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Abstract.  This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer 

sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus 

of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-

analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The 

general solution is cumbersome because different analytic expressions for the radial and circumferential 

stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative 

ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process 

parameters the solution to the problem consists of a sequence of rather simple analytic expressions 

connected by transcendental equations. The general solution is illustrated by a simple example. 
 

Keywords:  plane strain bending; bimetallic sheet; elastic/perfectly plastic material; large strains; analytic 

solution 

 
 
1. Introduction 
 

The pure plane strain bending of a sheet at large strains is one of the classical problems of 

plasticity. In particular, its solution for rigid perfectly plastic materials is available in monographs 

on plasticity (Hill 1950, Chakrabarty 1987). A general approach to analysis of this process has 

been proposed in Alexandrov et al. (2006). This approach is applicable to any isotropic 

incompressible material. However, previous solutions based on it are restricted to homogeneous 

sheets (Alexandrov et al. 2006, Alexandrov and Hwang 2010, 2011). A review of theoretical 

solutions for the pure plane strain bending of homogeneous sheets found by other methods has 

been provided in Zhu (2007).  

A number of solutions are also available for bending of multi-layer sheets. An elastic solution 

for curved bars has been proposed in Lo and Conway (1975). This solution has been used by 

Arslan and Sulu (2014) to determine the onset of plastic yielding assuming Tresca’s yield 

criterion. Several plastic solutions are based on the assumption that the through thickness stress  
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Fig. 1 Schematic illustration of pure bending 

 
 

vanishes (Yuen 1996, Kagzi et al. 2015). The range of validity of such solutions is restricted to 
nearly flat sheets. The pure plane strain bending of bonded laminated metals has been studied in 
Verguts and Sowerby (1975). This solution is numerical. In particular, distinct computer programs 
have been written to solve each of various cases considered in the paper.  

This present work extends the general method proposed in Alexandrov et al. (2006) to a 
bimetallic sheet assuming that each layer is made of an elastic perfectly plastic material. The 
solution is semi-analytical. In particular, a numerical technique is only necessary to solve 
transcendental equations. The general solution is cumbersome because different analytic 
expressions for the radial and circumferential stresses should be adopted in different regions of the 
sheet. However, for any given set of material and process parameters the solution is rather simple. 
The general solution is illustrated by a simple example. 
 
 
2. Preliminaries 
 

The plane strain bending process transforms an initial rectangle into a circular sector in the 
plane of flow by a bending moment, M (Fig. 1). The thickness and width of the initial rectangle are 
denoted by H and 2L, respectively. A general approach to analyzing the plane strain pure bending 
process of incompressible materials at large strains has been proposed in Alexandrov et al. (2006). 
An advantage of this approach is that the general solution describing the kinematics of the process 
is independent of the specific material model chosen. In particular, bending of multi-layer sheets 
can be treated. For completeness, the main results presented in Alexandrov et al. (2006) are briefly 
discussed in this section. It is convenient to introduce two coordinate systems, (x,y) and (ζ,η). The 
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former is an Eulerian Cartesian coordinate system. This coordinate system can be chosen such that 
the initial shape is defined by the equations x=−H, x=0, and y=±L. It is evident that the process is 
symmetric relative to the x-axis. (ζ,η) is a Lagrangian coordinate system such that x=ζH and y=ηH 
at the initial instant. The normal stresses in this coordinate system are denoted by σζ and ση. It has 
been shown in Alexandrov et al. (2006) that the mapping between the (x,y) and (ζ,η) coordinates is 
given by 

   2 2
cos 2 , sin 2

x s s y s
a a

H a a a H a a
    

   .                             (1) 

Here a is a function of the time, t, and s is a function of a. The specific form of the function a(t) 
is immaterial for rate-independent materials. The function s (a) should be found from the solution. 
It is assumed that a=0 at the initial instant. Then, the function s (a) must satisfy the condition 

1

4
s                                                                         (2) 

for a=0. It is possible to verify by inspection that the mapping (1) satisfies the equation of 
incompressibility and that principal strain rate trajectories coincide with coordinate curves of the 
(ζ,η) coordinate system. This implies that these coordinate curves are principal stress trajectories 
for coaxial models (models which postulate that the principal stress and principal strain rate 
directions coincide) and thus σζ and ση are the principal stresses in the plane of flow. Therefore, the 
boundary of the deforming sheet is free of shear stresses, which is a boundary condition for the 
pure bending process, and the only stress boundary conditions to be satisfied are 

  
0   (3) 

at ζ=−1 and ζ=0 (Fig. 1). Using Eq. (1) it is possible to find the total principal strain components as 

  
 1

ln 4 .
2

a s            (4) 

It is also convenient to introduce a moving cylindrical coordinate system (r,θ) by the following 
transformation equations (Fig. 1) 

  
2

and 2
r s

a
H a a

  
   .  (5) 

In this coordinate system the boundaries of the deforming sheet are given by the following 
equations (Fig. 1) 

  
02

1 2
, , .AB CDr r s r r s aL

H H a H H a a H
           (6) 

It follows from these relations that the current thickness of the sheet is 

  
2

1
.AB CD

s s
h r r H

a a a

 
     

 
  (7) 
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3. Material model 
 
The classical Eulerian theory of finite elastoplasticity presented, for example, in Xiao et al. 

