Structural Engineering and Mechanics, Vol. 57, No. 6 (2016) 989-1014 DOI: http://dx.doi.org/10.12989/sem.2016.57.6.989

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

Tamer A. El-Sayed^{*} and Said H. Farghaly^a

Department of Mechanical Design, Faculty of Engineering, Mataria, Helwan University, P.O. Box 11718, Helmeiat-El zaton, Cairo, Egypt

(Received August 11, 2015, Revised December 28, 2015, Accepted January 2, 2016)

Abstract. This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub–system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

Keywords: vibration frequencies; exact solution; Timoshenko beam; eccentric mass; sub-system; combined system

1. Introduction

The study of vibration of beams with generalized end conditions and integrated with discrete sub-systems is crucial, because it has a wide range of applications in mechanical, aerospace and structural engineering. Timoshenko (1922) was the first how presented the vibration problem of beams with rotary inertia and shear deformation effect. Huang (1961) investigated the frequency equations and normal modes of free flexural vibrations of uniform beams including the effect of shear and rotary inertia for classical end conditions. Cowper (1966) derived a solution for the shear deformation coefficient for the different beam cross sections. The effects of axial load on the natural frequencies have been investigated by (Saito and Otomi 1979, Kounadis 1980, Sato 1991, Takahashi 1980, Grossi and Laura 1982, Bokaian 1990, Naguleswaran 2004, Ari-Gur and

Copyright © 2016 Techno-Press, Ltd.

http://www.techno-press.org/?journal=sem&subpage=8

^{*}Corresponding author, Assistant Professor, E-mail: Tamer_Alsayed@m-eng.helwan.edu.eg *Professor, E-mail: Mdm_faceng_Mat@yahoo.com

Elishakoff 1990). Kounadis (1980) studied the equation of motion of vibrating Timoshenko beamcolumn system. Sato (1991) studied also the governing equations of motion for vibration and stability of Timoshenko beam based on Hamilton's principle. Bokaian (1990) derived a frequency equation for Bernoulli-Euler beam with several classical boundary conditions. When a beam loaded axially in compression it may go through an instability by buckling. The beam instability and the critical buckling load have been investigated by (Naguleswaran 2004, Ari-Gur and Elishakoff 1990). Naguleswaran (2004) studied the transverse vibration of an uniform Bernoulli-Eulerbeam under linearly varying fully tensile, partly tensile or fully compressive axial force distribution. He also investigated the buckling of the beam when subjected to compressive axial load. Beams with generalized end conditions have been considered by (Chang 1993, To 1982, Farghaly 1992, Farghaly 1993, Farghaly and Shebl 1995). Farghaly derived an exact frequency equation for uniform cantilever Bernoulli-Euler-beam with an elastically mounted nonconcetrated tip mass. The beam system is subjected to a constant axial tensile or compression load acting at the center of the tip mass (Farghaly 1992). Farghaly and Shebl (1995) introduced an exact frequency equation for Timoshenko beam with a generalized end conditions. The combination between continious and discrete mass spring systems has many applications. The vibration of beams with an end or intermediate mass spring system has been studied by (Gürgöze 1996, Gürgöze and Batan 1996, Chen et al. 2015, Rossi et al. 1993). Snowdon (1966), Bergman and Nicholson (1985) have studied the free and forced vibration analyses of Bernoulli-Euler cantilever beam in which single mass spring damped sub-systems are attached. Rossi et al. (1993) presented an exact solution for classical thick beams carring spring mass system. They model studied the action of the spring on the beam, by equivalent transverse force. Gürgöze (1996) investigated the eigenfrequencies of a cantiliver uniform Bernoulli-Euler beam with attached tip mass carrying a single spring-mass sub-system. Gürgöze and Batan (1996) investigated a unifom beam with an intermediate spring-mass system. Very recently, Chen et al. (2015) presented a general exact solution for free vibration of a tensioned beam with any number of lateral and rotational two spring-mass damped sub-systems. His solution is also suitable for multi-span beam.

The survey of the above references indicates that the title problem with the applied mathematical model for exact vibration analysis of axially loaded Timoshenko beam system combined with three spring-two mass sub-systems beam has not been extensively investigated. In this paper, the exact natural frequency equation and the mode shapes of beam system have been investigated. This beam is carrying non-concentrated end masses of finite length, with attached three spring-two mass sub-systems acting at center of gravity of end masses out span. The problem statement is based on Timoshenko beam bending theory of elasticity. New exact formulae for the frequency equation and the modal shape have been derived, including the proposed sub-systems. Based on these formulae, detailed parametric study of the modal frequency parameters and the modal shapes have been introduced. This includes the effect of changing the non-dimensional values of sub-system masses, stiffness and location.

