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Abstract.  In the present work, a simple first-order shear deformation theory is developed and validated for 

a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates 

with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the 

present first-order shear deformation theory involves only four unknowns and has strong similarities with 

the classical plate theory in many aspects such as governing equations of motion, and stress resultant 

expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed 

to be graded in the thickness direction according to a simple power-law distribution in terms of the volume 

fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The 

thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness 

direction. The results reveal that the volume fraction index, loading type and functionally graded layers 

thickness have significant influence on the thermal buckling of functionally graded sandwich plates. 

Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve 

the same accuracy of the existing conventional first-order shear deformation theory which has more number 

of unknowns. 
 

Keywords:  plate theory; thermal buckling; functionally graded plate; sandwich plate; volume fraction 

index 

 
 
1. Introduction 
 

Sandwich structures made of a core bonded to two face sheets are widely employed in the 

aerospace industry because of their important bending rigidity, low specific weight, excellent 

vibration properties and good fatigue characteristics. However, the sudden variation in the material 

properties from one layer to another can lead in stress concentrations which produce generally an 
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interface debonding. To overcome this type of damage, the solution of functionally graded (FG) 

sandwich structures is developed. In such materials, two face sheets are made from isotropic 

FGMs while the core is made from an isotropic homogeneous material. Thanks to the smooth and 

continuous change in the characteristics of FGMs, the stress concentration which can be occurred 

in laminated sandwich structures is avoided in FG sandwich structures. FGMs are widely 

employed in many engineering applications such as spacecraft industry, mechanics, civil 

engineering, aerospace, nuclear, automotive and so on (Miamoto et al. 1999, Lu et al. 2009, Ould 

Larbi et al. 2013, Hadji et al. 2014, Yaghoobi et al. 2014, Liang et al. 2014, 2015, Bouguenina et 

al. 2015, Hebali et al. 2015, Ait Atmane et al. 2015, Pradhan and Chakraverty 2015, Sallai et al. 

2015, Sofiyev and Kuruoglu 2015, Kar and Panda 2015, Bourada et al. 2015, Arefi 2015, Akbaş 

2015, Al-Basyouni et al. 2015,  Kirkland and Uy 2015, Ebrahimi and Dashti 2015, Hadji and 

Adda Bedia 2015a,b, Cunedioglu 2015, Meksi et al. 2015, Meradjah et al. 2015, Darılmaz 2015, 

Ait Atmane et al. 2016, Bellifa et al. 2016).  

With the increased use of FG sandwich structures in the design of engineering structures, 

understanding their mechanical behaviors becomes an essential task (Lu et al. 2009, Talha and 

Singh 2010, Shahrjerdi et al. 2011, Wen et al. 2011, El Meiche et al. 2011, Jha et al. 2013, 

Chakraverty and Pradhan 2014, Mantari and Granados 2015). Indeed, in scientific literature, 

several researches have been reported on the bending, dynamic, and buckling analyses of sandwich 

plates with FG face sheets. Using an accurate higher-order shear deformation theory (HSDT), 

Natarajan and Manickam (2012) investigated the static and free vibration response of two types of 

FG sandwich plates. Bourada et al. (2012) proposed a new four-variable refined plate theory for 

thermal buckling analysis of FG sandwich plates. Based on the first-order shear deformation plate 

theory (FSDT), Yaghoobi and Yaghoobi (2013) studied the buckling response of sandwich plates 

with FG face sheets resting on elastic foundation. Kettaf et al. (2013) developed a new hyperbolic 

shear displacement model for thermal buckling response of FG sandwich plates. Tounsi et al. 

(2013) analytically studied the thermoelastic bending problem of FG sandwich plates based on the 

refined trigonometric shear deformation theory. Sobhy (2013) investigated the free vibration and 

the buckling responses of exponentially graded sandwich plates resting on Pasternak elastic 

foundation. Bessaim et al. (2013) employed a new higher-order shear and normal deformation 

theory for the static and free vibration behavior of sandwich plates with functionally graded 

isotropic face sheets. Houari et al. (2013) investigated the thermoelastic bending response of FG 

sandwich plates using a new higher order shear and normal deformation theory. Xiang et al. 

(2013) studied the free vibration behavior of FG sandwich plates by employing an nth-order shear 

deformation theory and a meshless method, while Ait Amar Meziane et al. (2014) examined the 

buckling and free vibration of FG sandwich plates using an efficient and simple refined shear 

deformation theory. Three-dimensional finite element simulations for investigating low velocity 

impact behavior of sandwich panels with a FG core were presented by Etemadi et al. (2009). 

Swaminathan and Naveenkumar (2014) proposed a higher order refined computational models for 

the stability analysis of FG sandwich plates. Khalfi et al. (2014) proposed a refined and simple 

shear deformation theory for thermal buckling of solar FG plates on elastic foundation. Ahmed 

(2014) examined the post-buckling of FG sandwich beams by employing a consistent higher order 

theory. Bennai et al. (2015) presented a new higher-order shear and normal deformation theory for 

FG sandwich beams. Bakora and Tounsi (2015) analyzed the thermo-mechanical post-buckling 

response of thick FG plates resting on elastic foundations. Bouchafa et al. (2015) discussed the 

thermal stresses and deflections of FG sandwich plates using a new refined hyperbolic shear 

deformation theory. Hamidi et al. (2015) presented a sinusoidal plate theory with 5-unknowns and 
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stretching effect for thermo-mechanical bending behaviour of FG sandwich plates. Mahi et al. 

