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Abstract.  This paper presents an elastic/plastic model that neglects strain hardening during loading, but 

accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the 

actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior 

of this kind of materials have been restricted to a class of boundary value problems in which the state of 

stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the 

yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to 

be used to describe reversed yielding. The new model generalizes this approach on plane stress problems 

assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to 

describe reversed yielding in thin hollow discs subject to external pressure. 
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1. Introduction 
 

In the case of loading-unloading processes the elastic range is often reduced with an 

accompanying Bauschinger effect. A comprehensive overview of theories that accounts for the 

Bauschinger effect has been given in Rees (1981). The present paper is devoted to materials which 

show little or no forward hardening (Franklin and Morrison 1960, Milligan et al. 1966, Findley 

and Reed 1983, Rees 2006). Most previous solutions for such materials are restricted to boundary 

value problems in which the state of stress in the plastic region is completely controlled by the 

yield stress in tension or torsion (Rees 2007, 2009, Alexandrov and Hwang, 2011, Gui et al. 2015). 

In this case, there is no need to account for the effect of forward plastic strain on the yield 

criterion. For a class of boundary value problems, Tresca’s yield criterion can be modified to take 

into account both perfectly plastic material behavior at loading and the Bauschinger effect (Chen, 

1986, Alexandrov et al. 2016). The state of stress in such boundary value problems corresponds to  
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Here σ0 is the tensile yield stress, a material constant. The solid line in Fig. 2 corresponds to Eq. 
(4). According to Prager law (Prager 1956) the yield criterion is 

 
     2 2 2 2

0

3

2 r r z zs s s              (5) 

where 

 r rs    , s    , z zs       ,    3 3r z r             (6) 

and 

 
, ,p p p

r r z zC C C           (7) 

where , ,p p p
r z    are the plastic strains and C is a material constant. Substituting Eqs. (6) and (7) 

into Eq. (5) leads to 

 
     2 2 2 2 2 2

0

3
2 2

2r r r z r z r r z                                .  (8) 

Since the material is plastically incompressible, 0p p p
r z     . Then, it follows from Eq. (7) 

that αr+αθ+αz=0. Using this equation it is possible to transform Eq. (8) to 

 
2 2 2

0r rT T T T       (9) 

where 

 ,r r r z zT T             .            (10) 

The flow rule associated with the von Mises yield criterion is 

 
, , .p p p

r r z zs s s                  (11) 

Here p
r , p

  and p
z  are the plastic strain rates and  is a non-negative multiplier. The flow 

rule associated with the yield criterion (5) is 

 
     1 1 1, ,p p p

r r r z z zs s s                   (12) 

where λ1 is a non-negative multiplier. 
 The only nontrivial equilibrium equation reduces to 

 
0.rr

r r
  

 


  (13)  

 It is convenient to introduce the following dimensionless quantities 

  

0 0 0

0 0 0

, , , , .
a pr C

a k c p
b b E E





       (14) 

Also, the material model is rate-independent. Therefore, it is possible to replace the strain rates 
with strain derivatives with respect to any time-like parameter, q. In particular, denote 

  
, , .

pp p
p p pr z

r zq q q



   
 

  
  

  (15) 
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Then, Eqs. (11) and (12) can be rewritten as 

  2 2 2, ,p p p
r r z zs s s           (16) 

and 

     3 3 3, ,p p p
r r r z z zs s s                ,                          (17) 

respectively. Here 2 dq dt   and 1 3 dq dt   where t is the time. 
 
 
3. Loading 
 

The solution at loading is purely analytic (Alexandrov 2015). For completeness, this solution is 
briefly discussed in this section. 
  

3.1 Elastic solution 
 

The general elastic solution is well known (see, for example, Hill 1950). Using Eq. (14) this 
solution is represented as 

  

       

2 2
0 0

2 2

, ,

1 1
1 , 1 , 2 .

r

r z

A A
B B

A A
B B B

k k k






   

    
 

    

 
        

  (18) 

Here A and B are constants of integration. In the case of purely elastic solution these constants 
are found from the boundary conditions (1) and (2). Substituting these boundary conditions into 
Eq. (18) and using Eq. (14) lead to A=Ae=pa2(1−a2)-1 and B=Be=−p(1−a2)-1. The distribution of 
stresses and strains in the purely elastic disc follows from Eq. (18) in which A and B should be 
replaced with Ae and Be, respectively. Substituting this stress solution into Eq. (4) shows that the 
plastic region starts to develop from the hole at p=pe=(1−a2)/2. In what follows, it is assumed that 
p>pe. 
 