2. Applied mathematical model

Timoshenko beam system means here a uniform single span beam carrying two eccentric rigid masses elastically supported at an arbitrary offset point from the point of attachment at both ends. The combination between Timoshenko beam system and sub-system consisting of three springs-

Fig. 1 Present combined system mathematical model

two mass proposed is satisfied through the attachment of the sub-system to center of gravity of end masses rigidly supported to the beam ends respectively. Fig. 1 shows the model to be investigated in this work.

Shown in Fig. 1, is an axially-loaded Timoshenko beam system with generalized end conditions including attached three spring-two mass sub-systems at center of gravity of end masses. A set of design, general, and specific variables have been considered, such as the elasticity modulus, moment of inertia, area, mass density, shear modulus of elasticity, shear shape factor, Poisson's ratio and length of beam span as, $E, I, A, \rho, G, k', v, L$ respectively. The translational, rotational spring stiffness and end masses are rigidly attached as shown to the beam ends, k, ϕ, M_1, M_2 , respectively. The rotation and translational springs are acting at points at distance c_1 and c_2 from points of attachment 1, and 2 respectively. The system is subjected to constant axial

tensile or compressive load acting at the end masses center of gravity at distance d_1 and d_2 . A proposed sub-system consisting of three spring-two mass is attached to the end mass eccentric points as shown in Fig. 1. The sub-system masses m_{s1} , m_{s2} , m_{s3} and m_{s4} respectively, while k_{s3} , k_{s4} , k_{s5} , k_{s6} , k_{s7} , and k_{s8} represent the linear translational spring stiffness respectively. More details on the system non-dimensional parameters will be appeared in the next sections of this work.

3. End conditions with three spring-two mass sub-system

(Snowdon 1966, Bergman and Nicholson 1985) have studied the free and forced vibration analyses of Bernoulli-Euler cantilever beam in which single mass spring damped sub-systems are attached. Fig. 2(a) (Rossi *et al.* 1993) studied the exact analytical solution of Timoshenko beam carrying elastically mounted masses. Three beam configurations were presented, *P-P*; *C-P* and *C-C*. (Gürgöze 1996) studied the vibration problem of Bernoulli-Euler cantilever beam with tip mass and single spring mass (SS1) sub-system. Very recently, (Chen *et al.* 2015) in an interesting work studied the vibration problem of Bernoulli-Euler beam carrying two spring mass damped subsystem at any point along its span (Fig. 2(b)). The authors extended Chen's undamped (SS2) subsystem general model to another proposed one, consisting of three spring-two mass (SS3) attached to a vibrating Timoshenko beam system presented as shown in Fig. 1. The mathematical treatment of the present proposed model has not been appeared in literature and will be presented in details as follows:

Fig. 2(c) shows the four independent coordinates y_{s1} , y_{s2} , y_{s3} and y_{s4} , representing the four masses m_{s1} , m_{s2} , m_{s3} and m_{s4} . The shear forces acting at point 4 due to the sub-system 1 are

$$-k_{s3}(y_{s1} - y_4) - k_{s5}(y_{s1} - y_{s3}) = m_{s1} \ddot{y}_{s1};$$
⁽¹⁾

$$-k_{s5}(y_{s3} - y_{s1}) - k_{s7} y_{s3} = m_{s3} \ddot{y}_{s3}$$
(2)

and the shear forces acting at point 5 due to the sub-system 2 are

$$-k_{s4}(y_{s2} - y_5) - k_{s6}(y_{s2} - y_{s4}) = m_{s2} \,\ddot{y}_{s2;} \tag{3}$$

$$-k_{s6}(y_{s4} - y_{s2}) - k_{s8}y_{s4} = m_{s4}\ddot{y}_{s4}$$
(4)

Using the following solution for Eqs. (1) to (4)

$$y_{s1} = Y_{s1} e^{j\omega t}$$
, $y_{s2} = Y_{s2} e^{j\omega t}$, $y_{s3} = Y_{s3} e^{j\omega t}$, and $y_{s4} = Y_{s4} e^{j\omega t}$,

Therefore, the shear force Eqs. (1), (2), (3) and (4) can be written in the following nondimensional forms

$$(Z_{s3} + Z_{s5} - \lambda^4 \,\overline{m}_{s1}) \, Y_{s1} - Z_{s3} \, Y_4 - Z_{s5} \, Y_{s3} = 0 ; \qquad (5)$$

$$(Z_{s5} + Z_{s7} - \lambda^4 \,\overline{m}_{s3}) \, Y_{s3} - Z_{s5} \, Y_{s1} = 0 \,; \tag{6}$$

$$(Z_{s4} + Z_{s6} - \lambda^4 \bar{m}_{s2}) Y_{s2} - Z_{s4} Y_5 - Z_{s6} Y_{s4} = 0 \quad \text{and}$$
(7)

$$(Z_{s6} + Z_{s8} - \lambda^4 \bar{m}_{s4}) Y_{s4} - Z_{s6} Y_{s2} = 0$$
(8)

where

$$Z_{s3} = k_{s3}L^3/EI; \quad Z_{s5} = k_{s5}L^3/EI; \quad Z_{s7} = k_{s7}L^3/EI;$$

$$Z_{s4} = k_{s4}L^3/EI; \quad Z_{s6} = k_{s6}L^3/EI; \quad Z_{s8} = k_{s8}L^3/EI;$$

