretized model to calculate the impedance functions of the foundation is  

presented in Fig. 2. In the discrete model, Eq. (2) is expressed in algebraic form as follows 

 



N

i S

iijj dsTGu
1

                             (3) 

 

2.3 Determination of Green's Functions by the TLM 
 

The Green's function for a layered stratum is obtained by an inversion of the thin-layer stiffness 

matrix using a spectral-decomposition procedure of Kausel and Peek (1982). The advantage of the 

thin-layer-stiffness matrix technique over the classical transfer-matrix technique for finite layers 

and the finite-layer-stiffness matrix technique of Kausel and Roesset (1981) is that the 

transcendental functions in the layered-stiffness matrix are linearized.  

In this work, the body (B) represents a layered stratum resting on a substratum base with n 

horizontal layer interfaces defined by z=z1, z2,...,zn and with layer j defined by zn<z< zn+1, as shown 

in Fig. 3. The medium of each layer n of thickness hn is assumed to be homogeneous, isotropic, 

and viscoelastic. For this body, the Green's function in frequency domain is obtained with help of 

the TLM method.  

According to the thin-layers theory of Lysmer and Waas (1972), displacements in each sub-

layer vary linearly from one plane to another and still continue in the relevant direction (x, y, z). 

Thus, the displacements in each sublayer are obtained by linear interpolation of nodal 
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displacements at the interface of the sublayer n as follows 

                             (4a)
 

     
  1)1()(  nnn VVzV                           (4b) 

     
  1)1()(  nnn WWzW                          (4c) 

where, 

 with (0≤η≤1), and, U
(n)

, V
(n)

 et W
(n)

 are the displacements along the x-axis, the y-

axis and the z-axis as functions of z in the layer j, and with U
n
, V

n
 et W

n
 which are their nodal 

values at the interface layer z=zn.  
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nl

j

ml

imn

ij
kk

a
G

2

1
22


,                                  (5) 

with 

 if  and  if .i, j = x, y, z ; k, kl: wave number; m: represents the 

interface where the load is applied and n: represents the interface where Green’s functions are 

calculated. 

The obtained Green’s functions are complex and constitute the starting point for the 

determination of the flexibility matrix of an arbitrary soil volume. However, considering the 

geometry of the foundation, a system of cartesian coordinates was adopted. The obtained U, V, and 

W Green’s functions are in fact the terms of the flexibility matrix of the soil. The determination of 

this flexibility matrix gives the impedance function of one or several foundations and the 

amplitudes of vibrations in the neighborhood of a foundation Sbartai and Boumekik (2008) and 

Sbartai (2015). 

Viscoelastic soil behavior can be easily introduced in the present formulation by simply 

replacing the elastic constants λ and G with their complex values 

     
)21()(*  iZ 

                                      
(6a) 

    )21()(*  iZ  ,                                    (6b) 

with β is the hysteretic damping coefficient. 

 

 

3. Calculation model 
 

The total displacement matrix of the soil is obtained by successive application of the unit loads 

on all elements of the discretized volume of foundation. The displacements in the soil are then 

expressed by  

     tGu                                  
(7) 

where, 

  1)1()(  nnn UUzU 

nh

Znz )( 


1a  

lk

k
a   
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Fig. 3 Geometry of soil layers (B) 

 

 

the vectors {u}
 
and {t}

 
are the nodal values of the amplitudes of displacements and tractions 

respectively at the interface soil-foundation; [G] is the flexibility matrix of the soil. 

When the foundation is in place, it requires different components of soil displacement 

consistent with rigid body motions. Compatibility of displacements at the contact area S between 

the soil and the rigid foundation leads to the matrix equation  

     Ru ,                                    (8) 

where, 

[R] is the transformation matrix 
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(9) 

and {Δ}={Δx, Δy, Δz, Φx, Φy, Φz} is the displacement vector with Δi (i=x,y,z) represents translations 

and Φi (i=x,y,z)
 
rotations (see Fig. 1). 

If we denote {P}
 
the vector of load applied to the foundation, the equilibrium between the 

vector of applied loads and the forces (tractions) distributed over the elements discretizing the 

volume of the foundation is expressed by the following equation 

     tRP t                                    
(10) 

Combining Eqs. (7), (8) and (10) we obtain the following equation 

         


RGRP
t 1 =   )(K .                     (11) 
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Where, 

ω is the circular frequency of vibration and [K(ω)]
 
is the dynamic-stiffness matrix. 