(2015) proposed a new hyperbolic shear deformation theory for bending and free vibration 

analysis of isotropic, functionally graded, sandwich and laminated composite plates. Tebboune et 

al. (2015) studied the thermal buckling response of FG plates resting on elastic foundation based 

on an efficient and simple trigonometric shear deformation theory. Zidi et al. (2014) presented the 

bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable 

refined plate theory. Ebrahimi and Habibi (2016) examined the bending and vibration behaviour of 

higher-order shear deformable compositionally graded porous plate. Hadji et al. (2016) analyzed 

the mechanical response of FG beam using a new first-order shear deformation theory. Bennoun et 

al. (2016) developed a novel five variable refined plate theory for vibration analysis of FG 

sandwich plates. 

It should be signaled that HSDTs are highly computational cost because of their use of many 

unknowns (e.g., theories (Talha and Singh 2010) with eleven unknowns and (Natarajan and 

Manickam 2012) with thirteen unknowns). To reduce computational cost, HSDTs with four and 

five unknowns were recently proposed for FG plates (see references (Benachour et al. 2011, 

Tounsi et al. 2013, Bouderba et al. 2013, Thai and Kim 2013, Thai and Choi 2011, 2013, 

Yaghoobi and Fereidoon 2014, Thai et al. 2014, Belabed et al. 2014, Fekrar et al. 2014, Draiche et 

al. 2014, Bousahla et al. 2014, Mantari and Guedes Soares 2014, Nedri et al. 2014, Attia et al. 

2015, Jiang et al. 2015, Chattibi et al. 2015, Ait Yahia et al. 2015, Sobhy 2015, Nguyen et al. 

2015).   

This work presents the thermal buckling response of FG sandwich plates composed of FG face 

sheets and an isotropic homogeneous core using a simple first-order shear deformation theory 

(FSDT). By considering a further assumption, the number of variables and governing stability 

equations of the present FSDT is diminished, thus makes it simple to use. Indeed, the number of 

unknown variables involved in the present model is only four, as opposed to five in the case of the 

conventional FSDT. Various boundary conditions are considered in this work. Governing 

equations are obtained from the principle of minimum total potential energy. Analytical solutions 

for thermal buckling analysis of FG sandwich plates are determined. Numerical results are 

presented to prove the accuracy of the present formulation. 

 

 

2. Theoretical formulation 
 

In this work, a sandwich plate composed of three layers is considered as presented in Fig. 1. 

Two FG face sheets are made from a mixture of a metal and a ceramic, while a core is composed 

of an isotropic homogeneous material. The vertical positions of the bottom surface, the two 

interfaces between the core and faces layers, and the top surface are denoted, respectively, by 

h0=−h/2, h1, h2 and h3=h/2. The total thickness of the FG plate is h, where h=tC=tFGM and tC=t2−h1. 

tC and tFGM are the layer thickness of the core and all-FGM layers, respectively. The material 

properties of FG face sheets are supposed to change continuously within the plate thickness 

according to a power law distribution as 

 VPPPzP mcm )(                                                       (1) 

where P denotes the effective material property such as Young’s modulus P, Poisson’s ratio v, 

thermal expansion coefficient α; subscripts c and m represent the ceramic and metal phases, 

respectively; and V is the volume fraction of the ceramic phase expressed by 
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Fig. 1 Geometry of the FGM sandwich plate 
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where p is the power law index that governs the volume fraction gradation.  

 

2.1 Kinematics and constitutive equations 
 

The displacement field of the conventional FSDT is given by 
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where u0, v0, w0, υx and υy are five unknown displacement functions of the midplane of the plate. 

Using the same methodology presented by Bouremana et al. (2013) in the case of beam, the 

displacement field of the new FSDT can be expressed in a simpler form as 
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Clearly, the displacement field in Eq. (4) has only four unknowns (u0, v0, wb, ws). In fact, this 
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reduction of the unknown variables is due to dividing the vertical displacement w  into bending 

and shear parts (i.e., w=wb+ws) and the further assumptions given by υx=−∂wb/∂x and υy=−∂wb/∂y. 

The non-linear von Karman strain-displacement equations are as follows 

,

,

,

,
2

1

,
2

1

2

2















































































































































x

w

x

w

z

u

y

w

y

w

z

v

y

w

y

w

x

w

x

w

y

u

x

v

y

w

y

w

y

v

x

w

x

w

x

u

sb

xz

sb

yz

sbsb

xy

sb

y

sb

x











 

,

,

,

,
2

1

,
2

1

2

2















































































































































x

w

x

w

z

u

y

w

y

w

z

v

y

w

y

w

x

w

x

w

y

u

x

v

y

w

y

w

y

v

x

w

x

w

x

u

sb

xz

sb

yz

sbsb

xy

sb

y

sb

x











 

(5) 

On the basis of the displacement field presented in Eq. (4), Eq. (5) becomes 
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The linear constitutive relations of a FG sandwich plate can be written as 
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where (σx, σy, τyz, τxz, τxy) and (εx, εy, γyz, γxz, γxy) are the stress and strain components, respectively. 

T(z) is the temperature difference with respect to the reference and the stiffness coefficients, Qij, 

can be expressed as 
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2.2 Stability equations 
 

The equilibrium equations of FG sandwich plates under thermal loadings may be obtained on 

the basis of the stationary potential energy (Reddy, 1984). The equilibrium equations are obtained 

as 
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with  
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Using constitutive relations, the stress and moment resultants are defined as 
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Upon substitution of Eq. (6) into Eq. (8) and the subsequent results into Eq. (12) the stress 

resultants are obtained in the matrix form as 
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where (Aij, Bij, Dij) and  (H44, H55) are the stiffness coefficients defined by 
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with k being the shear correction factor. 