In fact, the connection of sub-system with the center of gravity of the eccentric end mass (point 4 and 5, (cf. Fig. 1)), will affect the shear force and bending moment balance of the system end conditions (at point 1 and 2). The additional developed shear force terms due to the sub-system connection are $k_{s3} \left[-(Y_{s1} - Y(0)) - d_1 \Psi(0) \right]$ and $k_{s4} \left[(Y_{s2} - Y(1)) - d_2 \Psi(1) \right]$ at point 1 and 2 respectively. On the other hand, the last two terms for the bending moment effect become, $k_{s3} d_1 \left[(Y_{s1} - Y(0)) + d_1 \Psi(0) \right]$ and $k_{s4} d_2 \left[(Y_{s2} - Y(1)) - d_2 \Psi(1) \right]$ respectively. Four governing equations for the present combined system shown in Fig. 1 can be written with special care as follows:

At point 1 ($\zeta = 0$);

$$(k'GA)(Y' - \Psi)(0) = -[-\omega^2 M_1 d_1 + k_1 c_1] \Psi(0) + (-\omega^2 M_1 + k_1) Y(0) + P Y'(0) + k_{s3} [-(Y_{s1} - Y(0)) - d_1 \Psi(0)]$$
(9)

$$EI \Psi'(0) = \left[-\omega^2 (J_1 + M_1 d_1^2) + (\phi_1 + k_1 c_1^2)\right] \Psi(0) + (-\omega^2 M_1 d_1 - k_1 c_1) Y(0) - P d_1 Y'(0) + k_{s3} d_1 \left[\left(Y_{s1} - Y(0) \right) + d_1 \Psi(0) \right]$$
(10)

at point 2 ($\zeta = 1$);

$$(k'GA)(Y' - \Psi)(1) = -[-\omega^2 M_2 d_2 + k_2 c_2] \Psi(1) - (-\omega^2 M_2 + k_2) Y(1) + P Y'(1) + k_{s4} [(Y_{s2} - Y(1)) - d_2 \Psi(1)]$$
(11)

$$EI \Psi'(1) = -[-\omega^2 (J_2 + M_2 d_2^2) + (\phi_2 + k_2 c_2^2)]\Psi(1) - (-\omega^2 M_2 d_2 + k_2 c_2) Y(1) + P d_2 Y'(1)$$

$$+ k_{s4} d_2 \left[\left(Y_{s2} - Y(1) \right) - d_2 \Psi(1) \right]$$
(12)

Using Eqs. (5) and (6) one can get the relation

$$Y_{s1} = \left[\frac{Z_{s3}Z_{57}}{Z_{35}Z_{57} - Z_{55}^2}\right] Y_4$$
$$= \left[\frac{Z_{s3}Z_{57}}{Z_{35}Z_{57} - Z_{55}^2}\right] (Y(0) - d_1 \Psi(0))$$
(13)

here $Z_{35} = -\lambda^4 \overline{m}_{s1} + Z_{s3} + Z_{s5}$ and $Z_{57} = -\lambda^4 \overline{m}_{s3} + Z_{s5} + Z_{s7}$ Similarly, using Eqs. (7) and (8) one can get the relation.

$$Y_{S2} = \left[\frac{Z_{S4}Z_{68}}{Z_{46}Z_{68} - Z_{S6}^2}\right] Y_5$$
$$= \left[\frac{Z_{S4}Z_{68}}{Z_{46}Z_{68} - Z_{S6}^2}\right] \left(Y(1) + d_2\Psi(1)\right)$$
(14)

here $Z_{46} = -\lambda^4 \overline{m}_{s2} + Z_{s4} + Z_{s6}$ and $Z_{68} = -\lambda^4 \overline{m}_{s4} + Z_{s6} + Z_{s8}$

The non-dimensional form of Eqs. (9) to (12) together with Eqs. (13) and (14) can be derived and rearranged as follows

$$\bar{\eta}_{1s} L\Psi(0) + \theta_{1s} Y(0) - s_p Y'(0) = 0$$
⁽¹⁵⁾

$$L\Psi'(0) - \gamma_{1s} L\Psi(0) + \epsilon_{1s} Y(0) + p_1^2 Y'(0) = 0$$
⁽¹⁶⁾

Tamer A. El-Sayed and Said H. Farghaly

$$\bar{\eta}_{2s} L\Psi(1) - \theta_{2s} Y(1) - s_p Y'(1) = 0$$
⁽¹⁷⁾

$$L\Psi^{\prime(1)} + \gamma_{2s} L\Psi(1) - \epsilon_{2s} Y(1) - p_2^2 Y^{\prime}(1) = 0$$
(18)