Considering the harmonic seismic waves P, SV, SH and R characterized by their incident angles 

(vertical and horizontal) θV and θH respectively (see in Fig. 1). The motion of the half-space due to 

these seismic waves can be expressed by the following equation 

     cyxiff HHeUu
/)sin.cos.(  

 ,                       (12) 

where, 

{U 
f
}={Ux

f
, Uy

f
, Uz

f
}

t
, is known as the vector of amplitudes of the soil, that depends on the z 

coordinate if we want to study the embedded foundations case. However, in the case of surface 

foundations (z=0), it is known as the vector of amplitudes of the free field; c is the apparent 

velocity of the incident waves having the form 
VV

c
cor

c
c

 coscos

21 

 

for P or S waves, 

respectively, and being equal to the R-wave. The explicit expressions of the vector {U 
f
} of waves 

SH, P, SV and R may be found in Wong and Luco (1986). 

The presence of a rigid foundation results a diffraction waves so that the resulting total 

displacement field {u} is expressed by the following equation  

     sf uuu  ,                                  (13) 

where, 

{u
s
}
 
is the scattered wave field that satisfies the equation of motion Eq. (7). Also, the total 

displacement field in the contact region between the foundation and the half space must be equal 

to the rigid body motion of the foundation. 

Substituting Eq. (8) into Eq. (13), written in terms of the scattered field leads to the force-

displacement relation 

      fs uRu  .                           (14) 

Substituting Eq. (7) into Eq. (14), written in terms of the traction forces 

          fuGRGt 11 
                        (15) 

Multiplying both sides of the Eq. (15) by the transpose of the transformation matrix 

                fttt
uGRRGRtR 11 

                  (16) 

The equilibrium between external forces and seismic forces and combining with Eqs. (10) and 

(11) yields the external forces can be as follows 

       fUKKP * ,                               (17) 

with [K
*
]
 
is the driving force matrix given by the following formula 

       cyxit HHeGRK
/)sin.cos.(1*   .                 (18) 

Eq. (14) can be replaced by the alternative form 

       fUSPC * ,                                (19) 
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where,  

[C]=[K]
-1

 is the dynamic compliance matrix and [S
*
]
 
is the input motion matrix given by the 

following formula 

    ** KCS 
                                    

(20) 

When the rigid foundation is acted upon by seismic waves only, the external forces are null 

({P}=0), and the seismic response of the foundation is obtained from Eq. (17) or Eq. (19) by the 

following expression 

    fUS* ,                                     (21) 

where 
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(22) 

When the mass of the foundation is not null, one replace simply [K]
 
by [K]−ω

2
[M]

 
in the above 

equations, where [M] is the mass matrix of the foundation. 

 

 
4. Results 
 

4.1 Validation of the method 
 
The accuracy of the method BEM-TLM used to study the 3D-response of foundations subject 

to plane-harmonic waves with variable angles of incidence and vibration frequency ao in this 

section is validated through comparisons with results obtained by Luco and Wong (1977), Qian 

and Beskos (1996), for a semi-infinite ground. A parametric study was conducted to define the 

parameters of the calculation model. The influence of the discretization of the soil-foundation 

interface was studied. The thickness of a sublayer h must be small enough that the discrete model 

can transmit waves in an appropriate manner and without numerical distortion. This size depends 

on the frequencies involved and the velocity of wave propagation. The frequency of loading and 

velocity of wave propagation affect the precision of the numerical solution. Kausel and Peek 

(1982) showed that the thickness of sub-layer must be smaller than a quarter of the wave length λ. 

Consequently, the maximum dimensionless frequency must not exceed the number of sub-layer N 

divided by four. 

Considering a rigid, massless and square foundation (Bx=By=2a) placed to the surface of a half-

space with a Poisson’s ratio ν=1/3 and subjected to harmonic waves P, SV, and SH (θH=90° and 

θV=45°). Fig. 4 shows the variation of the real and the imaginary part of coefficient Sxx movement 

based versus the dimensionless frequency 
s

C
a

o
a . . The results obtained by the proposed  
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Fig. 4 The coefficient of movement Sxx a square 

foundation (θH=0°, θV=45°and cs/c=0.70711) 

Fig. 5 The response of a square foundation under 

the Rayleigh wave cR/c=0.9325 

 

 
method are in good agreement with those obtained by the method used by Qian and Beskos 

(1996).  

Considering the same foundation subjected to a Rayleigh wave where the angle of incidence is 

horizontal (θH=0) and the corresponding velocity taken is equal to cR= 0.9325c for a Poisson’s ratio 

v=1/3. Fig. 5 shows the real and the imaginary part of dimensionless displacement x/HR versus 

dimensionless frequency ao.  

The results of this study were compared with those of Qian and Beskos (1996) and Luco and 

Wong (1977). The results obtained are in good agreement with those of Qian and Beskos (1996) 

and Luco and Wong (1977). However, a difference is present only for dimensionless frequencies ao 

higher than 2.5. 

