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Abstract. This paper presents an elastic/plastic model that neglects strain hardening during loading, but
accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the
actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior
of this kind of materials have been restricted to a class of boundary value problems in which the state of
stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the
yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to
be used to describe reversed yielding. The new model generalizes this approach on plane stress problems
assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to
describe reversed yielding in thin hollow discs subject to external pressure.
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1. Introduction

In the case of loading-unloading processes the elastic range is often reduced with an
accompanying Bauschinger effect. A comprehensive overview of theories that accounts for the
Bauschinger effect has been given in Rees (1981). The present paper is devoted to materials which
show little or no forward hardening (Franklin and Morrison 1960, Milligan et al. 1966, Findley
and Reed 1983, Rees 2006). Most previous solutions for such materials are restricted to boundary
value problems in which the state of stress in the plastic region is completely controlled by the
yield stress in tension or torsion (Rees 2007, 2009, Alexandrov and Hwang, 2011, Gui et al. 2015).
In this case, there is no need to account for the effect of forward plastic strain on the yield
criterion. For a class of boundary value problems, Tresca’s yield criterion can be modified to take
into account both perfectly plastic material behavior at loading and the Bauschinger effect (Chen,
1986, Alexandrov et al. 2016). The state of stress in such boundary value problems corresponds to
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Fig. 1 Disc under external pressure-notation

one face of the yield surface at loading and the opposite face in reversed yielding. Therefore, in
fact, the state of stress in the plastic region is completely controlled by the yield stress as in the
aforementioned works. The approach developed in Chen (1986) and Alexandrov et al. (2016) is
not applicable to smooth yield surfaces. The model proposed in the present paper generalizes this
approach. In particular, it combines the von Mises yield criterion with a constant yield stress at the
stage of loading and Prager’s law (Prager 1956) at the stage of reversed yielding. The model is
restricted to plane stress problems.

The model proposed is used to describe reversed yielding in thin hollow discs subject to
external pressure. This is one of the classical problems of plasticity. A comprehensive overview of
available solutions of this problem is provided in Cohen et al. (2009). A mathematical advantage
of the problem under consideration, as compared to somehow a similar boundary value problem
for thin hollow discs subject to internal pressure, is that the elastic strain rates vanish in the plastic
region. Therefore, the solutions based on flow and deformation theories of plasticity coincide. The
solution is semi-analytic. A numerical technique is only necessary to solve transcendental
equations.

2. Statement of the problem

Consider a thin hollow disc of initial yield stress gy, Poisson’s ratio v, Young’s modulus F,
outer radius by, and inner radius @, subject to uniform pressure p, over its outer radius (Fig. 1).

The disc has no stress at pp=0. Strains are supposed to be infinitesimal. The state of stress is
two dimensional (6,=0) in a cylindrical coordinate system (r,6,z) with its z axis coinciding with the
axis of symmetry of the disc. Here o, is the axial stress (o, and oy will stand for the radial and
circumferential stresses, respectively). The boundary value problem is axisymmetric and its
solution is independent of §. The circumferential displacement vanishes everywhere. The normal
stresses in the cylindrical system of coordinates are the principal stresses. The boundary conditions
at loading are