Introducing the shear force frequency dependent terms

$$\tau_{1s} = Z_{s3} \left[\frac{-Z_{s5}^2 - Z_{s3} \cdot Z_{57} + Z_{35} \cdot Z_{57}}{-Z_{s5}^2 + Z_{35} \cdot Z_{57}} \right]$$
(19)

$$\tau_{2s} = Z_{s4} \left[\frac{-Z_{s6}^2 - Z_{s4} \cdot Z_{68} + Z_{46} \cdot Z_{68}}{-Z_{s6}^2 + Z_{46} \cdot Z_{68}} \right]$$
(20)

The different parameters in Eqs. (15)-(18) can be written as follows

$$\theta_{1s} = s^{2} \left(-\lambda^{4} \overline{m}_{1} + Z_{1} + \tau_{1s} \right)$$

$$\epsilon_{1s} = -\left(-\lambda^{4} \overline{m}_{1} \ \overline{d}_{1} + Z_{1} \overline{c}_{1} + \tau_{1s} \overline{d}_{1} \right)$$

$$\overline{\eta}_{1s} = 1 + s^{2} \epsilon_{1s}$$

$$\gamma_{1s} = -\lambda^{4} \left(\overline{J}_{1} + \overline{m}_{1} \ \overline{d}_{1}^{2} \right) + \Phi_{1} + Z_{1} \overline{c}_{1}^{2} + \tau_{1s} \ \overline{d}_{1}^{2}$$
(21 a to d)

and

$$\theta_{2s} = s^{2} \left(-\lambda^{4} \, \bar{m}_{2} + Z_{2} + \tau_{2s} \right)$$

$$\epsilon_{2s} = -\left(-\lambda^{4} \bar{m}_{2} \, \bar{d}_{2} + Z_{2} \bar{c}_{2} + \tau_{2s} \bar{d}_{2} \right)$$

$$\bar{\eta}_{2s} = 1 + s^{2} \epsilon_{2s}$$

$$\gamma_{2s} = -\lambda^{4} \left(\bar{J}_{2} + \bar{m}_{2} \, \bar{d}_{2}^{2} \right) + \Phi_{2} + Z_{2} \bar{c}_{2}^{2} + \tau_{2s} \, \bar{d}_{2}^{2}$$

$$s_{p} = 1 - s^{2} p^{2}$$

$$p_{1}^{2} = p^{2} \bar{d}_{1}$$

$$p_{2}^{2} = p^{2} \bar{d}_{2}$$
(22 a to g)

Where.

$$\overline{m}_1 = M_1/m; \ \overline{m}_2 = M_2/m; \ \overline{J}_1 = J_1/mL^2; \ \overline{J}_2 = J_2/mL^2; \ \overline{d}_1 = d_1/L; \ \overline{d}_2 = d_2/L; \ \overline{c}_1 = c_1/L; \ \overline{c}_2 = c_2/L; \ Z_1 = k_1L^3/EI; \ Z_2 = k_2L^3/EI; \ \Phi_1 = \phi_1L/EI \ and \ \Phi_2 = \phi_2L/EI$$

We can conclude that, the four Eqs. (15)-(18) represent the present system end conditions. The system equation of motion and the general solution to get the system frequency equation and mode shape are presented in the next sections.

4. Equation of motion and solution

The decoupled differential equations of motion based on Timoshenko beam theory of elasticity and for axial load consideration presented by (Sato 1991), will be presented for harmonic solution in the following non dimensional form

$$Y''''(\zeta) + \alpha Y''(\zeta) + \beta^2 Y(\zeta) = 0$$
(23)

$$L\Psi^{\prime\prime\prime\prime}(\zeta) + \alpha \, L\Psi^{\prime\prime}(\zeta) + \beta^2 \, L\Psi(\zeta) = 0 \tag{24}$$

where

$$\alpha = \frac{\lambda^4 (r^2 + s^2) - p^2 (\lambda^4 r^2 s^2 - 1)}{(1 - s^2 p^2)}, \qquad \beta^2 = \frac{\lambda^4 (\lambda^4 r^2 s^2 - 1)}{(1 - s^2 p^2)}$$

and

$$p^{2} = PL^{2}/EI, \lambda^{4} = \rho AL^{4} \omega^{2}/EI, s^{2} = 2r^{2}(1+\nu)/k', r^{2} = I/AL^{2}$$