3.2 Elastic/plastic solution for stress 
 

At pp>p>pe the disc consists of two regions, elastic and plastic. Here pp is the value of p at 
which the entire disc becomes plastic. This value should be found from the elastic/plastic solution. 
Let ρc be the dimensionless radius of the elastic/plastic boundary. Consider the plastic region, 
a≤ρ≤ρc. In this region, the distribution of stresses is found from Eqs. (4) and (13). In particular, Eq. 
(4) is satisfied by the following substitution 

  0 0

2sin sin
, cos .

3 3
r    

 
                  (19) 

Eqs. (13) and (19) combine to give 
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2 cos 3 cos sin .

   



 


           (20) 

The boundary condition to this equation follows from Eqs. (1) and (19). In particular, ψ=0 or 
ψ=π at r=a0. It is evident that σθ<0 at r=a0. Therefore, using Eq. (14) the boundary condition to Eq. 
(20) can be represented as ψ=0 for ρ=a. The solution of Eq. (20) satisfying this boundary condition 
is 

  
 
3 3

exp
22 sin 3

a 
 

 
     

.  (21) 

Eqs. (19) and (21) supply the radial distribution of the radial and circumferential stresses in the 
plastic region in parametric form with ψ being the parameter. Let ψc be the value of ψ at the 
elastic/plastic boundary. Then, it follows from Eq. (21) that  

  
 

3 3
exp

22 sin 3
c c

c

a 
 

 
     

.  (22) 

The stress solution given in Eq. (18) is valid in the elastic region, ρc≤ρ≤1. However, A≠Ae and 
B≠Be. This stress solution must satisfy the boundary condition (2). Therefore, it follows from Eqs. 
(14) and (18) that 

  A B p     (23) 

and 

  
2 2

0 0

1 1
1 , 1r A p A p 

   
   

         
   

  (24) 

in the elastic region. Both the radial and circumferential stresses should be continuous across the 
elastic/plastic boundary (Hill 1950). Therefore, it follows from Eqs. (19) and (24) that 

  
2 2

2sin sin1 1
1 , cos 1 .

3 3
c c

c
c c

A p A p
 


 

   
         

   
  (25) 

It is convenient to put q=ψc in Eq. (15). Eqs. (22) and (25) determine p and A as functions of ψc. 
In particular 

  
   

2 2

exp 3 , sin exp 3
2 6 2c c c

a a
A p

       
 

.  (26)  

Substituting Eq. (26) into Eq. (24) gives 

 
   

2 2

2 2
0 0

exp 3 sin , exp 3 sin
2 6 2 6

r
c c c c

a a     
   

            
   

              (27) 

in the elastic region. The entire disc is plastic when ρc=1. Let ψp be the value of ψc when ρc=1. The 
equation for ψp follows from Eq. (22) in the form 
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   

23
exp 3 1

2sin 3
p

p

a 
 




.  (28) 

This equation should be solved numerically. Then, the value of pp is found from Eq. (26) as 

  
 

2

sin exp 3
6 2p p p

a
p

      
 

 . (29) 

In what follows, it is assumed that pp>p>pe. 
 

3.3 Elastic/plastic solution for strain 
 

The distribution of strains in the elastic region is determined from Eqs. (3), (14) and (27) as 

  

     

     

2

2

2

2

1
exp 3 1 sin ,

2 6

1
exp 3 1 sin ,

2 6

2 sin .
6

r
c c

c c

z
c

a

k

a

k

k



   


   


  

      
 

       
 

   
 

  (30) 

Substituting Eq. (19) into Eq. (3) and using Eq. (14) yield  

   2 sin 1 2
cos , sin cos , 2 sin

63 3

e e e
r z

k k k
          

          
 

           (31) 

in the plastic region. Eqs. (31) and (21) supply the radial distribution of the elastic strains in the 
plastic region in parametric form with ψ being the parameter. Eliminating sr, sθ and sz in Eq. (16) 
by means of Eqs. (6) and (19) gives 

  
2 2 2

2 2 2
sin , cos , sin

3 6 3 3 6
p p p

r z
                     

   
.  

Eliminating λ2 between these equations results in 

  

   sin 6 sin 6
, .

cos cos
p p p p

r z 

   
   

 
 

     (32) 

It is seen from Eq. (21) that ψ is a function only ρ. Therefore, Eq. (32) can be immediately 
integrated with respect to ψc to give 

  

   sin 6 sin 6
, .

cos cos
p p p p

r z 

   
   

 
 

     (33) 

Also, since ψ is independent of ψc then the elastic strains in the plastic region given by Eq. (31) 
are independent of the time. Therefore, the elastic strain rates vanish in the plastic region. In this 
case the equation of strain rate compatibility is equivalent to 
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p
p p

r





  



 


.  