(2006) is used. Since Eq. (1) results in the equation of incompressibility, it is necessary to assume 
that Poisson’s ratio is 1/2. The total principal strain rates are 

   
,e p e p              . (8) 

Here the superscript e denotes the elastic portion of the total strain rates and the superscript p 
denotes the plastic portion of the total strain rates. Let τζ and τη be the principal deviatoric stresses 
in the plane of flow. The elastic portion of the principal strain rates is characterized by a rate 
constitutive equation in the form 

   
2 , 2e eG G          (9) 

where the superimposed dot denotes the material derivative and G is the shear modulus of 
elasticity. Note that in general the left hand side of Eq. (9) should involve an objective stress rate. 
However, in the case of deformation described by Eq. (1), any objective corotational rate reduces 
to the material derivative. Any plane strain yield criterion for isotropic incompressible material can 
be written as 

   

2

3
Y  

    (10) 

where σY is the yield stress in tension. In the case of perfectly plastic materials σY is constant. Eq. 
(10) is supplemented with the associated flow rule for the plastic portion of the principal strain  
rates, p

  and p
 . Since the material is incompressible and the state of strain is plane 

  
0    .      (11) 

Substituting this equation into Eq. (10) gives the yield criterion in the form 

   
.

3
Y  

             (12) 

Since the equation of incompressibility has been already satisfied by the mapping (1), the 
associated flow rule combined with the yield criterion (10) imposes no additional restrictions on  
the values of p

  and p
 .  

It is evident from Eq. (5) that 

  

, , , , , ,

, , , , , .

r r r

e e e e p p p p
r r r

     

     
        

        

           

           
 (13) 

Here the subscripts r and θ denote the quantities in the cylindrical coordinate system. Then, the 
boundary conditions (3) become 

  0r    (14)  

for ζ=−1 and ζ=0.  
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Fig. 2 Initial configuration of a bimetallic sheet 
 
 
Both the radial and circumferential stresses are continuous across elastic/plastic boundaries 

(Hill 1950). These conditions can be written as [σr]=0 and [σθ]=0 across elastic/plastic boundaries. 
Here [...] denotes the amount of jump in the quantity enclosed in the brackets. In the case under 
consideration the continuity in σr and σθ implies the continuity in τr. Therefore, using Eq. (13) 

    0r       and       0r       (15) 

across elastic/plastic boundaries. 
 
 
4. Statement of the problem 

 
Consider the pure plane strain bending of a bimetallic sheet of initial thickness H. The initial 

thicknesses of the layers are denoted by H1 and H2 (Fig. 2). Then, the ζ-coordinate of the 
bimetallic interface is ζi=−H2/H. The radial stress must be continuous across this interface. 
Therefore 

    0r    (16) 

at ζ=ζi. The distributions of the shear modulus and yield stress are 

  

2

1

in the range 0

in the range 1
i

i

G
G

G

 
    

 
 

  (17) 

and 

  

2

1

in the range 0

in the range 1
Y i

Y
Y i

 
    

  


  
  (18) 
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Both σY1 and σY2 are constant. It is seen from Eq. (5) that the r-coordinate of the bimetallic 
interface is 

  
2

i ir s

H a a
 


.  (19) 

The bending moment M and its dimensionless representation m are given by 

  
2

2

2 3
,

AB

CD

r

Yr

M
M rdr m

H
   

.  (20) 

Note that m=1 for a sheet wholly made of a rigid perfectly plastic material whose yield stress is 
σY2 (Hill 1950). Using Eq. (5) it is possible to transform Eq. (20) to 

  

0

21

3

Y

m d
a 

   


.  (21) 

It is assumed that the state of stress and strain is independent of θ. Then, the system of 
equations to solve consists of the constitutive equations and the only equilibrium equation of the 
form 

  
0r r

r r

 
 


  

.  (22) 

Using the identity σr−σθ≡τr−τθ  along with Eqs. (11) and (13) it is possible to transform Eq. (22) 
to 

  

2
0r r

r r


 


 

.  

Replacing in this equation differentiation with respect to r with differentiation with respect to ζ 
by means of Eq. (5) yields 

   
0r ra

a s


 

 
 
 

.  (23) 

 
 
5. General solution 
 

In general, the process of bending consists of several stages. The entire sheet is elastic if the 
bending moment is small enough. The range of a for this stage is 0≤a≤ae. A plastic region 
propagates from one of the surfaces, ζ=0 or ζ=−1, as the value of a further increases. Another 
plastic region starts to develop from the other surface at a=ap. Therefore, the range of a for the 
second stage is ae≤a≤ap. The range of a for the third stage is a>ap. In a special case, two plastic 
regions start to develop from the surfaces ζ=0 and ζ=−1 simultaneously. In this case ae=ap and the 
second stage does not exist. The values of ae and ap should be found from the solution. 