The general solution for Eqs. (23) and (24) for small harmonic oscillations are

$$Y(\zeta) = A_1 \sin a\zeta + A_2 \cos a\zeta + A_3 \sinh b\zeta + A_4 \cosh b\zeta$$
(25)

and

$$L\Psi(\zeta) = -\left(\frac{\delta_1}{a}\right)A_1\cos a\zeta + \left(\frac{\delta_1}{a}\right)A_2\sin a\zeta + \left(\frac{\delta_2}{b}\right)A_3\cosh b\zeta + \left(\frac{\delta_2}{b}\right)A_4\sinh b\zeta$$
(26)

where

$$a^2 = \left(\frac{\alpha}{2}\right) + \left(\left(\frac{\alpha}{2}\right)^2 - \beta^2\right)^{1/2}$$
 and $b^2 = -\left(\frac{\alpha}{2}\right) + \left(\left(\frac{\alpha}{2}\right)^2 - \beta^2\right)^{1/2}$

One can obtain the expression of δ_1 and δ_2 in Eq. (26) in the form

$$\delta_1 = s^2 \lambda^4 - a^2 (1 - s^2 p^2) \tag{27}$$

$$\delta_2 = s^2 \lambda^4 + b^2 (1 - s^2 p^2) \tag{28}$$

5. Frequency and modal shape equations

The system frequency equation can be derived using Eqs. (25), (26) and the two end conditions at $\zeta = 0$, and $\zeta = 1$, Eqs. (15)-(18). This yields to four equations in unknowns A_1 , A_2 , A_3 , and A_4 . These equations form four homogeneous equations in four unknowns. For the problem to have a non-trivial solution, the four unknowns cannot all be zero. Hence the determinant of the coefficients matrix of the system of equations must be vanished and may be written as follows

Therefore, the expansion of this determinant gives the new exact frequency equation including the proposed sub-systems which can be written in the form

(SST). $\sin a \sinh b$ +(SCT). $\sin a \cosh b$ +(CST). $\cos a \sinh b$ +(CCT). $\cos a \cosh b$ +(ABT)=0 (30)

Here,

$$(SST) = \theta_{1s}\theta_{2s}(\delta_{1} - \delta_{2})^{2} + (-e_{11}\theta_{1s} + e_{21}(\delta_{1} - \epsilon_{1s}))(e_{12}\theta_{2s} + e_{22}(\delta_{1} - \epsilon_{2s})) - (\epsilon_{11}\theta_{1s} - \epsilon_{21}(\delta_{2} - \epsilon_{1s}))(\epsilon_{12}\theta_{2s} + \epsilon_{22}(\delta_{2} - \epsilon_{2s})) + (e_{21}\epsilon_{11} - e_{11}\epsilon_{21})(e_{12}\epsilon_{22} - e_{22}\epsilon_{12})$$

$$(SCT) = \theta_{1s}(\delta_{2} - \delta_{1}) (e_{12}\theta_{2s} + e_{22}(\delta_{1} - \epsilon_{2s})) + \theta_{2s}(\delta_{2} - \delta_{1}) (-e_{11}\theta_{1s} + e_{21}(\delta_{1} - \epsilon_{1s}))$$

$$+ (\epsilon_{11}\theta_{1s} - \epsilon_{21}(\delta_{2} - \epsilon_{1s}))(\epsilon_{12}e_{22} - \epsilon_{22}e_{12}) + (\epsilon_{12}\theta_{2s} + \epsilon_{22}(\delta_{2} - \epsilon_{2s}))(\epsilon_{11}e_{21} - \epsilon_{21}e_{11})$$

$$(CST) = \theta_{1s}(\delta_{2} - \delta_{1})(\epsilon_{12}\theta_{2s} + \epsilon_{22}(\delta_{2} - \epsilon_{2s})) + \theta_{2s}(\delta_{2} - \delta_{1})(\epsilon_{11}\theta_{1s} - \epsilon_{21}(\delta_{2} - \epsilon_{1s}))$$

$$+ (-e_{11}\theta_{1s} + e_{21}(\delta_{1} - \epsilon_{1s}))(\epsilon_{22}e_{12} - \epsilon_{12}e_{22}) - (e_{12}\theta_{2s} + e_{22}(\delta_{1} - \epsilon_{2s}))(\epsilon_{11}e_{21} - \epsilon_{21}e_{11})$$

$$(CCT) = -\theta_{1s}(\delta_{2} - \delta_{1})(\epsilon_{12}e_{22} - \epsilon_{22}e_{12}) - \theta_{2s}(\delta_{2} - \delta_{1})(\epsilon_{11}e_{21} - \epsilon_{21}e_{11})$$

$$+ (-e_{11}\theta_{1s} + e_{21}(\delta_{1} - \epsilon_{1s}))(\epsilon_{12}\theta_{2s} + \epsilon_{22}(\delta_{2} - \epsilon_{2s}))$$

$$+ (\epsilon_{11}\theta_{1s} - \epsilon_{21}(\delta_{2} - \epsilon_{1s}))(\epsilon_{12}\theta_{2s} + \epsilon_{22}(\delta_{2} - \epsilon_{2s}))$$

$$(ABT) = (e_{11}\theta_{1s} - e_{21}(\delta_{2} - \epsilon_{1s}))(e_{12}\theta_{2s} + e_{22}(\delta_{2} - \epsilon_{2s}))$$

$$- (\epsilon_{11}\theta_{1s} - \epsilon_{21}(\delta_{1} - \epsilon_{1s}))(e_{12}\theta_{2s} + e_{22}(\delta_{2} - \epsilon_{2s}))$$