o,=0 (1)
for =a, and

O, =—Py (2)
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for r=by. It is assumed that py is large enough to initiate plastic yielding in the disc. Therefore, the
disc consists of two regions, elastic and plastic. The constitutive equations in the elastic region are
gf:ar—vag, ggzag—va,.’ g::_v(0,+09)‘ 3)
E E E
The superscript e denotes the elastic part of the strain. In the elastic region the whole strain is
elastic. The superscript e is employed in (3) as the same equations are satisfied by the elastic part
of the strain in the plastic region. The superscript can be dropped in the elastic region. Many
materials show little or no forward hardening (Rees 2006). However, the yield stress significantly
decreases with a stress reversal (Bauschinger effect). There are boundary value problems in which
it is sufficient to assume that the yield stress is constant at loading and depends on the forward
equivalent strain at reversed yielding to represent such behavior of materials (Rees 2007, 2009,
Alexandrov and Hwang 2011, Gui et al. 2015). However, in most cases it is necessary to propose
constitutive equations that predict that the material behaves as perfectly plastic at loading and its
behaviour at reversed loading accounts for the Bauschinger effect. It is evident that the classical
constitutive equations, such as Prager’s law (Prager 1956), are not capable of predicting this kind
of material behavior. In Chen (1986) a generalization of Tresca’s yield criterion has been proposed
to satisfy the aforementioned requirement. However, this model is valid if the regime of loading
corresponds to one face of the yield surface and the regime of reversed loading to the opposite
face. Therefore, this approach is restricted to a certain class of boundary value problems and is not
applicable for smooth yield surfaces. In the present paper, it is assumed that the original material
obeys the von Mises yield criterion. The corresponding yield surface does not change its shape and
position as the deformation progresses in the regime of loading. However, it is assumed that there
is another yield surface whose position is controlled by Prager’s law (Prager 1956). Therefore, the
position of this surface depends on the forward plastic strain. This surface controls reversed
yielding. Both surfaces are shown in Fig. 2 (the solid line corresponds to the original von Mises
yield surface and the broken line to the yield surface that controls reversed yielding). A possible
strain path is also illustrated in this figure. The associated flow rule is used in conjunction with
each of the yield criteria. In the case under consideration the original von Mises yield criterion is
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Here oy is the tensile yield stress, a material constant. The solid line in Fig. 2 corresponds to Eq.
(4). According to Prager law (Prager 1956) the yield criterion is

(s a) +(sy-a,) +(s.~a.)' =07 )
2
where

s,=0,-0,8,=0,—0,8 =0,—-0=—0, 0':(0,+0'9+0'z)/3=(0r+0'3)/3 6)
and

a =Ce’, a,=C¢), a =Cs’ (7)

where &7, &), &’ are the plastic strains and C is a material constant. Substituting Eqs. (6) and (7)
into Eq. (5) leads to

3
ol +0,—-0,0,+0,(a, +a,-2a,)+0,(a, +a,—2a9)+5(af+a§ +a22)=0'§. 8)

Since the material is plastically incompressible, &’ + &) +&” =0. Then, it follows from Eq. (7)
that o, +agta,=0. Using this equation it is possible to transform Eq. (8) to

'+, -TT,=0; ©)
where
T =0 -a+a, T,=0,-a,+c,. (10)
The flow rule associated with the von Mises yield criterion is

el=As, &)=A4s,, &’'=1s,. (11)

ls

Here &7, &, and & are the plastic strain rates and A is a non-negative multiplier. The flow
rule associated with the yield criterion (5) is

& =nh(s,~a) & =A(s,~a), &=a(s.~a) (12)

where 4, is a non-negative multiplier.
The only nontrivial equilibrium equation reduces to

00, . 9:=% _y, (13)
or r

It is convenient to introduce the following dimensionless quantities

a, r o, C Do
a=2, p=l } =2 == p=B 14
b Ch E e 7o (19

Also, the material model is rate-independent. Therefore, it is possible to replace the strain rates
with strain derivatives with respect to any time-like parameter, g. In particular, denote
oe’ _og)) el

0
P — r s - 5 P__"z 15




Description of reversed yielding in thin hollow discs subject to external pressure 665

Then, Egs. (11) and (12) can be rewritten as

& =hS, &) =hSy, & =S, (16)

and
E=M(s, —a,), & =Mh(s,—a,), &=4(s.-a.), a7

respectively. Here 1 =4, dq/dt and A = A, dq/dt where ¢ is the time.

3. Loading

The solution at loading is purely analytic (Alexandrov 2015). For completeness, this solution is
briefly discussed in this section.

