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Abstract.  Multi-storey frame structures are frequently exposed to static and dynamic forces. Therefore 

analyses of static (buckling) and dynamic stability come into prominence for these structures. In this study, 

the effects of number of storey, static and dynamic load parameters, crack depth and crack location on the 

in-plane static and dynamic stability of cracked multi-storey frame structures subjected to periodic loading 

have been investigated numerically by using the Finite Element Method.  A crack element based on the 

Euler beam theory is developed by using the principles of fracture mechanics. The equation of motion for 

the cracked multi-storey frame subjected to periodic loading is achieved by Lagrange’s equation. The results 

obtained from the stability analysis are presented in three dimensional graphs and tables. 
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1. Introduction 
 

Multi-storey frames have been widely used in industrial buildings, bridges, gas or steam turbine 

blade packets, power plants and many mechanical engineering applications. These structures are 

exposed to static and dynamic loads depending on their operation conditions. Hereby, buckling 

and dynamic stability problems become important for multi-storey frame structures. In these 

frames, cracks may initiate due to earthquakes, accidents, corrosion or fatigue and grow up. As the 

crack affects the static and dynamic behaviors of a structure, so the buckling load and dynamic 

stability regions of these structure changes. In recent years, the static and dynamic stabilities of 

frame structures have been investigated by various methods. 

The finite element approach has been used to determine the regions of dynamic stability of 

beams and framed structures by Brisseghella et al. (1998). Xu and Liu (2002) have presented a 

practical method for the stability analysis of semi-braced steel frames with the effect of semi-rigid 

behaviour of beam-to-column connections being taken into account. Ozmen and Girgin (2005) 

have developed a practical method based on computing an approximate value for determining the 

buckling loads of multi-storey frames. Girgin and Girgin (2006) have proposed a generalized 

numerical method to derive the static and dynamic stiffness matrices and to handle the nodal load 
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vector for static analysis of non-uniform Timoshenko beam-columns under several effects. Their 

method is applicable to some stability problems. An approach for evaluating the elastic buckling 

loads for multi-storey unbraced steel frames subjected to variable loading or non-proportional 

loading has been affirmed by Xu and Wang (2007). Choi and Yoo (2009) have proposed a method 

to overcome the weaknesses inherent in traditional elastic buckling analysis, based on the system 

buckling approach for the design of multi-story frames. Sakar et al. (2012) have studied the in-

plane dynamic stability of multi-span frames, which are composed of columns and beams 

subjected to periodic loading using the Finite Element Method. Caddemi and Caliò (2013) have 

derived the exact stability stiffness matrix of an Euler-Bernoulli column in presence of an arbitrary 

number of concentrated cracks. Concentrated cracks are modelled as Dirac’s delta singularities 

superimposed to a uniform flexural stiffness. In their study, the exact evaluation of the buckling 

loads and the corresponding buckling modes, consistent with the distributed parameter model, 

have been obtained through the application of the Wittrick-Williams algorithm. Buckling analysis 

has been examined for one-bay multi-cracked frames. Xu and Zhuang (2014) have investigated the 

elastic stability of unbraced steel frames subjected to a non-uniform elevated temperature 

distribution based on the concept of storey based buckling. 

Buildings, bridges, turbines, power line towers etc. are subjected to numerous dynamic 

excitations such as wind, moving loads, earthquakes, hydrodynamic forces and pulsating loads 

produced by rotating machinery etc. These external disturbances could affect the vibration 

behaviour of structures especially when they combine with static preload. For certain values of 

exciting frequencies an entirely different type of resonance will occur and the structure is said to 

be dynamically unstable. Therefore the buckling and dynamic stability analyses are very important 

for these structures (Ozturk et al. 2016). Furthermore, although not in a large number, a number of 

studies are reported in literature dealing with the static and dynamic stability of cracked multi-

storey steel frames. Mohammed (2001) has examined the effect of loss of support on behavior of 

multi-storey cracked frames subjected to vertical and horizontal loads taking into consideration the 

soil-structure interaction effect by using the photoelastic and Finite Element methods.  Ibrahim et 

al. (2013) have investigated the effects of crack depth and crack location on the in-plane free 

vibration cracked frame structures numerically by using the Finite Element Method. The natural 

frequency analysis of beams with multiple cracks and multi-bay & storey frames with cracked 

beams has been studied by Labib et al. (2014). In this study, the natural frequencies are obtained 

using a new method in which a rotational spring model is used to represent the cracks.  