The constants of the mode shape Eqs. (25), (26) letting $A_4 = 1$, can be written in the form

$$A_i = [ST_i \sin a + CT_i \cos a + SHT_i \sinh b + CHT_i \cosh b] / \Delta, i = 1, 2 \text{ and } 3$$
(31)

here

$$\begin{split} \Delta &= ST_{\Delta} \sin a + CT_{\Delta} \cos a + SHT_{\Delta} \sin b + CHT_{\Delta} \cosh b; \\ ST_{\Delta} &= -(\delta_1 - \epsilon_{25}) (\theta_{1s}e_{11} - e_{21}(\delta_1 - \epsilon_{1s})) + (\delta_1 - \epsilon_{25})(e_{11}\epsilon_{21} - e_{21}\epsilon_{11}) \\ CT_{\Delta} &= \epsilon_{12} (\theta_{1s}e_{11} - e_{21}(\delta_1 - \epsilon_{1s})) + (\delta_1 - \epsilon_{25})(e_{11}\epsilon_{21} - e_{21}\epsilon_{11}) \\ SHT_{\Delta} &= (\delta_2 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_1 - \epsilon_{15})); \\ CHT_{\Delta} &= e_{12} (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_1 - \epsilon_{15})); \\ A_1 &= -(ST_1 \sin a + CT_1 \cos a + SHT_1 \sin b + CHT_1 \cosh b)/\Delta; \\ ST_1 &= \epsilon_{12} (\theta_{1s}e_{11} - e_{21}(\delta_2 - \epsilon_{15})) \\ CT_1 &= (\delta_1 - \epsilon_{25}) (\theta_{1s}e_{11} - e_{21}(\delta_2 - \epsilon_{15})) \\ SHT_1 &= -e_{12} (\theta_{1s}e_{11} - e_{21}(\delta_1 - \epsilon_{15})) + \theta_{1s} (\delta_2 - \delta_1) (\delta_2 - \epsilon_{25}) \\ CHT_1 &= -(\delta_2 - \epsilon_{25}) (\theta_{1s}e_{11} - e_{21}(\delta_2 - \epsilon_{15})) \\ ST_2 &= -(ST_2 \sin a + CT_2 \cos a + SHT_2 \sin b + CHT_2 \cosh b)/\Delta; \\ ST_2 &= -(ST_2 \sin a + CT_2 \cos a + SHT_2 \sin b + CHT_2 \cosh b)/\Delta; \\ ST_2 &= -(\delta_1 - \epsilon_{25}) (\theta_{1s}e_{11} - e_{21}(\delta_2 - \epsilon_{15})) \\ CHT_2 &= \epsilon_{12} (\theta_{1s}e_{11} - e_{21}(\delta_2 - \epsilon_{15})) \\ SHT_2 &= (\delta_2 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_2 - \epsilon_{15})) + (\delta_2 - \epsilon_{25}) (e_{11}\epsilon_{21} - e_{21}\epsilon_{11}); \\ A_3 &= -(ST_3 \sin a + CT_3 \cos a + SHT_3 \sin b + CHT_3 \cosh b)/\Delta; \\ ST_3 &= -\epsilon_{12} (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_2 - \epsilon_{15})) - \theta_{1s} (\delta_2 - \delta_1) (\delta_1 - \epsilon_{25}) \\ CT_3 &= -(\delta_1 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_2 - \epsilon_{15})) + \theta_{1s}\epsilon_{12} (\delta_2 - \delta_1) \\ SHT_2 &= (\delta_2 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21}(\delta_2 - \epsilon_{15})) + \theta_{1s} (\epsilon_{21} - \epsilon_{21}\epsilon_{11}); \\ A_3 &= -(ST_3 \sin a + CT_3 \cos a + SHT_3 \sin b + CHT_3 \cosh b)/\Delta; \\ ST_3 &= -\epsilon_{12} (\theta_{1s}\epsilon_{11} - \epsilon_{21} (\delta_2 - \epsilon_{15})) - \theta_{1s} (\delta_2 - \delta_1) (\delta_1 - \epsilon_{25}) \\ CT_3 &= -(\delta_1 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21} (\delta_2 - \epsilon_{15})) + \theta_{1s}\epsilon_{12} (\delta_2 - \delta_1) \\ SHT_3 &= e_{12} (\theta_{1s}\epsilon_{11} - \epsilon_{21} (\delta_1 - \epsilon_{15})) \\ CHT_3 &= (\delta_2 - \epsilon_{25}) (\theta_{1s}\epsilon_{11} - \epsilon_{21} (\delta_1 - \epsilon_{15})) \end{aligned}$$