The stress and moment resultants, T

y

T

x NN   and T

y

T

x MM    to thermal loading are defined by 
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In order to obtain the stability equations and study the thermal buckling behavior of the FG 

sandwich plate, the adjacent equilibrium criterion is employed (Brush and Almroth 1975). By 

employing this approach, the governing stability equations are determined as 
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where 
0

xN  , 
0

xyN  and 
0

yN  are the pre-buckling forces. Eq. (16) can be written in terms of 

displacements ((
1

0u ,
1

0v ,
1

bw ,
1

sw ) by substituting for the stress resultants from Eq. (13). For FG 

sandwich plate, the stability equations Eq. (16) take the form 
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3. Thermal buckling solution 
 

The exact solution of Eq. (17) for the FGMs sandwich plate under various boundary conditions 

can be constructed. The boundary conditions for an arbitrary edge with simply supported and 

clamped edge conditions are: 

• Clamped (C) 

0////00  ywxwwywxwwvu sssbbb
 at  ax  ,0  and by  ,0  (18) 

• Simply supported (S) 

0//0  ywwywwv ssbb  at  ax  ,0                               (19a) 

0//0  xwwxwwu ssbb  at  by  ,0                              (19b) 

The following representation for the displacement quantities, that satisfy the above boundary 

conditions, is appropriate in the case of our problem 
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Table 1 The admissible functions Xm(x) and Yn(y) 

 
Boundary conditions The functions Xm and Yn 

At x=0, a At y=0, b Xm(x) Yn(y) 

SSSS 
0)0()0( ''  mm XX  0)0()0( ''  nn YY  

) sin( x  ) sin( y  
0)()( ''  aXaX mm

 0)()( ''  bYbY nn
 

CSSS 
0)0()0( '  mm XX  0)0()0( ''  nn YY  

 1) cos() sin( xx   ) sin( y  
0)()( ''  aXaX mm

 0)()( ''  bYbY nn
 

CSCS 
0)0()0( '  mm XX  0)0()0( '  nn YY  

 1) cos() sin( xx    1) cos() sin( xx   
0)()( ''  aXaX mm

 0)()( ''  bYbY nn
 

CCSS 
0)0()0( '  mm XX  0)()( ''  bYbY nn

 
) (sin2

x  ) sin( y  
0)()( '  aXaX mm

 0)()( ''  bYbY nn
 

CCCC 
0)0()0( '  mm XX  0)0()0( ''  nn YY  

) (sin2
x  ) (sin2

y  
0)()( '  aXaX mm

 0)()( '  bYbY nn
 

FFCC 
0)0()0( '''''  mm XX  0)0()0( '  nn YY  

 1) (sin) (cos 22 xx   ) (sin2
y  

0)()( '''''  aXaX mm
 0)()( '  bYbY nn

 

()’ Denotes the derivative with respect to the corresponding coordinates. 
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where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters. 

The functions Xm(x) and Yn(y) are suggested by Sobhy (2013) to satisfy at least the geometric 

boundary conditions given in Eqs. (18) and (19), and represent approximate shapes of the 

deflected surface of the plate. These functions, for the different cases of boundary conditions, are 

listed in Table 1 noting that λ=mπ/a and μ=nπ/b.  

Substituting expressions (20) into the governing Eq. (17), we can obtain, after some 

mathematical manipulations, the following equations 
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The non-trivial solution is obtained when the determinant of Eq. (21) equals zero.  

 

3.1 Buckling of FGM plates under uniform temperature rise 
 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT=Tf−Ti. The thermal force 

resultant is evaluated as 
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3.2 Buckling of FGM plates subjected to graded temperature change across the 

thickness 
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We assume that the temperature of the top surface is Tt and the temperature varies from Tt, 

according to the power law variation through-the-thickness, to the bottom surface temperature Tb 

in which the plate buckles. In this case, the temperature through-the-thickness is given by 

tT
h

z
TzT 












2

1
)(                                                       (24) 

where the buckling temperature difference ΔT=Tb−Tt and γ is the temperature exponent (0<γ<∞). 

Note that the value of γ equal to unity represents a linear temperature change across the 

thickness. While the value of γ excluding unity represents a non-linear temperature change 

through-the-thickness. Similar to the previous loading case, the critical buckling temperature 

change ΔTcr is obtained by using Eqs. (24) and (23). 

 

 

4. Numerical results 
 

In this section, numerical examples are proposed and discussed for checking the accuracy of 

the present formulation in predicting the thermal buckling temperatures. Critical buckling 

temperatures are obtained and the comparison is carried out with the existing results. 

The first comparative study for evaluation of the critical buckling temperature difference Tcr 

between the proposed theory and the solution developed by Zhao et al. (2009) based on FSDT, in 

conjunction with the element- free kp Ritz method, results of Kiani et al. (2011) based on the 

combined Galerkin-power series solution, results of Nguyen-Xuan et al. (2011) based on the 

smoothed finite elements method, results of Bateni et al. (2013) based on the multi-term Galerkin 

solution and those of Bouhadra et al. (2015) is performed in Table 2. The plate here is subjected to 

a uniform temperature rise across the thickness and with clamped boundary conditions. From the 

results presented in Table 2, it is observed that our results have a good agreement with the  

 