As seen in the above literature review, in-plane dynamic stability analysis of cracked multi-

storey frames, which are composed of columns and beams and subjected to periodic loading, has 

not been studied prior to this paper. There is one similar study (Ozturk et al. 2016) belonging to 

the authors in literature and this study (Ozturk et al. 2016) is concerned with dynamic stability 

analysis of multi-bay frame structures In this paper, the effects of number of storey, static and 

dynamic load parameters, crack depth and crack location on static and dynamic stability of cracked 

multi-storey frame structures subjected to periodic loading have been investigated numerically by 

using the Finite Element Method. A crack element based on the Euler beam theory is developed by 

using the principles of fracture mechanics. Periodic loading is considered to be applied to each 

column member belonging the top storey as an axial load and no loading is applied on the beams. 

Using energy expressions in conjunction with Bolotin’s approach, the study is carried out 

employing various disturbing frequency ranges in which the multi-storey cracked frame is to be 

unstable. 

 

104



 

 

 

 

 

 

Static and dynamic stability of cracked multi-storey steel frames 

 
 

 
 

(a) (b) 

Fig. 1 (a) Schematic view of a cracked beam under generalized loading conditions, (b) geometry of 

cracked section showing integral limits 

 
 
2. The cracked beam element theory 
 

The additional strain energy due to the existence of a crack can be expressed as (Karaagac et al. 

2009, Zheng and Kessissoglou 2004) 

c

c

A

G dA                                           (1) 

where G is the strain energy release rate function and Ac is the effective cracked area. The strain 

energy release rate function G can be expressed as (Zheng and Kessissoglou 2004) 

 
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                                             (2) 

KIn and KIIn (n=1,2,3) are the stress intensity factors of the two modes of fracture (opening and 

sliding types) corresponding to generalized loading Pn, respectively. The stress intensity factor KI2 

is ignored (Ibrahim et al. 2013). 
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where, a generalized loading is indicated by three general forces: an axial force P1, shear force P2 

and bending moment P3 as seen in Fig. 1(a) and the correction functions F1, F2 and F3 are given 

in Appendix. 

 The elements of the overall additional flexibility matrix cij can be expressed as 

(Ibrahim et al. 2013) 
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Substituting Eqs. (1)-(3) into Eq. (4) yields the general equation for the local compliances as  
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Fig. 2 Crack element model 

 

 

follows (considering that all K’s are independent from h; h: see Fig. 1(b)) 
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where  cij  is the local flexibility matrix. 

The crack produces a local additional displacement between the right and left sections of the 

crack in a similar way as an equivalent spring. The spring effects are introduced to the system by 

using the local flexibility matrix given by Eq. (5). Multi-storey frame is modeled by using the 

Finite Element Method. The beam that forms the frame is assumed to be an Euler beam. The beam 

element has 2 nodes with three degrees of freedom in each node. The element is considered to be 

split into two segments by the crack as shown in Fig. 2. The cracked element has 2 nodes with 

three degrees of freedom in each node. They are denoted as lateral bending displacements (v1, v2), 

slopes 
1 2( , )v v  , and longitudinal displacements (u1, u2). 

The displacements for the left and right parts of the cracked element and FEM’s are described 

in detail in Ref. (Ibrahim et al. 2013). The generalized displacement vector with respect to local 

reference coordinates can be expressed as 

 1 1 1 2 2 2
 q u v v u v v                                                     (6) 

The relation between the local and global reference coordinates can be written as 

q Tq                                                                 (7) 

where T is the transformation matrix.  
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where   is an angle between local and global reference coordinates. 
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3. Energy equations, the equation of motion and stability theory 
 

Energy equations should be expressed separately from the crack element and intact elements on 

the left side of the crack element.  