It follows from Hooke’s law along with Eqs. (4), (13) and (17) that 
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 
 

 
 

2

1

2

1

ln 4 in the range 0
,

ln 4 in the range 1

ln 4 in the range 0
.

ln 4 in the range 1

i

r

i

i

i

G a s

G a s

G a s

G a s

        
       
       

      


  


  

  


  

  (24) 

in elastic regions. Substituting Eq. (24) into Eq. (23) gives 

  

 
 2

ln 4
0r

a a s

G a s

    
 


 

 (25) 

in the range ζi≤ζ≤0 and  

  

 
 

1

2

ln 4
0r

ag a s

G a s

    
 


 

  (26) 

in the range −1≤ζ≤ ζi. Here g1=G1/G2. The general solution of Eq. (25) is 

  
 2

2
2

1
ln 4

2
r a s C

G
    

    (27) 

where C2 is a constant of integration. Analogously, the general solution of Eq. (26) is 

  
 21

1
2

ln 4
2

r g
a s C

G
    

    (28) 

where C1 is another constant of integration. Equations (27) and (28) are valid in elastic regions in 
the ranges ζi≤ζ≤0 and −1≤ζ≤ ζi, respectively. 

It is seen from Eqs. (12), (13) and (18) that 1 3r Y   or 1 3r Y    in plastic regions in 
the range −1≤ζ≤ ζi and 2 3r Y   or 2 3r Y    in plastic regions in the range ζi≤ζ≤0.  
Substituting these values of τr into Eq. (23) and integrating give 

  
 1 1

3
2

ln
3

r k g
a s C

G
   

    (29) 

if 1 3r Y   in the range −1≤ζ≤ ζi 

  
 1 1

4
2

ln
3

r k g
a s C

G
  

    (30) 

if 1 3r Y    in the range −1≤ζ≤ ζi 

  
 2

5
2

ln
3

r k
a s C

G
   

    (31) 

if 2 3r Y   in the range ζi≤ζ≤0, and 
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 2

6
2

ln
3

r k
a s C

G
  

    (32) 

if 
2 3r Y    in the range ζi≤ζ≤0. Here k1=σY1/G1, k2=σY2/G2 and C3, C4, C5, and C6 are constants  

of integration. The circumferential stress is found from the equation 

  2r r    .  (33) 

Here Eqs. (11) and (13) have been used.  
Let ζg be the ζ-coordinate of a generic elastic/plastic boundary. Substituting Eqs. (12) and (24) 

into Eq. (15) for [τr] leads to 

  
  23 ln 4 ga s k       (34) 

if ζi≤ζg≤0
 
and τr>0 at ζ=ζg 

  
  23 ln 4 ga s k      (35) 

if ζi≤ζg≤0and τr<0 at ζ=ζg 

  
  13 ln 4 ga s k       (36) 

if −1≤ζg≤ ζi 
and τr>0 at ζ=ζg 

  
  13 ln 4 ga s k      (37) 

if −1≤ζg≤ ζi and τr<0 at ζ=ζg. 
 

5.1 Purely elastic solution 
 
In this case Eq. (27) is valid in the range 0≥ζ≥ζi  and Eq. (28) in the range −1≤ζ≤ ζi.  

The solution (27) must satisfy the boundary condition (14) at ζ=0. Therefore 

  
 

2

1
ln 16 ln

2
r a s

s a s
G s

        
   (38) 

in the range 0≥ζ≥ζi. The solution (28) must satisfy the boundary condition (14) at ζ=−1. Therefore 

  
  1

2

ln 16 ln
2

r g a s
s a a s

G s a

         
  .  (39) 

in the range ζi ≥ζ ≥−1. Then, it follows from Eqs. (16), (38) and (39) that 

  
    1 ln 16 ln ln 16 lni i

i i

a s a s
g s a a s s a s

s a s

                   
   .  (40) 

This equation determines s as a function of a in the purely elastic range and its solution should 
be found numerically. If plastic yielding is initiated at the surface ζ=0 then substitution of Eqs. 
(24) and (18) into Eq. (12) leads to 

  

2
2

1
exp

4 3
e

k
s

   
 

 (41) 
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where se2 is the value of s corresponding to the initiation of the plastic region at ζ=0. The 
corresponding value of a is denoted by ae2. The value of ae2 is determined from Eq. (40) in which s 
should be replaced with the right hand side of Eq. (41).  