3.1 Elastic solution

The general elastic solution is well known (see, for example, Hill 1950). Using Eq. (14) this
solution is represented as

o, A gy A

d =—2+B, =——2+B,
o, P o, P
A(1+v) 6 A(1+v) : (%)
& _AY) gy, Eo AUV gy, e
k P k P k

Here 4 and B are constants of integration. In the case of purely elastic solution these constants
are found from the boundary conditions (1) and (2). Substituting these boundary conditions into
Eq. (18) and using Eq. (14) lead to A=4.=pa*(1-a*)" and B=B.~=—p(1-a*)". The distribution of
stresses and strains in the purely elastic disc follows from Eq. (18) in which 4 and B should be
replaced with 4, and B,, respectively. Substituting this stress solution into Eq. (4) shows that the
plastic region starts to develop from the hole at p=p,=(1—a?)/2. In what follows, it is assumed that

D>Pe-
3.2 Elastic/plastic solution for stress

At p,>p>p. the disc consists of two regions, elastic and plastic. Here p, is the value of p at
which the entire disc becomes plastic. This value should be found from the elastic/plastic solution.
Let p. be the dimensionless radius of the elastic/plastic boundary. Consider the plastic region,
a<p<p.. In this region, the distribution of stresses is found from Egs. (4) and (13). In particular, Eq.
(4) is satisfied by the following substitution
o, :_2s1n1// ﬁz—smw—cosy/. (19)

o B o B

Eqgs. (13) and (19) combine to give
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2pcos1//(2—l’”=\/§cosw—sinw. (20)
0

The boundary condition to this equation follows from Eqgs. (1) and (19). In particular, y=0 or
w=r at r=a,. It is evident that 5,<0 at r=a,. Therefore, using Eq. (14) the boundary condition to Eq.
(20) can be represented as =0 for p=a. The solution of Eq. (20) satisfying this boundary condition
is

21

pP= Va 289 ﬁl//
V2 fsin(7z/3-y) 27 )
Egs. (19) and (21) supply the radial distribution of the radial and circumferential stresses in the

plastic region in parametric form with y being the parameter. Let . be the value of y at the
elastic/plastic boundary. Then, it follows from Eq. (21) that

pP.= Va eXp ﬁ‘ﬂ
‘ ﬁ\/sin(ﬂ/3—y/c) 27 )
The stress solution given in Eq. (18) is valid in the elastic region, p.<p<1. However, 4#4, and

B#B,. This stress solution must satisfy the boundary condition (2). Therefore, it follows from Egs.
(14) and (18) that

(22)

A+B=—p (23)
and
izA(Lz—lJ—p, ﬁ:—A(iﬁlj—p (24)
o, Yo, o, e,

in the elastic region. Both the radial and circumferential stresses should be continuous across the
elastic/plastic boundary (Hill 1950). Therefore, it follows from Eqgs. (19) and (24) that

2Sln(//c ZA(I—LZJ"FP, smy, +cosy, :A[1+L2J+p (25)

NE) P NG}

It is convenient to put g=w, in Eq. (15). Egs. (22) and (25) determine p and A4 as functions of ..
In particular

c

a’ (7 a
Az?exp(\/gz//c), p:s1n(g+ %j‘?eXP(\/g‘//c)- (26)
Substituting Eq. (26) into Eq. (24) gives
o a Vd o a’ T
r = exp(By. ) =sin| = +y |, ZL=-— exp(\By. ) —sin| =+ 27
o 2,0 p( t//c) (6 t//cj o 2 p( I//L) (6 I//LJ (27)

in the elastic region. The entire disc is plastic when p.=1. Let y, be the value of y,. when p.=1. The
equation for y, follows from Eq. (22) in the form
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\3d® _
Wexp(ﬁlyﬁ)—l. (28)

This equation should be solved numerically. Then, the value of p, is found from Eq. (26) as
2
(7 a
p, =sin [E v, j —Texp(\/g!//p) . (29)
In what follows, it is assumed that p,>p>p..
3.3 Elastic/plastic solution for strain

The distribution of strains in the elastic region is determined from Eqgs. (3), (14) and (27) as

2
& _a S;;V) exp(ﬁwc)—(l—v)sin(%*—v/c}

k
(1
%:_%pjv)exp(ﬁ%)_(1_V)sm(%+%j, (30)