The elastic potential energy U: 

For intact elements on the left side of the cracked element 
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For intact element on the right side of the cracked element 
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Similarly, the kinetic energy T of an element of length d in an Euler beam is given as follows 

for the intact elements on the left side of the cracked element 
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For the cracked element 
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For intact element on the right side of the cracked element 
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V denote the work done by the axial force P(t): 

For intact elements on the left side of the cracked element 
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For intact element on the right side of the cracked element 

  2

2

0

1
( )

2

d

RV P t v dx                                                          (17) 

In order to obtain the equation of motion for the cracked multi-storey frame subjected to 

periodic loading shown in Fig. 3, lateral bending displacements (v1, v2), slopes 
1 2( , )v v  , and 

longitudinal displacements (u1, u2) Ref. (Ibrahim et al. 2013) are substituted into the energy Eqs. 

(9)-(15). Then, the elastic stiffness matrix [ke], mass matrix [me] and geometric matrix [kge] are 

obtained for both cracked finite element and intact finite elements. Mass and stiffness matrices of 

each beam element are used to form global mass and stiffness matrices. The dynamic response of a 

beam for a conservative system can be formulated by means of Lagranges equation of motion in 

which the external forces are expressed in terms of time-dependent potentials and then performing 

the required operations, the entire system leads to the governing matrix equation of motion 

      ( ) 0e e geM K P t K qq                                                
(18) 

where [me], 
[ke] and [kge] represent global mass matrices, elastic stiffness and geometric matrix, 

respectively. 

As seen in Fig. 3, the periodic load P(t)=P0+Pt cosΩt with Ω equal to the exiting frequency, 

which is considered to apply to each column member as an axial load. P0 
and Pt

  
represent static 

and dynamic loads, respectively. There are no axial periodic forces on the beams. The static and 

time dependent components of the load can be represented as a fraction of the fundamental static 

buckling load Pcr. Therefore, substituting P(t)=αPcr+βPcr cosΩt in Eq. (18) gives (Sakar et al. 

2012) 

        cos 0e e cr cr geM q K P P t K q                                    
(19) 

where, static load parameter is α=P0/Pcr and  dynamic load parameter is β=Pt/Pcr 
 

Eq. (19) denotes a system of second order differential equation with periodic coefficients of the 

Mathieu-Hill type. From the theory of linear equations with periodic coefficients, the boundaries 

between stable and unstable solutions of Eq. (19) are formed by periodic solutions of period T and 

2T, where T=2π/Ω. Bolotin (1967) has shown that the solutions with period 2T are of greater 

practical importance, as the widths of these unstable regions are usually larger than those 

corresponding to the solutions with period T. As a first approximation, assume a periodic solution 

with period 2T. Using this solution along with Eq. (19) yields the following (Sakar et al. 2012)
 

       
2Ω1 0

2 4
e cr ge eK P K M q 

 
     

                                

(20) 

This equation represents the solution of three related problems: 

i. Free vibration with α=0, β=0 and ω=Ω/2 the natural frequency. 

     2 0e eK M q                                                     
(21) 

ii. Static stability with α=1, β=0 and Ω=0. 
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Fig. 3 Frame structures: one-storey frame, two-storey frame and three storey frame 

 

 

    0e cr geK P K q                                                      
(22) 

iii. Dynamic stability when all terms are present. 
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(23) 

 

4. Results and discussion 
 

4.1 Results comparison 
 

In this study, the cracked multi-storey frames constituted by columns and beams, having 

rectangular cross-sections are used of which the dimensions and material properties are given in 

Table 1. For uncracked and cracked one-storey frames, a comparison is made between the critical 

buckling loads of cracked frame obtained using the present model with the results obtained from 

the ANSYS software.  ANSYS modeling is built according to Phan (2010) which uses KSCON a 

concentration of key-points in circles around the crack tip. One-storey frame structure is divided 

into three meshed areas depending on the distance from the crack tip. First area surrounding the 

crack tip is meshed with 2.5e-4 m element size. The meshing size of second area is 3e-4 m where 

the rest of structure is meshed with 5e-04 m. These patterns are applied by using face sizing for the 

first two areas and normal meshing for the third area which allow to calculate accurate results for 

the effect of crack and save memory (Ozturk et al. 2016). As seen from Table 2, the maximum  
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Table 1 Properties of the frame structure 

Properties Quantity 

Modulus of elasticity, E 200 GPa 

Mass density,  7900 kg/m
3
 

Cross-section 
h 5 mm 

b 20 mm 

Column length 200 mm 

Beam length 100 mm 

 
Table 2 Comparison between present work and ANSYS results for the one-storey frame. 