 

4.2 Parametric study and discussion 
 
4.2.1 Surface foundation on homogeneous soil 
In this section, a parametric analysis was performed by studying a square foundation of the side 

(BX=2a) subjected to plane-harmonic waves with variable angles of incidence and vibration 

frequency ao is presented (see in Fig. 1). The results are presented in terms of coefficients of 

motion as functions of the dimensionless frequency ao. The soil is characterized by the height 

Ht=10 m of the bedrock to simulate a semi-infinite (To simulate a semi-infinite medium Ht/r must 

be superior or equal to 20), its Poisson’s ratio ν=1/3, its coefficient of the hysteretic damping 

β=0.05, its shear modulus µ=1, and its density ρ=1.The terms of coefficient of motion are 

presented in the Figs. 6-10 for the shear S-wave , with an horizontal angle of incidence θH =90° 

and vertical angle of incidence θV =0°, 30°, 45°, 60° and 90°. 

 

Coefficients of movements in translation 
For an angle of incidence θv=90°, the coefficients of translational movement Sxx, Syy, Szz, are 

equal to unity for all frequencies. Typically this value is adopted in the study of a structure 

subjected to seismic loading. This value induces oversized foundations. Figs. 6 and 7 show that for 

other angles these coefficients vary with the dimensionless frequency. The amplitude of the  
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Fig. 6 The coefficient of movement Sxx (θH=90°) Fig. 7 The coefficient of movement Szz (θH=90°) 

 

  

Fig. 8 The coefficient of movement Ryx (θH=90°) Fig. 9 The coefficient of motion Rxy (θH=90°) 

 

 

response also depends on the vertical angle of incidence. 

The results show that the real parts of Sxx and Szz have a higher magnitude than the value of the 

imaginary parts. With low frequencies, the response is in phase with the free-field motion. These 

coefficients filter low frequencies and therefore behave as low-pass filters. 

 

Coefficients of movements in rotation and torsion 
Figs. 8 and 9 present the relative coefficients of the rotational movement Rxy and Ryx to the x-

axis and y-axis respectively. For an angle of incidence θv=90°, the coefficients of rotational 

movement (Rxy, and Ryx) are zero and maximum for θv=0°. Fig. 10 shows the relative coefficient of 

torsion Szx to the axis of z as a function of dimensionless frequency and the vertical angle of 

incidence θv. The results obtained show that the value of the imaginary part of Szx is dominant, 

which shows a large damping. Thus, the answer is out of step with the free-field motion in the 

center of the foundation. 

Figs. 8, 9, and 10 present these coefficients for other angles of incidence (0°, 30°, 45°, and 60°) 

and show that they vary depending on the dimensionless frequency. The amplitude of the response 

also depends on the vertical angle of incidence. The coefficient of movement of rotation and 

torsion filters high frequencies and therefore behaves as high-pass filters. 

The matrix coefficients of movement shown in Figs. 7-10 are valid only for S waves with a  
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Fig. 10 Coefficient of movement Szx (θH=90°) 

 
 

 

Fig. 11 Model of calculation of an embedded foundation subjected to harmonic seismic waves 

 

 

horizontal angle of incidence H =90°. These coefficients can be determined for other incidence 

angles and other types of waves. 

 
4.2.2 Embedded foundation on homogeneous soil 
To present results that are easier to understand visually, the driving-force vectors are converted 
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of results are given. The response of the massless foundation to incident body waves of type SH, P 

and SV are considered for a square foundation dimension Bx=2a embedded in a homogeneous 

viscoelastic soil to a depth d (see in Fig. 11). To simplify the presentation of this paper, only one 

direction of wave propagation is considered with the vertical incident angle v=45. 

In this section, the influence of the embedding ratio (t=d/a=0, 0.3, 0.6) on the seismic response 

of the foundation is studied. The results are presented in terms of displacements, rotations, and 

torsion. 

 

Compression wave P 
Figs. 12-14 show the response of a massless foundation to an incident P-wave. The wave 

travels in the x-direction with its particle motion in the z and x-directions. One angle of incidence 

is considered v=45°, where is measured with respect to the x-axis. The wavelength of the incident 

P-wave is twice as long as that of the incident S-waves; therefore, the kinematic interaction is less 

prominent. In general for an isotropic and homogenous medium, the P-wave induces displacement 

along the x and z-axes and rotation around the y-axis. Figs. 12-14 show the variation of 

displacement and rotation as a function of dimensionless frequency and the influence of 

embedding coefficient t on the motion of foundation. 