% 2vsin(£+ ]
k 6 V)
Substituting Eq. (19) into Eq. (3) and using Eq. (14) yield

e _2 1 e 1_2 e
g—’z(vﬂﬂ/cosy/, 5_9:_( V)sim//—cosy/, %=2vsin(%+y/j 31)

k 3 k 3

in the plastic region. Eqgs. (31) and (21) supply the radial distribution of the elastic strains in the
plastic region in parametric form with y being the parameter. Eliminating s,, sy and s, in Eq. (16)
by means of Egs. (6) and (19) gives

2 T 2 2 T
P=—=lsin|y——|, & =-—Acosy, &=—Asinjy+—|.
g 37 (‘// 6} ; 37 v, ¢! 37 (W 6)

Eliminating 4, between these equations results in

:Sin(l//—ﬂ/6)§P ém=_sin(y1+7z/6)
cosy o> cosy

- So - (32)

It is seen from Eq. (21) that y is a function only p. Therefore, Eq. (32) can be immediately
integrated with respect to . to give

o sin(y —7/6) e e z_sin(l//+7z/6) e, (33)

z

cosy cosy

Also, since y is independent of .. then the elastic strains in the plastic region given by Eq. (31)
are independent of the time. Therefore, the elastic strain rates vanish in the plastic region. In this
case the equation of strain rate compatibility is equivalent to
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5§
==85-&.
Replacing in this equation differentiation with respect to p with differentiation with respect to y
by means of Eq. (20) and eliminating £ by means of Eq. (32) lead to
o0&y
5 g, (34)
The total circumferential strain rate should be continuous across the elastic/plastic boundary.
Therefore
oe,

P
So .,

=% (35)

at w=y.. It is understood here that &, is calculated on the plastic side of the elastic/plastic

boundary and &, =0¢) / Oy, on the elastic side of the elastic/plastic boundary. It follows from Eq.
(30) that

& _ 3 (1+V)exp(fl//c) (1_V)cos(%+y/c).

k 2p°

Then, the value of & on the elastic side of the elastic/plastic boundary is given by

So __ V3a? (1+V)exp(fw) (1—v)cos(%+y/c). (36)

k 2p]

Eliminating here p. by means of Eq. (22) and substituting the resulting expression into Eq. (35)
supply the boundary condition to Eq. (34) in the form

&y =2k Sil’l(l//c - Ej.
3
for y=y.. The solution of Eq. (34) satisfying this boundary condition is
& 4 7
7—2sm V. 3 CXp|:\/§(l//c —l//):l. (37)
Let w,, be the value of y. at p.=p,,. Then, it follows from Eq. (22) that the equation for y,, is

P = Lem(\/_ 3w,). (38)

2sin(7/3-y,,)

This equation should be solved numerically. In order to find the radial distribution of &) at

P—pm, it is necessary to integrate Eq. (37) with respect to y, taking into account that &, =0 at
w=y.. As a result

p

f:cosw—coswm exp[\/g(t//m —1//)}. (39)
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Substituting Eq. (39) into Eq. (33) yields

gl sin(y —7/6)

{cosz// —cosy,, exp[\/g(l//m - l//)]} >

cosy
&? sin(z// + 71'/6) w
.

Egs. (39), (40) and (21) supply the radial distribution of the plastic strains in the plastic region
in parametric form with y being the parameter. The distribution of the total strains can be found by
substituting Egs. (31), (39) and (40) into the equations &, =&, +&”, €, =¢€,+¢&), & =&, +¢&7.

z

4. Unloading
Using Eqgs. (7), (10), (39) and (40) it is possible to find

T =o, —\/ng tany/{cosz// —cosy,, exp[\/g(l//m - W)}},

T,=0, —ﬁCkM{cosy/ —cosy,, exp[\/g(y/m —l//):|}.
cosy

(41)

Substituting Eq. (41) into Eq. (9) leads to the yield criterion in reversed yielding. It is evident
that this criterion depends on p and the value of the elastic/plastic radius at the end of loading. The
stresses involved in Eq. (41) are determined as

c.=0! +Ao,, 0,=0)+Ac,. (42)

Here O'rf and O“gf are the radial and circumferential stresses, respectively, at the end of loading.
These stresses have been found in the previous section. Ag, and Agy are the increments of the
radial and circumferential stresses, respectively, in course of the process of unloading.
Analogously, the total strains at the end of unloading are determined as

g =& +As., g,=¢] +As,, ¢ =€ +Ac.. (43)