 
Critical Buckling Load (N) 

ERROR% 
Present Work ANSYS 

Without crack 8747.8 8772.8 0.285% 

With crack ratio (a/h=0.5) 

and crack location (1
st
 node) 

8557.4 8503.9 0.629% 

 

 

error is 0.629% and the comparison shows that very good agreement between the results is 

obtained. Moreover, the comparison between the natural frequencies of cracked frames obtained 

using the present model with the results obtained from the ANSYS software and the effect of crack 

on the natural frequencies have been studied by the authors (Ibrahim et al., 2013); therefore,  the 

results dealing with the natural frequencies are not given in this study.  

 
4.2 Static stability analysis 

 
The effects of crack location and crack ratio (a/h) or crack depth on the critical buckling load of 

frame structures having one, two and three storey frames are shown in Figs. 4-6. When the crack 

depth increases, the variations of the critical buckling load become explicit. While the crack 

location changes for the a/h=0.5, the variation in the critical buckling load of one-storey frame 

structure is centered symmetrically around the 15
th
 node of the FE as seen in Fig. 4. The maximum 

decreases in the critical buckling load occur when the crack is at the fixed points (roots of the 

frame) for the one-storey frame structure.  

As seen in Figs. 5 and 6, the variations in the critical buckling load of two and three-storey 

frame structures are not centered symmetrically. When the crack location is at the 11th and 20th 

nodes (corners at the beginning of the second storey), the 41th and 50th nodes (corners at the 

beginning of the third storey), respectively for two and three storey frame structures, the maximum 

decreases in the critical buckling load occur.  

The maximum decreases in the critical buckling load occur when the crack is at the 1
th
 and 30

th
 

nodes (roots of the first storey), the 11
th
 and 20

th
 nodes (root of the second storey), the 41

th
 and 50

th
 

nodes (roots of the third storey) respectively for one, two and three-storey frame structures. These 

are about 2.17%, 2.844% and 2.597% with respect to the critical buckling load of the frame with 

the crack as listed in Table 3, which indicates crack location, the critical buckling loads of cracked 

structure, percentage of decreases and the critical buckling load without crack. In addition, when 

the results obtained from the static stability analysis (buckling) of multi-storey frames are 

evaluated, it is observed that generally the critical buckling load decreases when the crack is 
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located either at the roots or at the corner of the frames for multi-storey frames, as shown in Figs. 

4, 5 and 6.  

 

4.3 Dynamic stability analysis 
 

In this study, the first instability region is studied, since this is the most dangerous region. 

 

 

 
Fig. 4 The critical buckling load on the one-storey frame structure 

 

 

Fig. 5 The critical buckling load on the two-storey frame structure 
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Fig. 6 The critical buckling load on the three-storey frame structure 

 
Table 3 Percentage decrease in the critical buckling load at the maximum affected location of crack with 

crack ratio (a/h=0.5) 

 One-storey frame Two -storey frame Three -storey frame 

Maximum effected crack location 1
st
, 30

th
 11

st
, 20

th
 41

th
, 50

th
 

Critical buckling load with crack (N) 8557.4 6759.3 6187.1 

Critical buckling load without crack (N) 8747.9 6957.2 6352.1 

Percentage of decrease 

in the critical buckling load 
2.17% 2.844% 2.597% 

 

 

Therefore it has the greatest practical importance (Bolotin 1967). Figures from 7 to 12 show the 

effects of dynamic load parameter (β), static load parameter () and the crack location on the 

dynamic instability region of multi-storey frame structures, as 3D plots. The crack depth ratio (a/h) 

is taken as 0.5, because the effect of this value on the unstable region is larger. It can easily be 

noticed that the unstable region widens as the dynamic load parameter β increases, as seen from 