 
Table 2 Critical buckling temperature difference Tcr of a clamped square Al/Al2O3 FGM plate under uniform 

temperature rise for different values of power law index p and side-to-thickness ratio 

h/a Theory p=0 p=0.5 p=1 p=2 p=5 

0.01 

Present 181.299 102.787 84.306 74.738 77.025 

Bouhadra et al. (2015) 181.300 102.795 84.307 74.715 76.934 

Zhao et al. (2009) 175.817 99.162 82.357 71.013 74.591 

Kiani et al. (2011) 182.06 103.15 84.58 74.99 77.36 

Nguyen-Xuan et al. (2011) 188.28 105.27 86.07 76.07 78.06 

Bateni et al. (2013) 180.30 102.23 83.84 74.30 76.50 

0.02 

Present 45.529 25.800 21.157 18.756 19.345 

Bouhadra et al. (2015) 45.529 25.800 21.156 18.754 19.339 

Zhao et al. (2009) 44.171 24.899 20.771 18.489 19.150 

Kiani et al. (2011) 45.51 25.79 21.15 18.75 19.34 

Nguyen-Xuan et al. (2011) 47.50 26.54 21.70 19.18 19.70 

Bateni et al. (2013) 45.28 25.65 21.04 18.65 19.23 
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Table 3 Material properties used in the FG sandwich plate 

Properties Metal: Ti-6A1-4V Ceramic: ZrO2 

E (GPa) 66.2 244.27 

v 0.3 0.3 

α (10
-6

/K) 10.3 12.766 

 
Table 4 Minimum critical temperature parameter αTcr of the simply supported isotropic plate (a/b=1, 

α0=1.0×10
-6

 K, E=1.0×10
-6

 N/m
2
, v=0.3) 

a/h Present Kettaf et al. (2013) Matsunaga (2005) 

10 

20 

100 

0.1198 10
-1 

0.3119 10
-2 

0.1265 10
-3

 

0.1198 10
-1

 

0.3119 10
-2

 

0.1265 10
-3

 

0.1183 10
-1

 

0.3109 10
-2

 

0.1264 10
-3

 

 
Table 5 Critical buckling temperature (10

3
α0ΔTcr) of a homogeneous isotropic plate under uniform 

temperature rise 

b/a Theory a/h=5 a/h=10 a/h=15 a/h=25 a/h=50 

0.5 

Present 80.90487 27.72437 13.23020 4.94967 1.25824 

FSDPT
(a) 

80.90487 27.72437 13.23021 4.94968 1.25824 

HSDPT
(a) 

81.15170 27.73347 13.23144 4.94979 1.25825 

SSDPT
(a) 

81.18685 27.73638 13.23205 4.94987 1.25825 

TSDPT
(a) 

81.09991 27.73011 13.23079 4.94970 1.25824 

CPT 126.5334 31.63335 14.05927 5.06134 1.26533 

1 

Present 41.29710 11.97782 5.48619 2.00643 0.50500 

FSDPT
(a) 

41.29710 11.97782 5.48619 2.00643 0.50499 

HSDPT
(a) 

41.32613 11.97877 5.48633 2.00644 0.50500 

SSDPT
(a) 

41.33313 11.97927 5.48643 2.00646 0.50500 

TSDPT
(a) 

41.31747 11.97825 5.48623 2.00643 0.50499 

CPT 50.61336 12.65334 5.62371 2.02453 0.50613 

2 

Present 27.72437 7.63907 3.46060 1.25824 0.31589 

FSDPT
(a) 

27.72437 7.63907 3.46060 1.25824 0.31589 

HSDPT
(a) 

27.73347 7.63938 3.46065 1.25824 0.31589 

SSDPT
(a) 

27.73638 7.63958 3.46069 1.25825 0.31589 

TSDPT
(a) 

27.73011 7.63918 3.46061 1.25824 0.31589 

CPT 31.63335 7.90834 3.51482 1.26533 0.31633 

5 

Present 23.55569 6.39227 2.88670 1.04784 0.26288 

FSDPT
(a) 

23.55569 6.39227 2.88670 1.04784 0.26288 

HSDPT
(a) 

23.56145 6.39248 2.88674 1.04785 0.26288 

SSDPT
(a) 

23.56351 6.39261 2.88676 1.04785 0.26288 

TSDPT
(a) 

23.55914 6.39233 2.88671 1.04784 0.26288 

CPT 26.31895 6.57974 2.92433 1.05276 0.26319 
(a)

 Taken from Kettaf et al. (2013) 

 

 

available data in (Bouhadra et al. 2015, Zhao et al. 2009, Kiani et al. 2011, Nguyen-Xuan et al. 

2011, Bateni et al. 2013). Good agreement is demonstrate between our results and the available 

data (Zhao et al. 2009, Kiani et al. 2011, Nguyen-Xuan et al. et al. 2011, Bateni et al. 2013, 
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Bouhadra et al. 2015).    

For numerical results, the combination of materials consists of Titanium and Zirconia. The 

Young’s modulus and the coefficient of thermal expansion for Titanium and Zirconia are given in 

Table 3.  

In order to prove the accuracy of the present method, a comparison study is made with the 

results obtained by both Matsunaga (2005) based on two-dimensional global higher-order 

deformation theory and Kettaf et al. (2013) based on hyperbolic shear deformation plate theory 

(HSDPT) for simply supported homogeneous isotropic plates under uniform temperature rise. The 

critical buckling temperature difference is listed in Table 4. As this table shows, the present results 

have a good agreement with those reported in Ref. (Matsunaga 2005). Excellent agreement can be 

observed for different values of thickness ratio a/h.  