If plastic yielding is initiated at the surface ζ=−1 then substitution of Eqs. (24) and (18) into Eq. 
(12) leads to 

  

1
1 1

1
exp

4 3
e e

k
s a

    
 

 (42) 

where ae1 and se1 are the values of a and s, respectively, corresponding to the initiation of the 
plastic region at ζ=−1. The value of ae1 is determined from Eq. (40) in which s should be replaced 
with the right hand side of Eq. (42). The value of ae is determined from the equation 

 1 2min ,e e ea a a . The purely elastic solution is not valid for a>ae. 

 
5.2 Elastic/plastic solution with one plastic region 
  
Let ζp 

be the ζ-coordinate of the elastic/plastic boundary. It is necessary to consider two cases 
separately; namely, plastic yielding occurs in the region ζp≤ζ≤0 and plastic yielding occurs in the 
region −1≤ζ

 
≤ ζp. 

  
5.2.1 Plastic yielding occurs in the region ζp≤ζ≤0 
In this case ae1>ae2 and τr<0 in the plastic region. It is necessary to examine three cases; 

namely, (i) ζp>ζi, (ii) ζp=ζi, and (iii) ζp<ζi. In all these cases Eq. (28) is valid in the vicinity of the 
surface ζ=−1 and Eq. (32) in the vicinity of the surface ζ=−1. Therefore, these equations and the 
boundary conditions (14) combine to give 

  
 21

1 ln 4
2

g
C s a           and      2

6 ln
3

k
C s  .            (43) 

Consider case (i). In this case Eq. (28) is valid in the range −1≤ζ≤ζi, Eq. (27) in the range 
ζi≤ζ≤ζp, and Eq. (32) in the range ζp≤ζ≤0. Substituting Eqs. (27) and (28) into Eq. (16) and using 
Eq. (43) result in 

  

     2 21 1
2

1
ln 4 ln 4

2 2i

g g
C a s s a


          .        (44)  

Since τr<0 at ζ=ζp and ζi≤ζp≤0, Eq. (35) is valid and becomes 

  
  23 ln 4 pa s k    .  (45)  

Substituting Eqs. (28) and (32) into Eq. (15) for [σr] supplies the equation for determining the 
function s (a). In particular, eliminating in this equation C6 by means of Eq. (43), C2 by means of 
Eq. (44), and ζp by means of Eq. (45) gives 

  
       

2
2 212 2 1

1
ln 4 ln 4 ln 4 0

6 2 23
i

gk k g
s s a a s


            .  (46) 

This equation should be solved numerically to find the function s (a). This solution is valid if 
ζi≤ζp. Replacing ζp with ζi in Eq. (45) yields 
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  23 ln 4 ia s k    .  (47) 

This equation can be used to eliminate s in Eq. (46). The resulting equation should be solved 
for a numerically. The solution is denoted by a1. The range of a for case (i) is ae2≤a≤a1. 

In case (ii) the elastic/plastic boundary coincides with the bi-material interface. Therefore, Eq. 
(28) is valid in the range −1≤ζ≤ζi and Eq. (32) in the range ζp≤ζ≤0. Substituting these equations 
into Eq. (16) and eliminating C1 and C6 by means of Eq. (43) result in the following equation for 
determining the function s (a)  

  
   2 2 2

1

2
ln 4 ln 4 ln 0.

3
i

i

k a s
a s s a

sg

               
   (48) 

This equation should be solved numerically. The range of validity of this solution is restricted 
by the condition that the yield criterion is not violated in material 1 at ζ=ζi  (Fig. 2). This condition 
may be represented as 1 3r Y    at ζ=ζi. Then, it follows from Eq. (24) for r  in the range 
−1≤ζ≤ζi that 

  
  13 ln 4 ia s k    .  (49) 

This equation can be used to eliminate s in Eq. (48). The resulting equation should be solved 
for a numerically. The solution is denoted by a2. The range of a for case (ii) is a1≤a≤a2. 

In case (iii) Eq. (28) is valid in the range −1≤ζ≤ζp, Eq. (30) in the range ζp≤ζ≤ζi, and Eq. (32) in 
the range ζi≤ζ≤0. Substituting Eqs. (28) and (30) into Eq. (16) and using Eq. (43) result in 

  

   2 1 1 2
4 ln ln

3 3
i

k k g k
C a s s


   .        (50)  

Since τr<0 at ζ=ζp 
 and −1≤ζp≤ζi, Eq. (37) is valid and becomes 

  
  13 ln 4 pa s k    .  (51)  

Substituting Eqs. (28) and (30) into Eq. (15) for [σr] supplies the equation for determining the 
function s (a). In particular, eliminating in this equation C1 by means of Eq. (43), C4 by means of 
Eq. (50), and ζp by means of Eq. (51) gives 

  
   

2
21 1 2 1 1 1ln ln 4 ln 4 0

6 23 3
i

i

k g k a s k g g
a s s a

s

               
  .  (52) 

This equation should be solved numerically to find the function s (a). 
The solution of Eqs. (46), (48) and (52) determines s at any value of a in the range a>ae2. This 

function is denoted by s=s2 (a). However, this solution is valid if and only if no plastic yielding 
occurs at ζ=−1. The corresponding condition follows from Eqs. (12), (13) and (18) in the form 

1 3r Y   at ζ=−1. Substituting this equation into Eq. (24) for τr in the range −1≤ζ≤ζi leads to 

  
  13 ln 4 s a k     .      (53) 

Replacing s in this equation with s2 (a) gives the equation for a. The solution of this equation is 
denoted by ap2. It is evident that ap=ap2 in this case. The solution with one plastic region derived in 

650



 
 
 
 
 
 

Plane strain bending of a bimetallic sheet at large strains 

Section 5.2.1 is valid in the range ae2≤a≤ ap2.  
 