Replacing in this equation differentiation with respect to ρ with differentiation with respect to ψ  
by means of Eq. (20) and eliminating p

r  by means of Eq. (32) lead to 

  
3 .

p
p








 


  (34) 

The total circumferential strain rate should be continuous across the elastic/plastic boundary. 
Therefore 

  

e
p e

c


 

 



 


  (35) 

at ψ=ψc. It is understood here that p
  is calculated on the plastic side of the elastic/plastic 

boundary and e e
c       on the elastic side of the elastic/plastic boundary. It follows from Eq.  

(30) that 

  

     
2

2

3 1
exp 3 1 cos .

2 6

e

c c

a

k
    


       

 
 

Then, the value of e
  on the elastic side of the elastic/plastic boundary is given by 

  

     
2

2

3 1
exp 3 1 cos .

2 6

e

c c
c

a

k
    


       

 
  (36) 

Eliminating here ρc by means of Eq. (22) and substituting the resulting expression into Eq. (35) 
supply the boundary condition to Eq. (34) in the form 

  
2 sin .

3
p

ck
    

 
  

for ψ=ψc. The solution of Eq. (34) satisfying this boundary condition is 

  
 2sin exp 3 .

3

p

c ck
            

  (37) 

Let ψm be the value of ψc at ρc=ρm. Then, it follows from Eq. (22) that the equation for ψm is 

  
   

2
2 3

exp 3
2sin 3m m

m

a 
 




.  (38) 

This equation should be solved numerically. In order to find the radial distribution of p
  at 

ρc=ρm, it is necessary to integrate Eq. (37) with respect to ψc taking into account that 0p
   at  

ψ=ψc. As a result 

  
 cos cos exp 3 .

p

m mk
          (39) 
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Substituting Eq. (39) into Eq. (33) yields 

  

    
    

sin 6
cos cos exp 3 ,

cos

sin 6
cos cos exp 3 .

cos

p
r

m m

p
z

m m

k

k

     


     


     

      

  (40) 

Eqs. (39), (40) and (21) supply the radial distribution of the plastic strains in the plastic region 
in parametric form with ψ being the parameter. The distribution of the total strains can be found by  
substituting Eqs. (31), (39) and (40) into the equations e p

r r r    , e p
      , e p

z z z    . 
 
 
4. Unloading 
 

Using Eqs. (7), (10), (39) and (40) it is possible to find 

  

  
    

3 tan cos cos exp 3 ,

sin 3
3 cos cos exp 3 .

cos

r r m m

m m

T Ck

T Ck 

     

 
    



     
      

  (41)  

Substituting Eq. (41) into Eq. (9) leads to the yield criterion in reversed yielding. It is evident 
that this criterion depends on ρ and the value of the elastic/plastic radius at the end of loading. The 
stresses involved in Eq. (41) are determined as 

  
,f f

r r r            .  (42) 

Here f
r  and f

  are the radial and circumferential stresses, respectively, at the end of loading.  
These stresses have been found in the previous section. Δσr and Δσθ are the increments of the 
radial and circumferential stresses, respectively, in course of the process of unloading. 
Analogously, the total strains at the end of unloading are determined as 

  
, , .f f f

r r r z z z                 (43) 

Here f
r , f

  and f
z  are the total radial, circumferential and axial strains, respectively, at the  

end of loading. These strains have been found in the previous section. Δεr, Δεθ and Δεz are the 
increments of the radial, circumferential and axial strains, respectively, in course of the process of 
unloading. 
 The boundary conditions imposed on the increments of the radial stress are 

  0r    (44) 

for ρ=a and 

  0r mp     (45) 

for ρ=1. Here pm is the value of p at the end of loading. It is seen from Eq. (26) that 
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 

2

sin exp 3
6 2m m m

a
p

      
 

.  (46) 

Using the solution of Eq. (38) it is possible to connect pm and ρm. 
 