Non-dimensional critical buckling temperatures (10
3
α0ΔTcr) of homogeneous isotropic plate 

(p=0, E(z)=E0, α(z)=α0, v=0.3) for different values of the side-to-thickness ratio a/h and aspect 

ratio b/a are listed in Table 5. The calculated non-dimensional critical buckling temperatures are 

compared with those reported by Kettaf et al. (2013). It should be noted that the results reported 

by Kettaf et al (2013) were based on hyperbolic shear deformation plate theory (HSDPT), 

sinusoidal shear deformation plate theory (SSDPT), third shear deformation plate theory (TSDPT), 

and the conventional first shear deformation plate theory (FSDPT) with five independent 

variables. An excellent agreement between the results is obtained for all values of geometric ratios 

a/h and b/a. The difference between the shear deformation plate theories and the CPT decreases as 

the ratios a/h or b/a increase because the plate becomes thin or long. It should be recalled that the 

present theory contains only four unknowns and four governing equations, while the number of 

unknowns and governing equations of the SSDPT, TSDPT and FSDPT is five. Thus, it can be 

stated that the present model is not only accurate but also simple in predicting the critical buckling 

temperature of FG sandwich plates. 
For verification of the thermal buckling solutions obtained in this work, the critical buckling 

temperature difference (Tcr=10
-3

ΔTcr), for FG sandwich plates for the uniform, linear and nonlinear 
cases of temperature distribution through the thickness are shown in Tables 6-8, respectively. The 
comparison between the present simple first-order shear deformation theory and different CPT, 
FSDPT, SSDPT, TSDPT and HSDPT is established. A good agreement between the results is seen 
for all values of volume fraction index p and thickness of the core tC of FG sandwich plates. In 
general, the present FSDPT and existing FSDT gives almost identical results. It should be noted 
that the proposed FSDPT contains less number of unknowns than the existing FSDPT. It can be 
concluded that the present FSDPT not only gives comparable results with the existing FSDPT, but 
also is simpler than the existing FSDPT due to having less number of unknowns, i.e., four as 
against five. 

Tables 6-8 indicate also the effect of the layer thickness of the core tC (ceramic layer) on the 

thermal buckling response of the FG sandwich plates. As can be observed from Tables 6 and 7, the 
thermal buckling temperatures increase with the decrease in volume fraction index p. Thus, the 
increase in thermal buckling temperature of an FG sandwich plate could be attributed to the 
ceramic property. Indeed, this remark is also proved when a small volume fraction index is 
considered (p≤2) for all values of tC. A small volume fraction index k  indicates that the ceramic is 
the dominant constituent in FG sandwich plates. However, Table 8 shows that the thermal 

buckling temperatures decrease with the decrease in volume fraction index p when the plate is 
under non-linear temperature rise with γ=5. It can be seen that the thermal buckling temperature 
increases with decreasing thickness of the thickness of the core layer (tC) for all considered volume 
fraction index. 

409



 

 

 

 

 

 

Bachir Bouderba, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud 

Table 6 Critical buckling temperature Tcr of FG sandwich square plates under uniform temperature rise 

versus volume fraction index p and tC/h (a/h=5) 

tC/h Theory 
p 

0 0.2 0.5 1 2 5 10 

0 

Present 3.23493 3.04858 2.83507 2.64222 2.57355 2.86226 3.23289 

FSDPT
(a) 

3.23493 3.04858 2.83507 2.64222 2.57355 2.86226 3.23289 

HSDPT
(a) 

3.23720 3.07138 2.87207 2.68975 2.63325 2.93978 3.30959 

SSDPT
(a) 

3.23775 3.07197 2.87277 2.69065 2.63460 2.94205 3.31226 

TSDPT
(a) 

3.23652 3.07042 2.87074 2.68781 2.63018 2.93446 3.30340 

CPT 3.96470 3.66606 3.34559 3.06734 2.96200 3.32950 3.82441 

0.2 

Present 3.23493 3.03394 2.79675 2.55053 2.34734 2.28926 2.35538 

FSDPT
(a) 

3.23493 3.03394 2.79675 2.55053 2.34734 2.28926 2.35538 

HSDPT
(a) 

3.23720 3.05543 2.83135 2.59388 2.39856 2.35252 2.42641 

SSDPT
(a) 

3.23775 3.05598 2.83194 2.59458 2.39953 2.35401 2.42827 

TSDPT
(a) 

3.23652 3.05461 2.83030 2.59241 2.39637 2.34898 2.42195 

CPT 3.96470 3.64978 3.30066 2.95538 2.68016 2.59922 2.68195 

0.4 

Present 3.23493 3.04170 2.81495 2.57037 2.33409 2.15296 2.12571 

FSDPT
(a) 

3.23493 3.04171 2.81495 2.57038 2.33409 2.15296 2.12571 

HSDPT
(a) 

3.23720 3.05915 2.84285 2.60512 2.37406 2.19921 2.17624 

SSDPT
(a) 

3.23775 3.05956 2.84318 2.60545 2.37450 2.19992 2.17714 

TSDPT
(a) 

3.23652 3.05867 2.84246 2.60462 2.37320 2.19763 2.17417 

CPT 3.96470 3.66567 3.33354 2.99117 2.67295 2.43609 2.39804 

0.5 

Present 3.23493 3.05527 2.84659 2.62069 2.39542 2.20129 2.13606 

FSDPT
(a) 

3.23493 3.05527 2.84659 2.62069 2.39542 2.20130 2.13606 

HSDPT
(a) 

3.23720 3.06980 2.86974 2.64965 2.42885 2.23972 2.17737 

SSDPT
(a) 

3.23775 3.07014 2.86992 2.64976 2.42900 2.24005 2.17784 

TSDPT
(a) 

3.23652 3.06952 2.86972 2.64970 2.42873 2.23910 2.17640 

CPT 3.96470 3.68764 3.38155 3.06366 2.75801 2.50252 2.41816 

0.6 

Present 3.23493 3.07586 2.89364 2.69680 2.49698 2.31286 2.24191 

FSDPT
(a) 

3.23493 3.07586 2.89364 2.69680 2.49698 2.31286 2.24190 

HSDPT
(a) 

3.23720 3.08713 2.91139 2.71917 2.52309 2.34313 2.27452 

SSDPT
(a) 