5.2.2 Plastic yielding occurs in the region −1≤ζ≤ζp 
In this case ae1≤ae2 and τr>0 in the plastic region. It is necessary to examine three cases; 

namely, (i) ζp<ζi, (ii) ζp=ζi, and (iii) ζp>ζi. In all these cases Eq. (27) is valid in the vicinity of the 
surface ζ=0 and Eq. (29) in the vicinity of the surface ζ=−1. Therefore, these equations and the 
boundary conditions (14) combine to give 

  
 2

2

1
ln 4

2
C s        and       1 1

3 ln
3

k g
C s a  .            (54) 

Consider case (i). In this case Eq. (27) is valid in the range ζi<ζ≤0, Eq. (28) in the range ζp≤ζ≤ζi, 
and Eq. (29) in the range −1≤ζ≤ζp. Substituting Eqs. (27) and (28) into Eq. (16) and using Eq. (54) 
result in 

  

     2 21
1

1 1
ln 4 ln 4

2 2i

g
C a s s


     .        (55)  

Since τr>0 at ζ=ζp and −1≤ζp≤ζi, Eq. (36) is valid and becomes 

  
  13 ln 4 pa s k     .  (56)  

Substituting Eqs. (28) and (29) into Eq. (15) for [σr] supplies the equation for determining the 
function s (a). In particular, eliminating in this equation C3 by means of Eq. (54), C1 by means of 
Eq. (55), and ζp by means of Eq. (56) gives 

  
       

2
2 211 1 1 1

11
ln 4 ln 4 ln 4 0

6 2 23
i

gk g k g
s a s a s


            .  (57) 

This equation should be solved numerically to find the function s (a). This solution is valid if 
ζi≥ζp. Replacing ζp with ζi in Eq. (56) yields 

  
  13 ln 4 ia s k     .  (58) 

This equation can be used to eliminate s in Eq. (57). The resulting equation should be solved 
for a numerically. This solution is denoted by a3. The range of a for case (i) is ae1≤a≤a3. 

In case (ii) the elastic/plastic boundary coincides with the bi-material interface. Therefore, Eq. 
(27) is valid in the range ζi≤ζ≤0 and Eq. (29) in the range −1≤ζ≤ζi. Substituting these equations 
into Eq. (16) and eliminating C2 and C3 by means of Eq. (54) result in the following equation for 
determining the function s (a)  

  
   2 2 1 12

ln 4 ln 4 ln 0.
3

i
i

k g a s
a s s

s a

          
   (59) 

This equation should be solved numerically. The range of validity of this solution is restricted 
by the condition that the yield criterion is not violated in material 2 at ζ=ζi  (Fig. 2). This condition  
may be represented as 2 3r Y   at ζ=ζi. Then, it follows from Eq. (24) for τr in the range ζi≤ζ≤0  
that  

  
  23 ln 4 ia s k     .  (60) 
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This equation can be used to eliminate s in Eq. (59). The resulting equation should be solved 
for a numerically. This solution is denoted by a4. The range of a for case (ii) is a3≤a≤a4. 

In case (iii) Eq. (27) is valid in the range ζp≤ζ≤0, Eq. (31) in the range ζi≤ζ≤ζp, and Eq. (29) in 
the range −1≤ζ≤ζi. Substituting Eqs. (29) and (31) into Eq. (16) and using Eq. (54) result in 

  

     2 1 1 1 1
5 ln ln

3 3
i

k k g k g
C a s s a


    .        (61)  

Since τr>0 at ζ=ζ and ζi≤ζp≤0, Eq. (34) is valid and becomes 

  
  23 ln 4 pa s k     .  (62)  

Substituting Eqs. (27) and (31) into Eq. (15) for [σr] supplies the equation for determining the 
function s (a). In particular, eliminating in this equation C2 by means of Eq. (54), C5 by means of 
Eq. (61), and ζp by means of Eq. (62) gives 

  
   

2
22 2 1 1 1

ln 4 ln ln 4 0
6 23 3

i
i

k k k g s a
a s s

a s

 
          




.  (63) 

This equation should be solved numerically to find the function s (a). 
The solution of Eqs. (57), (59) and (63) determines s at any value of a in the range a>ae1. This 

function is denoted by s=s1 (a). However, this solution is valid if and only if no plastic yielding 
occurs at ζ=0. The corresponding condition follows from Eqs. (12), (13), and (18) in the form 

2 3r Y    at ζ=0. Substituting this equation into Eq. (24) for τr in the range ζi≤ζ≤0 leads to 

    23 ln 4s k .      (64) 

Replacing s in this equation with s1 (a) gives the equation for a. The solution of this equation is 
denoted by ap1. It is evident that ap=ap1 in this case. The solution with one plastic region derived in 
Section 5.2.2 is valid in the range ae1≤a≤ap1.  
 