where,

$$\epsilon_{11} = \gamma_{1s}(\delta_1/a) + p_1^2 a \qquad \epsilon_{12} = \gamma_{2s}(\delta_1/a) + p_2^2 a \\ \epsilon_{11} = -\gamma_{1s}(\delta_2/b) + p_1^2 b \qquad \epsilon_{12} = \gamma_{2s}(\delta_2/b) - p_2^2 b \\ \epsilon_{21} = -\bar{\eta}_{1s}(\delta_1/a) - s_p a \qquad \epsilon_{22} = \bar{\eta}_{2s}(\delta_1/a) + s_p a \\ \epsilon_{21} = \bar{\eta}_{1s}(\delta_2/b) - s_p b \qquad \epsilon_{22} = \bar{\eta}_{2s}(\delta_2/b) - s_p b \qquad (32 \text{ a to h})$$

Eqs. (30) and (31) represent the combined system closed form exact frequency and mode shape equations, respectively. It is interesting to note that the size of the coefficients matrix of the present beam system models shown in Fig. 1 is only (4×4) without need to extra rows and columns due to the presence of sub-systems. This modification represents one of the positive outputs of this mathematical treatment.

6. Reliability of results and discussion

The function obtained by using a highly transcendental Eq. (30) shows rapid oscillations attaining very large values between successive roots. The slope of the roots, therefore very closed to vertical. PC-Matlab version (2012b), software has been used for all the computational processes in this work. The results and a brief discussion are presented. All the system design parameters $\Phi_1, \Phi_2, Z_1, Z_2, Z_{s3}, Z_{s4}, Z_{s5}, Z_{s6}, Z_{s7}, Z_{s8}, p^2, r^2, s^2, \bar{c}_1, \bar{c}_2, \bar{d}_1, \bar{d}_2, \bar{f}_1, \bar{f}_2, \bar{m}_1, \bar{m}_2, \bar{m}_{s1}, \bar{m}_{s2}, \bar{m}_{s3}$ and \bar{m}_{s4} are considered in all of the chosen comparative and presented application examples. These 25 non-dimensional system parameters otherwise specified values, have one of the two values $vs=10 \ E-12$ and $vl=10 \ E+12$ equivalent to zero and infinity respectively. It is interesting to note that, Eq. (19) and Eq. (20) can be simplified to those presented by (Rossi *et al.* 1993, Gürgöze 1996, Chen *et al.* 2015) as follows:

when $Z_{s7} = vl$, $\overline{m}_{s3} = 0$, $Z_{s8} = vl$, $\overline{m}_{s4} = 0$, Eqs. (19) and (20) are reduced to those derived by (Chen *et al.* 2015), for undamped model (see Fig. 2(b)) in the forms

$$\tau_{1s} = Z_{s3} \left(\frac{-\lambda^4 \bar{m}_{s1} + Z_{s5}}{-\lambda^4 \bar{m}_{s1} + Z_{s3} + Z_{s5}} \right)$$
(33)

and
$$\tau_{2s} = Z_{s6} \left(\frac{-\lambda^4 \bar{m}_{s2} + Z_{s4}}{-\lambda^4 \bar{m}_{s2} + Z_{s4} + Z_{s6}} \right)$$
 (34)

when $Z_{s5} = Z_{s7} = \overline{m}_{s3} = 0$, $Z_{s6} = Z_{s8} = \overline{m}_{s4} = 0$, Eqs. (19), (20) are reduced to those derived by (Rossi *et al.* 1993, Gürgöze 1996) (see Fig. 2(a)) in the forms

$$\tau_{1s} = \left(\frac{-\lambda^4 \bar{m}_{s1} Z_{s3}}{-\lambda^4 \bar{m}_{s1} + Z_{s3}}\right);\tag{35}$$

and
$$\tau_{2s} = \left(\frac{-\lambda^4 \bar{m}_{s2} Z_{s4}}{-\lambda^4 \bar{m}_{s2} + Z_{s4}}\right);$$
 (36)

6.1 Verification of previous results

As can be seen from Table 1, that for \overline{m}_{s_1} and $Z_{s_3} \neq 0$. Good agreement between the results using the frequency Eq. (30), with those obtained by (Gürgöze 1996), while interesting results are observed when values of $\overline{m}_{s_1} = \overline{Z}_{s_3} = 0$, in which no variation are observed in the natural frequency parameters and the results are equivalent to the well known classical *C*-*F* beam as shown in this table. This means that the system model is valid even the sub-system is included in