3.23775 3.08741 2.91146 2.71909 2.52297 2.34310 2.27458 

TSDPT
(a) 

3.23652 3.08699 2.91168 2.71971 2.52367 2.34345 2.27461 

CPT 3.96470 3.71993 3.45164 3.17226 2.89771 2.65182 2.55878 

0.8 

Present 3.23493 3.13952 3.03406 2.92193 2.80661 2.72895 2.64315 

FSDPT
(a) 

3.23493 3.13952 3.03406 2.92193 2.80661 2.72895 2.64315 

HSDPT
(a) 

3.23720 3.14445 3.04101 2.93052 2.81681 2.74134 2.65659 

SSDPT
(a) 

3.23775 3.14474 3.04107 2.93038 2.81650 2.74092 2.65609 

TSDPT
(a) 

3.23652 3.14431 3.04137 2.93131 2.81794 2.74272 2.65798 

CPT 3.96470 3.81800 3.66058 3.49712 3.33246 3.21552 3.10423 

1 

Present 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 
FSDPT

(a) 
3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 

HSDPT
(a) 

3.23720 3.23720 3.23720 3.23720 3.23720 3.23720 3.23720 

SSDPT
(a) 

3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 

TSDPT
(a) 

3.23652 3.23652 3.23652 3.23652 3.23652 3.23652 3.23652 
CPT 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 

(a)
 Taken from Kettaf et al. (2013) 
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Table 7 Critical buckling temperature Tcr of FG sandwich square plates under linear temperature rise versus 

volume fraction index p and tC/h (a/h=5) 

tC/h Theory 
p 

0 0.2 0.5 1 2 5 10 

0 

Present 6.41986 6.04716 5.62014 5.23443 5.09711 5.67452 6.41578 

FSDPT
(a) 

6.41986 6.04716 5.62014 5.23443 5.09711 5.67452 6.41578 

HSDPT
(a) 

6.42441 6.09275 5.69414 5.32949 5.21651 5.82957 6.56918 

SSDPT
(a) 

6.42550 6.09396 5.69554 5.33130 5.21920 5.83411 6.57458 

TSDPT
(a) 

6.42305 6.09084 5.69148 5.32562 5.21036 5.81891 6.55680 

CPT 7.87940 7.28211 6.64118 6.08468 5.87400 6.60901 7.59882 

0.2 

Present 6.41986 6.01788 5.54350 5.05105 4.64468 4.52851 4.66058 

FSDPT
(a) 

6.41986 6.01789 5.54350 5.05105 4.64468 4.52851 4.66058 

HSDPT
(a) 

6.42441 6.06087 5.61271 5.13775 4.74712 4.65504 4.80264 

SSDPT
(a) 

6.42550 6.06197 5.61388 5.13917 4.74907 4.65803 4.80632 

TSDPT
(a) 

6.42305 6.05922 5.61059 5.13482 4.74275 4.64797 4.79372 

CPT 7.87940 7.24955 6.55131 5.86076 5.31032 5.14843 5.31369 

0.4 

Present 6.41986 6.03341 5.57990 5.09075 4.61818 4.25591 4.16712 

FSDPT
(a) 

6.41986 6.03341 5.57990 5.09075 4.61818 4.25591 4.16712 

HSDPT
(a) 

6.42441 6.06830 5.63571 5.16024 4.69812 4.34842 4.26735 

SSDPT
(a) 

6.42550 6.06913 5.63636 5.16089 4.69900 4.34984 4.24818 

TSDPT
(a) 

6.42305 6.06734 5.63491 5.15923 4.69640 4.34526 4.26325 

CPT 7.87940 7.28133 6.61708 5.93233 5.29588 4.82217 4.70737 

0.5 

Present 6.41986 6.06053 5.64319 5.19137 4.74084 4.35259 4.22211 

FSDPT
(a) 

6.41986 6.06053 5.64319 5.19137 4.74084 4.35259 4.22211 

HSDPT
(a) 

6.42441 6.08961 5.68948 5.24929 4.80770 4.42943 4.30474 

SSDPT
(a) 

6.42550 6.09029 5.68986 5.24952 4.80800 4.43011 4.30569 

TSDPT
(a) 

6.42305 6.08903 5.68943 5.24940 4.80746 4.42821 4.30281 

CPT 7.87940 7.32529 6.71310 6.07732 5.46601 4.95505 4.78633 

0.6 

Present 6.41986 6.10171 5.73727 5.34360 4.94396 4.57561 4.43382 

FSDPT
(a) 

6.41986 6.10171 5.73728 5.34361 4.94396 4.57561 4.43382 

HSDPT
(a) 

6.42441 6.12425 5.77278 5.38833 4.99619 4.63616 4.49905 

SSDPT
(a) 

6.42550 6.12482 5.77291 5.38818 4.99595 4.63609 4.84881 

TSDPT
(a) 

6.42305 6.12398 5.77335 5.38942 4.99734 4.63680 4.49922 

CPT 7.87940 7.38985 6.85328 6.29453 5.74542 5.25352 5.06756 

0.8 

Present 6.41986 6.22905 6.01812 5.79385 5.56322 5.33541 5.23630 

FSDPT
(a) 

6.41986 6.22905 6.01812 5.79385 5.56322 5.33541 5.23630 

HSDPT
(a) 

6.42441 6.23889 6.03202 5.81104 5.58362 5.35987 5.26317 

SSDPT
(a) 

6.42550 6.23949 6.03215 5.81076 5.58301 5.35923 5.26229 

TSDPT
(a) 

6.42305 6.23862 6.03273 5.81262 5.58589 5.36259 5.26598 

CPT 7.87940 7.58600 7.27115 6.94424 6.61492 6.29563 6.15846 

1 

Present 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 

FSDPT
(a) 