5.3 Elastic/plastic solution with two plastic regions 
  
Let ζp1 and ζp2 be the ζ-coordinates of the elastic/plastic boundaries. Plastic yielding occurs in  

the regions 11 p     and 2 0p    . It is necessary to consider five cases separately; namely, 

11 p i     and 2 0i p   , 1p i   and 1 2 0p p   , 2p i   and 1 21 p p    , 1p i   
and 2 0i p   ,  and 2p i   and 11 p i    . In all these cases Eq. (29) is valid in  
the vicinity of the surface ζ=−1 and Eq. (32) in the vicinity of the surface ζ=0. These equations and 
the boundary conditions (14) combine to give 

  
 1 1

3 ln
3

k g
C s a        and      2

6 ln
3

k
C s  .  (65) 

 
5.3.1 Case −1≤ζp1<ζi and ζi< ζp1≤0 
In this case Eq. (29) is valid in the region −1≤ζ≤ζp1, Eq. (28) in the region ζp1≤ζ≤ζi, Eq. (27) in 

the region ζi≤ζ≤ζp2, and Eq. (32) in the region ζp2≤ζ≤0. Substituting Eqs. (27) and (28) into Eq. (16) 
leads to 
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   21
1 2

1
ln 4

2 i

g
C C a s


     .  (66) 

Since τr>0 at ζ=ζp1 and −1≤ζp1≤ ζi, Eq. (36) is valid and becomes 

  
 1 13 ln 4 pa s k     .  (67) 

Substituting Eqs. (28) and (29) into Eq. (15) for [σr] leads to 

  
   21 1 1

1 1 1 3ln 4 ln 0
2 3

p p

g k g
a s a s C C         .  (68) 

Eliminating in this equation C3 by means of Eq. (65) and ζp1 by means of Eq. (67) gives 

  
 

2
1 1 1 1

1 ln 4
6 3

g k k g
C s a     .  (69) 

Since τr<0 at ζ=ζp2 and ζi≤ζp2≤0, Eq. (35) is valid and becomes 

  
 2 23 ln 4 pa s k    .  (70) 

Substituting Eqs. (27) and (32) into Eq. (15) for [σr] leads to 

  
   2 2

2 2 2 6

1
ln 4 ln 0

2 3
p p

k
a s a s C C         .             (71) 

Eliminating in this equation C6 by means of Eq. (65) and ζp2 by means of Eq. (70) gives 

  
 

2
2 2

2 ln 4
6 3

k k
C s  .     (72) 

Using Eqs. (69) and (72) it is possible to transform Eq. (66) to 

  

         
2 2

1 1 2 211 1 2
1

ln 4 ln 4 ln 4
6 23 3

i

g k k gk g k
s a s a s

 
           .  (73) 

The solution of this equation determines s as a function of a. This solution should be found 
numerically. Its range of validity is controlled by the conditions ζp1=ζi or ζp2=ζi. Using Eqs. (67) 
and (70) these conditions are expressed as 

  
  13 ln 4 ia s k           or        23 ln 4 ia s k    .  (74) 

Since the function s (a) has been determined, each of these conditions is an equation for a. The 
solution of Eq. (74)1 is denoted by a5 and the solution of Eq. (74)2 by a6. The solution derived in 
Section 5.3.1 is valid only if a≤min{a5,a6}. 
 

5.3.2 Case ζp1>ζi and ζp1< ζp2≤0 
In this case Eq. (29) is valid in the region −1≤ζ≤ζi, Eq. (31) in the region ζi≤ζ≤ζp1, Eq. (27) in 

the region ζp1≤ζ≤ζp2, and Eq. (32) in the region ζp2≤ζ≤0. Substituting Eqs. (29) and (31) into Eq. 
(16) and eliminating C3 by means of Eq. (65) lead to 
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     2 1 11 1

5 ln ln
3 3

i

k k gk g
C s a a s


    .          (75) 

Since τr>0 at ζ=ζp1 and ζi≤ζp1≤0, Eq. (34) is valid and becomes 

  
 1 23 ln 4 pa s k     .          (76) 

Substituting Eqs. (27) and (31) into Eq. (15) for [σr] leads to 

  
 

2
1 1 2 2

2 ln ln 4
63 3

i
i

k g s a k k
C a s

a s

 
        




.             (77) 

Since τr<0 at ζ=ζp2 and ζi≤ζp2≤0, Eq. (35) is valid and becomes 

  
 2 23 ln 4 pa s k    .          (78) 

Substituting Eqs. (27) and (32) into Eq. (15) for [σr] and eliminating C6 and ζp2 by means of 
Eqs. (65) and (78), respectively, lead to 

 
2
2 2

2 ln 4
6 3

k k
C s  .                             (79) 

Eqs. (77) and (79) combine to give 

  
 1 1 2ln ln 16 0i

i

s a
k g k s a s

a s

 
       




.  (80) 

This equation determines the function s (a). Its solution should be found numerically. 
 