Here grf '
end of loading. These strains have been found in the previous section. Ag,, Agy and Ag, are the

increments of the radial, circumferential and axial strains, respectively, in course of the process of

, gg" and ng  are the total radial, circumferential and axial strains, respectively, at the

unloading.
The boundary conditions imposed on the increments of the radial stress are
Ao, =0 (44)
for p=a and
Ao, =o,p, (45)

for p=1. Here p,, is the value of p at the end of loading. It is seen from Eq. (26) that
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2

(7 a
D, = Sln(gﬁ-l//mj—?e)ip(\/gl//m) . (46)
Using the solution of Eq. (38) it is possible to connect p,, and p,,.
4.1 Elastic solution

In the case of purely elastic unloading the solution for the increment of stresses and strains has
the form of Eq. (18). In particular

AG"=%+BI, AO'ez_ilerBl,
Gy P Oy P
A(1+v) A A4(1+v) A “n
ﬁzl(—2+81(l—v), o o _ 4 . +Bl(1—v), F =-2vB,.
k P k Y2 k

Here A, and B, are new constants of integration. Using the boundary conditions (44) and (45)
these constants are determined as

e azp)n e p)n
Al =A1 Zﬁ, Bl =B1 :ﬁ. (48)
Substituting Eq. (48) into Eq. (47) gives
2 A 2
A% __Pu fy @) A% __Pu {2 | (49)
o, (l—a ) P o, (1—a ) P

It is natural to assume that the reversed plastic region starts to develop at p=a. It is seen from
Egs. (1) and (44) that 6,=0 at p=a at any stage of the process of deformation and from Eq. (21) that
w=0 at p=a. Therefore, it follows from Eq. (41) that 7,=0 at p=a. It is seen from Eqgs. (1) and (4)
that o5=0( at p=a at any stage of the process of elastic/plastic loading. Therefore, ag’ =0, in Eq.
(42). Then, using Egs. (19), (46) and (49) it is possible to transform Eq. (9) at p=a to

sin (% +ty,, ) —%exp(\/gt//rp ) = %(1 —-a’ )ck [1 —cosy,, exp(\/gl//rp )J (50)

Here y,, is the maximum value of y,, at which unloading is purely elastic. Eq. (50) should be
solved for y,, numerically. Then, the corresponding value of p,, can be found from Eq. (46). No
reversed yielding occurs if p,,.<p,,.

4.2 Elastic/plastic solution for stress
Assume that p,>p,, and that reversed plasticity occurs in the region a<p=<p,.. Eq. (9) is valid in

this region. This equation is satisfied by the following substitution

L =—2Sln¢ £=SIH¢+COS¢. &)

Oy \/g, Oy \/5

Then, the radial and circumferential stresses are found from Eq. (41) using Eq. (14) as
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o, 2sing

I

N

+~f3¢ tant//{cosy/ —cosy,, exp[\/g(l//m - l//)]} )

. (52)
o, sing sin(y + 7/3)
—£ = + +3c—m—= - 3 - .
o "N cos@ NEE cosy {cosy/ cosy,, exp[\/_(l//m 1//)]}
Using Egs. (14) and (20) it is possible to rewrite Eq. (13) as
V3 cos v —siny
( )ao-’+0r—0'€=0. (53)

2cosy oy

The quantity ¢ may be regarded as a function of w. Then, substituting Eq. (52) into Eq. (53)
yields the following equation for ¢

COS¢)8_¢)+ (Sin¢_\/§COS(p) +3ECCOSV/,,, tanw(\/g—tan V/)exp[\/g(y/m —l//)] =0. (54)

oy (\/g—tanl//)

It is seen from Egs. (1) and (44) that 6,=0 at p=a at any stage of unloading. Moreover, =0 at
p=a. Therefore, it follows from Eq. (52) that the boundary condition to Eq. (54) is