Figs. 7 to 12. The width of unstable region of frames with a different number of storeys is arranged 

as one-storey, two-storey and three-storey frames, respectively. Otherwise, the initial exciting 

frequency (β=0) of the three-storey frame is closer to the origin than the others. It can be said that 

when the number of storeys increases, the initial exciting frequency of the unstable region is 

shifted down in parallel along the frequency axis. Thus, the risk of entering the unstable region 

may be increased. The regions of dynamic instability are shifted down, as the static load parameter  
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Fig. 7 The first dynamic instability region of one-storey frame structure for =0 

 

 

Fig. 8 The first dynamic instability region of one-storey frame structure for =0.2 

 

 

increases as seen from Figs. 8, 10 and 12. In this case, the frame under periodic loading becomes 

unstable at a small exciting frequency and small dynamic load parameter.  Similar to the buckling 

analysis, the unstable region of all frames shows a variation according to the crack location. When 

the crack location is at the roots or corners of frames, the first dynamic unstable region is shifted 

down. However, the effect of the crack location on the dynamic unstable region is greater at 1
st
 and  
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Fig. 9 The first dynamic instability region of two-storey frame structure for =0 

 

 

Fig. 10 The first dynamic instability region of two-storey frame structure for =0.2 

 

 

30
th
 nodes. 

Figures from 13 to 15 present the effect of the static load parameters (α=0 and α=0.2) and 

dynamic load parameters (β=0-0.25) on the unstable regions at the most effected location of crack 

for crack ratio, a/h=0.5. As seen in Figs. 13-15, the effect of the static and dynamic load 

parameters on the unstable regions of the cracked frame structure is similar to the results given in  
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Fig. 11 The first dynamic instability region of three-storey frame structure for =0 

 

 

Fig. 12 The first dynamic instability region of three-storey frame structure for =0.2 

 

 

 

Figs. 7-12. When the static load parameter is zero, the exciting frequency constructing the lower 

border of unstable region reaches zero value at which dynamic load parameter (β) corresponds to 

the value of 2. On the other hand, when the static load factor increases (α=0.2), the regions of 

dynamic instability are shifted down and the exciting frequency constructing the lower border of  
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Fig. 13 The first dynamic instability regions of one-storey frame structure at the maximum affected 

location of crack 

 

 

Fig. 14 The first dynamic instability regions of two-storey frame structure at the maximum affected 

location of crack 

 

 
the unstable region reaches zero value at which the dynamic load parameter (β) corresponds to the 

value of 1.6. 
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Fig. 15 The first dynamic instability regions of three-storey frame structure at the maximum affected 

location of crack 

 
 
5. Conclusions 
 

In this study, a cracked beam element has been used to investigate the effects of crack depth 

(a/h) and crack location on the in-plane static and dynamic stability of cracked multi-storey frame 

structures and the following conclusions are drawn: 

• The crack element developed in the study is useful for the multi-storey frames. This element 

allows to use less finite elements according to Packet software (such as ANSYS, etc.) and thus, 

the eigenvalue problem solutions will be faster. 

• The storey frames are set in descending order with respect to their buckling loads:  one-storey, 

two- storey and three- storey frames. 

• The reduction of the critical buckling load depends on the crack depth and crack location. 

• The crack does not affect the critical buckling load of the multi-storey framed structure when 

it is located at the particular points of the column and the beam lengths, since the stresses in 

these points are smaller in comparison than the other points. 

• Higher drops in the in-plane buckling load (static stability) and the exciting frequency 

(dynamic stability) are observed when the crack is located near the roots or corners of the 

frames. 

•The widths of unstable regions of multi-storey frames with respect to a different number of 

storey frames are set in descending order as one- storey, two- storey and three- storey frames. 

• Although the effect of the crack ratio (or crack depth) on the width and position of the 

unstable region is little, an increase in the static load parameter has strong influence on the 

position of the unstable region.  
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