5.3.3 Case ζp2<ζi 
and −1≤ζp1<ζp2 

In this case Eq. (29) is valid in the region −1≤ζ<ζp1, Eq. (28) in the region ζp1≤ζ≤ζp2, Eq. (30) in 
the region ζp2≤ζ≤ζi, and Eq. (32) in the region ζi≤ζ≤0. Substituting Eqs. (30) and (32) into Eq. (16) 
and eliminating C6 by means of Eq. (65) lead to 

  

   2 1 1 2
4 ln ln

3 3
i

k k g k
C a s s


   .          (81) 

Since τr<0 at ζ=ζp2 and −1≤ ζp2<ζi, Eq. (37) is valid and becomes  

  
 2 13 ln 4 pa s k    .          (82) 

Substituting Eqs. (28) and (30) into Eq. (15) for [σr] leads to 

  
 

2
2 1 1 1 1

1 ln ln 4
63 3

i
i

k a s k g g k
C a s

s

         
  .             (83) 

Since τr>0 at ζ=ζp1 and −1≤ ζp1<ζi, Eq. (36) is valid and becomes 

   
 1 13 ln 4 pa s k     .          (84) 

Substituting Eqs. (28) and (29) into Eq. (15) for [σr] and eliminating C3 and ζp1 by means of Eqs. 
(65) and (84), respectively, lead to 
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 

2
1 1 1 1

1 ln 4
6 3

g k g k
C s a     .                                                (85) 

Eqs. (83) and (85) combine to give 

 
  1 1 2ln 16 ln 0i

i

a s
k g s a a s k

s

          
 .                                 (86) 

This equation determines the function s (a). Its solution should be found numerically. 
 

5.3.4 Case ζp1=ζi and ζi<ζp2≤0 
In this case Eq. (29) is valid in the region −1≤ζ≤ζi, Eq. (27) in the region ζi≤ζ≤ ζp2, and Eq. (32) 

in the region ζp2≤ζ≤0. Substituting Eqs. (27) and (29) into Eq. (16) and eliminating C3 by means of 
Eq. (65) lead to 

  
 21 1

2

1
ln ln 4

23
i

i

k g s a
C a s

a s

 
       




.          (87) 

Since τr<0 at ζ=ζp2 and ζi≤ζp2≤0, Eq. (35) is valid and becomes 

  
 2 23 ln 4 pa s k    .          (88) 

Substituting Eqs. (27) and (32) into Eq. (15) for [σr] leads to 

  
 

2
2 2

2 ln 4
6 3

k k
C s  .        (89) 

Eqs. (87) and (89) combine to give 

  
   

2
22 2 1 1 1

ln 4 ln ln 4 0
6 23 3

i
i

k k k g s a
s a s

a s

 
         




.        (90) 

This equation determines the function s (a). Its solution should be found numerically. The 
range of validity of this solution is restricted by the condition that the yield criterion is not violated 
in material 2 at ζ=ζi (Fig. 2). This condition may be represented by Eq. (60). This equation can be 
used to eliminate s in Eq. (90). The resulting equation should be solved for a numerically.  
 

5.3.5 Case ζp2=ζi 
 and −1≤ ζp1< ζi 

 
In this case Eq. (29) is valid in the region −1≤ζ≤ζp1, Eq. (28) in the region ζp1≤ζ≤ζi, and Eq. (32) 

in the region ζi≤ζ≤0. Substituting Eqs. (28) and (32) into Eq. (16) and eliminating C6 by means of 
Eq. (65) lead to 

  
 22 1

1 ln ln 4
23

i
i

k a s g
C a s

s

        
  .          (91) 

Since τr>0 at ζ=ζp1 and −1≤ζp1≤ζi, Eq. (36) is valid and becomes 

  
 1 13 ln 4 pa s k     .          (92) 
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Substituting Eqs. (28) and (29) into Eq. (15) for [σr] leads to 

  
 

2
1 1 1 1

1 ln 4
6 3

k g k g
C s a     .        (93) 

Eqs. (91) and (93) combine to give 

  
   

2
21 1 1 1 2 1ln 4 ln ln 4 0

6 23 3
i

i

k g k g k a s g
s a a s

s

              
  .      (94) 

This equation determines the function s (a). Its solution should be found numerically. The 
range of validity of this solution is restricted by the condition that the yield criterion is not violated 
in material 1 at ζ=ζi (Fig. 2). This condition may be represented by Eq. (49). This equation can be 
used to eliminate s in Eq. (94). The resulting equation should be solved for a numerically.  
 