¢=0 (55)

for y=0. It is seen from this boundary condition and the structure of Eq. (54) that ¢ is a function
only  (or p) and is independent of g. Eq. (54) should be solved numerically. Then, the stress field
in the region a<p<p,, is determined from Eq. (52). In particular

o, _2sing,

e 7 +3ctany, {cos W, —Ccosy, exp[\/g(l//m -y, )]} ,

.00 in( 3) (56)
o, _sing, sin(y,, +7 { }
Goe SN 3 W T [osy — 3w, —w,.) L.
o5 +cosg, +~/3¢ cosp. cosy,, —cosy,, exp[\/_ (v, v, )J

Here o,. is the value of the radial stress, oy, is the value of the circumferential stress and ¢, is
the value of ¢ at y=w,. (or p=p,.). The following relation is immediate from Eq. (21)

P = sa exp ﬁ,/, (57)
© 2 fsin(7/3-y,) 27 )
The increment of the radial and circumferential stresses at p=p,. is found Eqgs. (19) and (56) as

Ao,

_Ow 2siny,, A0'0| _ O SV,

B e, e B

Unloading is elastic and Eq. (47) is valid in the region p,.<p<l. Of course, 4, and B; are not
given by Eq. (48). Substituting Eq. (47) into Eq. (45) yields B;=p,—A;. Then

A 1 A 1
arzpm"'Al(_z_lJa ngpm_Al(_z+lj~ (59)
o, 0 o, P

0 0

+cosy,,. (58)

O, O,
0 lp=p, 0 P=Pre
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The quantities Ao, and Agy should be continuous across the surface p=p.,. Therefore, it follows
from Eqs. (58) and (59) that

o, 3

i 1
%nt%-l—cosy/m -p,+4 (—2+1j=0.

o 3

Using Egs. (56) and (57) it is possible to eliminate o,., og. and p,. in Eq. (60). The resulting
system of equations involves two unknowns, 4; and w,. This system should be solved
numerically. Then, the distribution of the residual radial and circumferential stresses is determined
from Egs. (19), (21), (42), and (59) in the region p,.<p<p,, and from Egs. (27), (42), and (59) in the
region p,<p<l. The distribution in the region p,.<p<p,, is in parametric form with y being the
parameter.

.
G, 2S00W _Al[%_ljzoj

(60)

rc

4.3 Elastic/plastic solution for strain

Since A; and B; have been determined in Section 4.2, the increment of strains in the region
p<p<1 is immediately found from Eq. (47). The distribution of the residual strains follows from
Eqgs. (30), (43) and (47) in the region p,,<p<1 and from Egs. (21), (31), (39), (40), (43), and (47) in
the region p,<p<p,,. The distribution in the region p,.<p<p,, is in parametric form with y being the
parameter. In Eq. (30) it is necessary to replace y, with y,,.

It remains to find the residual strains in the region a<p<p,.. In this region, the increment of
strains consists of two portions, elastic and plastic. The elastic portion is found by substituting the
stresses from Egs. (19) and (52) into Hooke’s law. As a result

As, —i(sin¢+siny/)—v(w+cos¢+cosy/)+
k3 NE]

\/gc{tam// _ VM}{COSW —cosy,, eXpI:\/g(l//m - 1//)}},

cosy
A% = sing +siny +cosgo+cosy/—2—v(singo+sinly)+
k NG V3 61)
\/E{M —vtan y/}{cosy/ —cosy,, exp[\/g(t//m - l//)J},
cosy

Ae, = —ZV{sin[(p + Z) + sin(t// + Zﬂ -
k 6 6
%cv(l + \/gtany/){cosy/ —cosy,, eXp|:\/§(l//m - t//)]}

Using Egs. (10) and (51) it is possible to transform Eq. (17) to

frp=%(\/§sin(p—cosw), 55:213’;‘0008% §f=—%(\/§sin¢)+cos¢)).
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Eliminating 4; between these equations leads to

(\/gsin(p—cosw) (\/gsin(p+cos¢))

& = Su» G =T So - (62)
2cos@ 2cos@

It has been shown in Section 4.2 that ¢ is independent of g. Therefore, Eq. (62) can be
immediately integrated with respect to ¢ to give