4.1 Elastic solution 
 

In the case of purely elastic unloading the solution for the increment of stresses and strains has 
the form of Eq. (18). In particular 

 

       

1 1
1 12 2

0 0

1 1
1 1 12 2

, ,

1 1
1 , 1 , 2 .

r

r z

A A
B B

A A
B B B

k k k






   

    
 


    

  
        

            (47) 

Here A1 and B1 are new constants of integration. Using the boundary conditions (44) and (45) 
these constants are determined as 

  

2

1 1 1 12 2
,

1 1
e em ma p p

A A B B
a a

   
 

.  (48) 

Substituting Eq. (48) into Eq. (47) gives 

  
   

2 2

2 22 2
0 0

1 , 1 .
1 1

m mr p pa a

a a


   
   

      
    

 (49) 

It is natural to assume that the reversed plastic region starts to develop at ρ=a. It is seen from 
Eqs. (1) and (44) that σr=0 at ρ=a at any stage of the process of deformation and from Eq. (21) that 
ψ=0 at ρ=a. Therefore, it follows from Eq. (41) that Tr=0 at ρ=a. It is seen from Eqs. (1) and (4)  
that σθ=σ0 at ρ=a at any stage of the process of elastic/plastic loading. Therefore, 0

f
   in Eq.  

(42). Then, using Eqs. (19), (46) and (49) it is possible to transform  Eq. (9) at ρ=a to  

  
     

2
23

sin exp 3 1 1 cos exp 3 .
6 2 4rp rp rp rp

a
a ck

               
  (50) 

Here ψrp is the maximum value of ψm at which unloading is purely elastic. Eq. (50) should be 
solved for ψrp numerically. Then, the corresponding value of prp can be found from Eq. (46). No 
reversed yielding occurs if pm≤prp.  
 

4.2 Elastic/plastic solution for stress 
 

Assume that pm>prp 
and that reversed plasticity occurs in the region a≤ρ≤ρrc. Eq. (9) is valid in 

this region. This equation is satisfied by the following substitution 

0 0

2sin sin
, cos .

3 3
r TT   

 
                                                  (51) 

Then, the radial and circumferential stresses are found from Eq. (41) using Eq. (14) as 
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  
    

0

0

2sin
3 tan cos cos exp 3 ,

3

sin 3sin
cos 3 cos cos exp 3 .

cos3

r
m m

m m

c

c

      


       
 

     

       

             (52) 

Using Eqs. (14) and (20) it is possible to rewrite Eq. (13) as 

  
 3 cos sin

0
2cos

r
r 

    
 

 
  


.  (53) 

The quantity φ may be regarded as a function of ψ. Then, substituting Eq. (52) into Eq. (53) 
yields the following equation for φ  

  
 
     

sin 3 cos 3
cos cos tan 3 tan exp 3 0.

23 tan
m m

c      
 

        
   (54) 

It is seen from Eqs. (1) and (44) that σr=0 at ρ=a at any stage of unloading. Moreover, ψ=0 at 
ρ=a. Therefore, it follows from Eq. (52) that the boundary condition to Eq. (54) is 

  0   (55) 

for ψ=0. It is seen from this boundary condition and the structure of Eq. (54) that φ is a function 
only ψ (or ρ) and is independent of q. Eq. (54) should be solved numerically. Then, the stress field 
in the region a≤ρ≤ρm is determined from Eq. (52). In particular 

  

  
    

0

0

2sin
3 tan cos cos exp 3 ,

3

sin 3sin
cos 3 cos cos exp 3 .

cos3

rc c
rc rc m m rc

rcc c
c rc m m rc

rc

c

c

 
    


  

    
 

     

       

  (56) 

Here σrc is the value of the radial stress, σθc is the value of the circumferential stress and φc is 
the value of φ at ψ=ψrc (or ρ=ρrc). The following relation is immediate from Eq. (21) 

  
 

3 3
exp

22 sin 3
rc rc

rc

a 
 

 
     

.  (57) 

The increment of the radial and circumferential stresses at ρ=ρrc is found Eqs. (19) and (56) as 

  
0 0 0 0

2sin sin
, cos .

3 3
rc rc

rc rc c rcr
rc

 

   

     
   

 


       (58) 

Unloading is elastic and Eq. (47) is valid in the region ρrc≤ρ≤1. Of course, A1 and B1 are not 
given by Eq. (48). Substituting Eq. (47) into Eq. (45) yields B1=pm−A1. Then 

  1 12 2
0 0

1 1
1 , 1r

m mp A p A
   

   
        

   
.  (59) 
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The quantities Δσr and Δσθ should be continuous across the surface ρ=ρcr. Therefore, it follows 
from Eqs. (58) and (59) that 

  

1 2
0

1 2
0

2sin 1
1 0,

3

sin 1
cos 1 0.