 
6. Bending moment, stresses and geometric parameters 
 

It is seen from Eqs. (26)-(32) that the through thickness distribution of the radial stress is 
known if the constants of integration involved in these equations are known. These constants have 
been found for any stage of the process. Therefore, the through thickness distribution of the radial 
stress can be calculated at any value of a with no difficulty. Using this distribution and Eq. (24) the 
through thickness distribution of the circumferential stress is found from Eq. (33). Then, the 
dimensionless bending moment is determined from Eq. (21) as a function of a. It is worthy of note 
that the integral involved in Eq. (21) can be evaluated in terms of elementary functions at any 
stage of the process. However, the final expression is cumbersome. In order to find the radial and 
circumferential stresses as functions of r at a given value of a, it is necessary to use Eq. (5). 
Geometric parameters of the sheet after any amount of deformation are given by Eqs. (6) and (7). 
In addition, the current thicknesses of the individual layers are determined from Eqs. (6) and (19) 
as 

  
1 22 2 2 2

1
, .i i

i CD AB i

s s s s
h r r H h r r H

a a a a a a a

   
             

   

 
  (95) 

Here h1 is the current thickness of the layer made of material 1 and h2 is the current thickness of 
the layer made of material 2 (Fig. 2). 
 
 
7. Illustrative example 
 

Take, for example, g1=3, k1=0.0012 and k2=0.0008. Solving Eqs. (40), (41) and (42) 
numerically gives ae1>ae2 for any value of ζi. Therefore, the elastic/plastic solution given in Section 
5.2.1 should be used in the range a>ae2. The subsequent analysis depends on the value of ζi. 
Numerical calculation was conducted for ζi=−0.2, ζi=−0.4 and ζi=−0.6. If ζi=−0.2 and ζi=−0.4 then 
the solution given in Section 5.3.5 is valid in the range ap≤a≤af. If ζi=−0.6 then the solutions given 
in Sections 5.3.1 and 5.3.5 are valid, sequentially, in the range ap≤a≤af. Here af =π/40. It is seen 
from Eq. (6) that this value of a corresponds to the final configuration in which θ0=π/2 if L/H=10 
(Fig. 1). The numerical solution is illustrated in Figs. 3 to 5. In particular, the variation of the  
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Fig. 3 Variation of the thickness of the sheet with H/rCD 
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Fig. 4 Variation of the thickness of the sheet with H/rCD 
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Fig. 5 Variation of the dimensionless bending moment with H/rCD 
 
 

thickness of the sheet with H/rCD is depicted in Fig. 3 for ζi=−0.2, ζi=−0.4 and ζi=−0.6. It is seen 
from this figure that the thickness changes as the deformation proceeds. It is worthy of note that 
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the thickness of homogeneous sheets of rigid perfectly plastic material is constant in the plane 
strain pure bending (Hill, 1950). The variation of the thickness of each layer with H/rCD is shown 
in Fig. 4. The solid lines correspond to the layer made of material 2 and the broken lines to the 
layer made of material 1 (Fig. 2). It is seen from this figure that the thickness of the layer made of 
material 2 changes more significantly than the thickness of the layer made of material 1. This is 
not surprisingly because material 2 is softer than material 1. Finally, the dependence of the 
dimensionless bending moment on H/rCD is depicted in Fig. 5. It is seen from this figure that this 
moment rapidly increases at the very beginning of the process and then is almost constant.  
 
 
8. Conclusions 
 

The theoretical model of the plane strain bending process of bimetallic sheets presented in this 
paper deals only with elastic perfectly plastic materials. An advantage of this model is that the 
solution is semi-analytic. In particular, a numerical technique is only necessary to solve several 
transcendental equations. Therefore, a very high accuracy of numerical solutions can be easily 
achieved and such solutions can serve as a simple benchmark test for numerical packages. A 
necessity of such tests in metal forming applications has been pointed out in Roberts et al. (1992).  

The model developed can be extended to strain hardening materials using the solution given in 
Alexandrov and Hwang (2010), to a class of anisotropic materials using the solution given in  
Alexandrov and Hwang (2009) and to bending under tension using the solution given in 
Alexandrov et al. (2011). 

The illustrative example demonstrates that the current thickness of the sheet is sensitive to the 
initial thickness of each layer (Fig. 3). The thickness of the softer layer decreases and the thickness 
of the harder layer increases as the deformation proceeds (Fig. 4). The bending moment rapidly 
increases at the very beginning of the process and then becomes almost constant (Fig. 5). This 
qualitative behavior of the solution is similar to that found for homogeneous sheets in Alexandrov 
et al. (2006).  
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