(\/gsingo—cosq)) (\/gsingo+cosg0)
Ag! = Agj, Ael=- Agj. (63)
2cos@ 2cos@
The equation of strain compatibility is
0(Ag
,0M =Ag, —Ag,. (64)
op

Using the equations Ag, =Ae’ +Ae” and Ag, =Ag, + Ag)) and eliminating Ag” by means of
Eq. (63) it is possible to rewrite Eq. (64) as

d(Aeg,) \/g(sin(p—\/gcosw) (\/gsingo—cosqo)
P = Ag, +Ag’ — Ag,.
op 2cos@ 2cos@

Replacing differentiation with respect to p with differentiation with respect to by means of
Eq. (20) gives

d(As,) \/g(sin(p—\/gcowp)cosw

= Ag, +
oy (\/gcosy/—siny/)cosgo ’
(65)
2cosy st (\/gsin @ —cos ¢) At
(\/§COS1//—Sinl/l) ' 2cosg “

Using Eq. (61) the last term of Eq. (65) can be represented as a function of y and ¢. Moreover,
the dependence of ¢ on y is known from the solution to Eq. (54). Therefore, Eq. (65) is a linear
ordinary differential equation with respect to Ag, . Its solution can be written in terms of ordinary
integrals. The boundary condition to Eq. (65) follows from the condition Ag, =Ag, at w =y, .
Then, using Eq. (61)

Ag, _sing, +siny, +Cos @, +cosy —2—V(sin¢ +siny, )+
k \/g c re \/3 c re

66
N sin(y,, +7/3) (66)

—vtany,, } {cos W, —COSY, exp [\/g(l//m -y, )J}
cosy,,

for y=y,.. Once Eq. (65) satisfying the boundary condition (66) has been solved, Ag, and Ae, are
found by means of the equations As, =Ae’ +As?, Ag, =A¢g, +Ag,), As. =A&. +As? and Egs.
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Fig. 3 Radial distribution of the residual radial stress at several values of ¢
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Fig. 4 Radial distribution of the residual circumferential stress at several values of ¢
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Fig. 5 Radial distribution of the residual radial strain at several values of ¢

o

(61) and (63). Substituting this solution and the solution for strains at the end of loading (Section
3.3) into Eq. (43) supplies the distribution of the residual strains in the region a<p=<p,..
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Fig. 6 Radial distribution of the residual circumferential strain at several values of ¢
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Fig. 7 Radial distribution of the residual axial strain at several values of ¢

5. lllustrative example

This section illustrates the effect of ¢ on the distribution of residual stresses and strains. In all
calculations, v=0.3, a=0.2 and p,=0.8. Eq. (38) has been solved numerically for y,. Then, p,, has
been determined from Eq. (46). The variation of the residual radial and circumferential stresses
with p at several values of ¢ is depicted in Figs. 3 and 4, respectively. The associated residual
strain distributions are shown in Fig. 5 (radial strain), Fig. 6 (circumferential strain), and Fig. 7
(axial strain).

6. Conclusions

A new model that takes into account the Bauschinger effect, but neglects strain hardening
during loading has been proposed. These mathematical properties of the model represent
reasonably well a class of materials such as high strength steels (Franklin and Morrison 1960,
Milligan et al. 1966, Findley and Reed 1983, Rees 2006). It is assumed that the material obeys the
von Mises yield criterion during loading. Prager’s law (Prager 1956) is adopted to describe the
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Bauschinger effect. The model is restricted to plane stress problems. However, its generalization
on three-dimensional problems is straightforward.

The model has been adopted to calculate the distribution of residual stresses and strains in a
thin hollow disc subject to external pressure. In particular, the effect of the parameter C involved
in Eq. (7) on these distributions is illustrated in Figs. 3 to 7. Note that ¢ shown in the figures is
proportional to C, as follows from Eq. (14).

The solution found is semi-analytic. In particular, a numerical technique is only necessary to
solve transcendental equations, such as, for example, Eq. (38) for y,, if p,, is given. Therefore, the
solution may serve as a benchmark problem to verify the accuracy of numerical codes.
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