The displacements (Δx, Δz) and rotation (ϕy) are strongly attenuated due to the increase of 

embedded foundation. Another, the horizontal displacement Δx is more affected by the presence of 

embedding than the vertical displacement Δz and rotation ϕy. The imaginary part of the two modes 

of translation (vertical and horizontal) is not affected by the increase of embedding. In contrast, the 

imaginary part of the rotation is strongly affected by the presence of embedding. 

 

Shear wave SV 
Figs. 15-17 show the response of a massless foundation subjected to an incident SV-wave. The 

wave travels in the x-direction with its particle motion in the z and x-directions. For a vertical 

incident angle v=45°, the free-field motion for the SV-wave in the direction of propagation is 

zero. Similar to the P-wave case, only the horizontal, vertical, and rocking components are excited. 

The variation of displacement and rotation as a function of frequency, and show the influence of 

embedding on the motion of the foundation is presented. Fig. 15 shows that the displacement Δx 

 

 

  
Fig. 12 Horizontal input motion Δx due to incident 

P-waves (v=45°, H=0°). 

Fig. 13 Vertical input motion Δz due to incident P-

waves (v=45°, H=0°) 
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Fig. 14 Rocking input motion ϕy due to incident P-

waves (v=45°, H=0°) 

Fig. 15 Horizontal input motion Δx due to incident 

SV-waves (v=45°, H=0°) 

 

  
Fig. 16 Vertical input motion Δx due to incident SV-

waves (v=45°, H =0°) 

Fig. 17 Rocking input motion ϕy due to incident SV-

waves (v=45°, H=0°) 

 

 

is zero for a surface foundation (t=0) and becomes non-zero for relative embedding (t=0.3 and 0.6) 

with an imaginary part that is strongly affected, indicating that the foundation does not follow the 

free-field motion. Moreover the horizontal displacement Δx is more affected by the presence of 

embedding than the vertical displacement Δz and the rotation ϕy especially for low frequencies. The 

presence of the embedded foundation changes the sign of vertical displacement and rotation after 

the frequency ao=4. 

 

Shear wave SH 
The response of the square, massless foundation to a SH-wave is presented in Figs. 18 and 19, 

with a horizontal angle of incidence H=90°.  

The incident wave travels in the y-direction, therefore the particle motion of the wave is in the 

x-direction. The shear wave causes displacement and torsion. Figs. 18 and 19 show the embedment 

influence on displacement and torsion. 

For dimensionless frequencies lower than 3, the horizontal displacement Δx is not affected by 

increasing the relative embedding. This is not the case for torsion ϕz, which is strongly affected by 

an increase in the embedding. In contrast, for frequencies superior to 3, the presence of the  
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Fig. 18 Horizontal input motion Δx due to incident 

SH-waves (v=45°, H=90°) 

Fig. 19 Torsion-input motion ϕz due to incident SH-

waves (v=45°, H=90°) 

 

 

foundation embedding causes a change signs for Δx and ϕz. 

In conclusion, the Figs. 12-19 show that the horizontal displacement caused by P-wave is more 

attenuated than the displacement caused by SH and SV-waves. However, the rotation caused by 

SV-wave is more attenuated than the rotation caused by P-wave. 

 

 

5. Conclusions 
 

The interaction of a seismic square-rigid foundation placed and embedded in a homogeneous 

viscoelastic soil and subjected to obliquely incident harmonic P, SV, and SH-waves was 

implemented. A simplified BEM-TLM was developed and used to calculate the foundation-input 

motion under different travelling seismic waves. The solution was formulated by the boundary-

element method in the frequency domain using the formalism of Green’s functions. Constant 

quadrilateral elements were used to study the seismic response of a foundation. The efficiency of 

this technique was confirmed by comparison with previous studies. This remarkably simple 

technique was concluded to be both highly effective and economical to determine input motions 

for rigid foundations of arbitrary geometry. The originality of the method lies first in the 

insignificance of the number of elements used in the discretization of the model, and second, in the 

ability to simulate an embedding foundation.   

This study shows the importance of the inclination of incident waves on the behavior of a 

foundation. The results indicate that: 

• The response of a foundation subject to non-vertical incident waves is different from that of a 

foundation subject to vertical-incident waves. 

• Non-vertical incident waves generate the torsion, translation, and rotation. Vertical incident 

waves cause the translation. 

• A vertical angle of incidence equal to V =0° leads to an oversizing of the foundations. 

• Coefficients of translational movement filter low frequencies while coefficients of rotation 

filter at high frequencies. 

• Embedment of foundation affects displacement, rotation, and torsion in more specific ways 
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and acts as a favorable factor in the seismic response of foundations. The movement of the 

foundation is strongly attenuated for relatively deep embedded, especially at low frequencies. 
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