6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 

HSDPT
(a) 

6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 

SSDPT
(a) 

6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 6.42550 

TSDPT
(a) 

6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 

CPT 6.42363 6.12545 5.77544 5.39175 4.99944 4.63813 4.49981 
(a)

 Taken from Kettaf et al. (2013) 
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Table 8 Critical buckling temperature Tcr of FG sandwich square plates under non-linear temperature rise 

versus volume fraction index p and tC/h (a/h=5 and γ=5) 

tC/h Theory 
p 

0 0.2 0.5 1 2 5 10 

0 

Present 19.25957 20.41729 21.34246 22.02700 22.52869 23.12129 23.49484 

FSDPT
(a) 

19.25957 20.41729 21.34246 22.02700 22.52869 23.12129 23.49484 

HSDPT
(a) 

19.27322 20.57122 21.62347 22.42701 23.05643 23.75304 24.05661 

SSDPT
(a) 

19.27655 20.57531 21.62882 22.43468 23.06838 23.77163 24.07624 

TSDPT
(a) 

19.26915 20.56479 21.61337 22.41074 23.02926 23.70963 24.01127 

CPT 23.63820 24.58692 25.21986 25.60494 25.96247 26.92893 27.82720 

0.2 

Present 19.25957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958 

FSDPT
(a) 

19.25957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958 

HSDPT
(a) 

19.27322 20.43016 21.34626 21.99533 22.37338 22.64929 22.85562 

SSDPT
(a) 

19.27655 20.43388 21.35077 22.00145 22.38259 22.66392 22.87344 

TSDPT
(a) 

19.26915 20.42463 21.33822 21.98279 22.35275 22.61489 22.81317 

CPT 23.63820 24.43703 24.91598 25.09061 25.02775 25.04991 25.28770 

0.4 

Present 19.25957 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153 

FSDPT
(a) 

19.25957 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153 

HSDPT
(a) 

19.27322 20.24553 21.00745 21.54152 21.81937 21.87237 21.87534 

SSDPT
(a) 

19.27655 20.24830 21.00993 21.54429 21.82352 21.87961 21.88463 

TSDPT
(a) 

19.26915 20.24234 21.00447 21.53734 21.81141 21.85652 21.85429 

CPT 23.63820 24.29255 24.66557 24.76464 24.59556 24.25535 24.13098 

0.5 

Present 19.25957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437 

FSDPT
(a) 

19.25957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437 

HSDPT
(a) 

19.27322 20.13209 20.80394 21.28287 21.54783 21.60059 21.57856 

SSDPT
(a) 

19.27655 20.13435 20.80531 21.28380 21.54921 21.60389 21.58333 

TSDPT
(a) 

19.26915 20.13019 20.80375 21.28330 21.54679 21.59462 21.56887 

CPT 23.63820 24.21722 24.54686 24.64006 24.49836 24.16380 23.99263 

0.6 

Present 19.25957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808 

FSDPT
(a) 

19.25957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808 

HSDPT
(a) 

19.27322 20.00176 20.57076 20.98623 21.23955 21.32555 21.31715 

SSDPT
(a) 

19.27655 20.00362 20.57125 20.98565 21.23856 21.32526 21.31771 

TSDPT
(a) 

19.26915 20.00087 20.57280 20.99045 21.24446 21.32848 21.31794 

CPT 23.63820 24.13520 24.42100 24.51562 24.42463 24.16529 24.01085 

0.8 

Present 19.25957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455 

FSDPT
(a) 

19.25957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455 

HSDPT
(a) 

19.27322 19.68210 19.99784 20.23872 20.41383 20.52740 20.55953 

SSDPT
(a) 

19.27655 19.68400 19.99828 20.23774 20.41159 20.52420 20.55608 

TSDPT
(a) 

19.26915 19.68124 20.00022 20.24422 20.42213 20.53780 20.57050 

CPT 23.63820 23.93190 24.10594 24.18546 24.18431 24.11121 24.05679 

1 

Present 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 
FSDPT

(a) 
19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 

HSDPT
(a) 

19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 
SSDPT

(a) 
19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 

TSDPT
(a) 

19.26915 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915 

CPT 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 
(a)

 Taken from Kettaf et al. (2013) 

412



 

 

 

 

 

 

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory 

Table 9 Critical buckling temperature Tcr of FG sandwich square plates under uniform, linear and non-linear 

temperature rise versus volume fraction index p and tC/h (a/h=5) 