3

rc rc
m

rc

c rc
rc m

rc

p A

p A

 
 

 


 

 
     

 
 

      
 

  (60) 

Using Eqs. (56) and (57) it is possible to eliminate σrc, σθc and ρrc in Eq. (60). The resulting 
system of equations involves two unknowns, A1 and ψrc. This system should be solved 
numerically. Then, the distribution of the residual radial and circumferential stresses is determined 
from Eqs. (19), (21), (42), and (59) in the region ρrc≤ρ≤ρm and from Eqs. (27), (42), and (59) in the 
region ρm≤ρ≤1. The distribution in the region ρrc≤ρ≤ρm is in parametric form with ψ being the 
parameter. 
 

4.3 Elastic/plastic solution for strain 
 

Since A1 and B1 have been determined in Section 4.2, the increment of strains in the region 
ρrc≤ρ≤1 is immediately found from Eq. (47). The distribution of the residual strains follows from 
Eqs. (30), (43) and (47) in the region ρm≤ρ≤1 and from Eqs. (21), (31), (39), (40), (43), and (47) in 
the region ρrc≤ρ≤ρm. The distribution in the region ρrc≤ρ≤ρm is in parametric form with ψ being the 
parameter. In Eq. (30) it is necessary to replace ψc with ψm.  

It remains to find the residual strains in the region a≤ρ≤ρrc. In this region, the increment of 
strains consists of two portions, elastic and plastic. The elastic portion is found by substituting the 
stresses from Eqs. (19) and (52) into Hooke’s law. As a result 

  

 

    

 

    

2 sin sin
sin sin cos cos

3 3

sin 3
3 tan cos cos exp 3 ,

cos

sin sin 2
cos cos sin sin

3 3

sin 3
3 tan cos cos exp 3 ,

cos

2 sin
6

e
r

m m

e

m m

e
z

k

c

k

c

k



      

 
     



      

 
     



  

  
      

 
          
 

     

          
   



    

sin
6

3
1 3 tan cos cos exp 3

2 m mc



     

            

    

 (61) 

Using Eqs. (10) and (51) it is possible to transform Eq. (17) to 

     3 0 3 0 3 02
3sin cos , cos , 3sin cos .

3 3 3
p p p

r z
     

               
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Eliminating λ3 between these equations leads to 

  
   3sin cos 3sin cos

, .
2cos 2cos

p p p p
r z 

   
   

 

 
     (62) 

It has been shown in Section 4.2 that φ is independent of q. Therefore, Eq. (62) can be 
immediately integrated with respect to q to give 

  
   3sin cos 3sin cos

, .
2cos 2cos

p p p p
r z 

   
   

 

 
         (63) 

The equation of strain compatibility is 

  
 

r





  


 

   


.  (64) 

Using the equations e p
r r r        and e p

         and eliminating p
r  by means of  

Eq. (63) it is possible to rewrite Eq. (64) as 

  
     3 sin 3 cos 3sin cos

.
2cos 2cos

e e
r


 

   
   

  

  
     


  

Replacing differentiation with respect to ρ with differentiation with respect to   by means of 
Eq. (20) gives 

  

   
 

 
 

3 sin 3 cos cos

3 cos sin cos

3 sin cos2cos
.

2cos3 cos sin

e e
r






  


   

   
 

 
  

 

 
   
   

  (65) 

Using Eq. (61) the last term of Eq. (65) can be represented as a function of ψ and φ. Moreover, 
the dependence of φ on ψ is known from the solution to Eq. (54). Therefore, Eq. (65) is a linear  
ordinary differential equation with respect to  . Its solution can be written in terms of ordinary 
integrals. The boundary condition to Eq. (65) follows from the condition e

      at rc  .  
Then, using Eq. (61)  

  

 

    

sin sin 2
cos cos sin sin

3 3

sin 3
3 tan cos cos exp 3

cos

c rc
c rc c rc

rc
rc rc m m rc

rc

k

c

      

 
     



 
     

          

 (66) 

for ψ=ψrc. Once Eq. (65) satisfying the boundary condition (66) has been solved, Δεr and Δεz are 

found by means of the equations e p
r r r      , e p

        , e p
z z z       and Eqs.  
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Bauschinger effect. The model is restricted to plane stress problems. However, its generalization 
on three-dimensional problems is straightforward.  

The model has been adopted to calculate the distribution of residual stresses and strains in a 
thin hollow disc subject to external pressure. In particular, the effect of the parameter C involved 
in Eq. (7) on these distributions is illustrated in Figs. 3 to 7. Note that c shown in the figures is 
proportional to C, as follows from Eq. (14). 

The solution found is semi-analytic. In particular, a numerical technique is only necessary to 
solve transcendental equations, such as, for example, Eq. (38) for ψm if ρm is given. Therefore, the 
solution may serve as a benchmark problem to verify the accuracy of numerical codes.  
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