tC/h Temperature p 
Boundary condition 

SSSS CSSS CSCS CCSS CCCC FFCC 

0 

U 
0.5 2.83507 4.09320 5.00928 4.66511 6.02729 6.71974 

2
 

2.57355 3.76007 4.63724 4.32208 5.63185 6.32716 

L 
0.5

 
5.62014 8.13640 9.96856 9.28023 12.0046 13.3895 

2
 

5.09711 7.47013 9.22448 8.59416 11.2137 12.6043 

NL 
0.5

 
21.3425 30.8980 37.8556 35.2416 45.5874 50.8465 

2 22.5287 33.0172 40.7712 37.9853 49.5634 55.7098 

0.4 

U 
0.5 2.81495 4.05752 4.96039 4.61914 5.96099 6.63909 

2
 

2.33408 3.41853 4.22279 3.93652 5.13854 5.78242 

L 
0.5

 
5.57990 8.06503 9.87079 9.18828 11.8720 13.2282 

2
 

4.61818 6.78707 8.39557 7.82304 10.2271 11.5148 

NL 
0.5

 
20.7994 30.0629 36.7940 34.2499 44.2535 49.3088 

2 21.4481 31.5211 38.9914 36.3324 47.4974 53.4781 

0.8 

U 
0.5 3.03406 4.33623 5.27233 4.90741 6.29511 6.97530 

2
 

2.80661 4.04054 4.93576 4.59588 5.92583 6.59496 

L 
0.5

 
6.01812 8.62246 10.4947 9.76483 12.5402 13.9006 

2
 

5.56322 7.73077 9.82152 9.14176 11.8017 13.1399 

NL 
0.5

 
19.9518 28.5859 34.7928 32.3732 41.5744 46.0844 

2 20.3393 29.6075 35.9077 33.4225 43.1471 48.0399 

1 

U 
0.5 3.23493 4.59106 5.55750 5.17128 6.60133 7.28509 

2
 

3.23493 4.59106 5.55750 5.17128 6.60133 7.28509 

L 
0.5

 
6.41986 9.13213 11.0650 10.2926 13.1527 14.5202 

2
 

6.41986 9.13213 11.0650 10.2926 13.1527 14.5202 

NL 
0.5

 
19.2596 27.3964 33.1950 30.8777 39.4580 43.5606 

2 19.2596 27.3964 33.1950 30.8777 39.4580 43.5606 

 

 

The effect of the volume fraction index p and thickness of the core tC on the critical buckling 

temperature difference of FG sandwich plate under uniform temperature rise (U), linear (L) and 

non-linear (NL) temperature distributions is shown in Table 9 for various boundary conditions. It 

can be seen from results presented in Table 9 that the SSSS plate is the softer structure, whereas 

the FFCC plate is the stiffer structure. 

For more clarity, the influence of the volume fraction index p on the non-dimensional critical 

buckling temperature Tcr of a square FG under uniform, linear and non-linear temperature change 

through-the-thickness is plotted in Fig. 2 using the simple first-order shear deformation theory.  It 

is interesting to note from this figure that the critical buckling temperature Tcr for the plates under 

uniform temperature change is smaller than that for the plates under a non-linear temperature 

change. While Tcr for the plates under linear temperature change is intermediate to the two 

previous thermal loading cases. It can be concluded also that the non-dimensional critical buckling 

temperature initially decreases, and then the change of curves are not significant by increasing in 

the value of the volume fraction index.   

Further verification of critical buckling temperature is displayed in Fig. 3 for thick plates. In  
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Fig. 2 Critical buckling temperature difference Tcr versus the power law index p (tC=0.8h, a/h=10, a/b=1) 
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Fig. 3 Critical buckling temperature difference Tcr versus the side-to-thickness ratio a/h (tC=0.8h, 

a/b=1, k=1) 

 

 

this figure, the variations of dimensionless critical buckling temperatures versus thickness ratio a/h 

are compared for square FG sandwich plates under uniform, linear and non-linear temperature 

change through-the-thickness. It is observed that the critical temperature difference decreases 

414



 

 

 

 

 

 

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory 

monotonically as the thickness ratio a/h increases. Also, it is seen that Tcr increases as the 

nonlinearity parameter γ increases. 

Fig. 4 indicates the influences of the aspect ratio b/a on the critical buckling temperature 

change Tcr of FG sandwich plates under various thermal loading types. It is observed that, 
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Fig. 4 Critical buckling temperature difference Tcr versus the plate aspect ratio b/a (tC=0.8h, a/h=10, p=1) 
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Fig. 5 Critical buckling temperature difference Tcr versus the plate side-to-thickness ratio a/h with various 

boundary conditions. (a) uniform temperature; (b) linear temperature; (c) non-linear temperature (γ=5) 
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Fig. 5 Continued 

 

 

regardless of the sandwich plate types, the critical buckling Tcr decreases gradually with the 

increase of the plate aspect ratio b/a wherever the loading type is. It is also noticed from Fig. 4 that 

the Tcr increases with the increase of the non-linearity parameter γ. It can be concluded from Figs. 

2, 3 and 4, that the obtained results are in excellent agreement with those generated by Kettaf et al. 

(2013) based on the HSDPT. Thus, it can be stated that the present model is not only accurate but 
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also simple in predicting the critical buckling temperature of FG sandwich plates.  

Fig. 5 presents the critical buckling temperatures of FG sandwich square plate with various 

boundary conditions and under various thermal loading types. It can be seen that the critical 

buckling temperature decreases gradually with the side-to thickness ratio a/h. The results of the 

simply supported sandwich plate are less than that of the clamped-clamped and free-clamped 

sandwich plate. For the FG sandwich plate with intermediate boundary conditions, the results take 

the corresponding intermediate values.  

 

 

5. Conclusions 
 

A simple and accurate FSDT is presented and implemented in the present study for the thermal 

buckling analysis of FG sandwich plates with various boundary conditions. By dividing the 

deflection into bending, and shear components, the number of unknowns and governing equations 

of the present theory is reduced to four as against five or more unknown in the corresponding 

theories. Thus, a considerably lower computational effort is reached. The governing differential 

equations are obtained using the principle of minimum total potential energy. Verification studies 

prove that the present FSDT is not only more accurate than the conventional one, but also 

comparable with existing higher-order shear deformation theories which have a greater number of 

unknowns. The formulation lends itself particularly well to nanostructures (Besseghier et al. 2015, 

Chemi et al. 2015, Tagrara et al. 2015, Ould Youcef et al. 2015, Chakraverty and Behera 2015, 

Larbi Chaht et al. 2015, Bessaim et al. 2015, Zemri et al. 2015, Belkorissat et al. 2015, Rahimi 

Pour et al. 2015, Bounouara et al. 2016, Moradi-Dastjerdi 2016), which will be considered in the 

near future. 
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