				Z_{s3}					
177	12	0		1		10	10		
m_{s1}	λ _i	(Gürgöze)	Present	(Gürgöze)	Present	(Gürgöze)	Present		
0	1	-	3.5160	-	3.5160	-	3.5160		
	2	-	22.0347	-	22.0347	-	22.0347		
1	1	-	3.5160	0.8594	0.8594	1.4194	1.4193		
	2	-	22.0347	4.0711	4.0711	7.4474	7.4469		
5	1	-	3.5160	0.3867	0.3867	0.6700	0.6700		
	2	-	22.0347	4.0466	4.0461	7.0604	7.0601		
10	1	-	3.5160	0.2736	0.2737	0.4771	0.4771		
	2	-	22.0347	4.0431	4.0431	7.0123	7.0120		

Table 1 Comparison of results using Eq. (30) with those obtained by (Gürgöze 1996), for C-F beam carrying an end spring mass sub-system

- not included in (Gürgöze 1996)

the combined system.

6.2 Results for the present combined system

To deeply understand the effect of the sub-system on the natural frequencies of the beam, the sub-system models shown in Fig. 2(c) are considered. The frequency equations of the discrete system are investigated separately considering point 4 and 5 are fixed, as follows:

The governing equations for the RH sub-system are

$$(k_{s4} + k_{s6} - \omega^2 m_{s2}) Y_{s2} - k_{s6} Y_{s4} = 0$$

-k_{s6} Y_{s2} + (k_{s6} + k_{s8} - \omega^2 m_{s4}) Y_{s4} = 0 (37)

Multiplying these equations by the beam stiffness $\frac{L^3}{EI}$ in order to simply compare the discrete system results with those of the combined system, these equations may be written in the form

$$(-\lambda^4 \bar{m}_{s2} + Z_{s4} + Z_{s6}) Y_{s2} - Z_{s6} Y_{s4} = 0$$

-Z_{s6} Y_{s2} + (-\lambda^4 \bar{m}_{s4} + Z_{s6} + Z_{s8}) (38)

For nontrivial solution, one can obtain the frequency equation of RH sub-system in the from

$$(-\lambda^4 \bar{m}_{s2} + Z_{s4} + Z_{s6})(-\lambda^4 \bar{m}_{s4} + Z_{s6} + Z_{s8}) - Z^2_{s6} = 0$$
(39)

and similarly for LH sub-system

$$(-\lambda^4 \overline{m}_{s1} + Z_{s3} + Z_{s5})(-\lambda^4 \overline{m}_{s2} + Z_{s5} + Z_{s7}) - Z_{s5}^2 = 0$$
(40)

The roots of Eqs. (39), (40) represent the natural frequency parameters for the individual subsystems (indicated in Tables from 2 to 9 by D1, D2, D3 and D4). The roots of Eq. (30) represent the combined natural frequency parameters for system model shown in Fig. 1, λ_i values in all of the following examples are included when the sub-system model considering points 4 and 5 are transversally vibrated. Three undamped models SS1, SS2, SS3 shown in Fig. 2(a), (b) and (c) are

			Eq. (39)	λ_i	, Eq. (30)			
\overline{m}_{s2}	Z_{s4}	D 1	D 2	1	2	3	4	5	6
0	All			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	1.1892		1.0979	2.0261	4.7038	7.8568	10.9963	14.1375
	10	2.1147		1.3725	2.8158	4.7978	7.8758	11.0031	14.1407
0.5	100	3.7606		1.4151	3.8901	5.7607	8.0962	11.0760	14.1737
0.5	1000	6.6874		1.4195	4.0907	7.0355	9.7081	12.0410	14.6052
	10000	11.8921		1.4199	4.1091	7.1762	10.2520	13.3072	16.3110
	100000	21.1474		1.4200	4.1109	7.1889	10.2940	13.4105	16.5299
	1E+12	1189.2071		1.4200	4.1111	7.1903	10.2984	13.4210	16.5503
	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	1.0000		0.9271	2.0177	4.7038	7.8568	10.9963	14.1375
	10	1.7783		1.1914	2.7289	4.7957	7.8757	11.0031	14.1407
1	100	3.1623		1.2419	3.7785	5.6876	8.0900	11.0754	14.1736
1	1000	5.6234		1.2473	4.0069	6.9615	9.6321	11.9952	14.5931
	10000	10.0000		1.2479	4.0287	7.1183	10.2060	13.2661	16.2707
	100000	17.7828		1.2479	4.0309	7.1326	10.2517	13.3765	16.5011
	1E+12	1000.0000		1.2479	4.0311	7.1341	10.2566	13.3878	16.5227
	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	0.6687		0.5626	2.0115	4.7038	7.8568	10.9963	14.1375
	10	1.1892		0.8185	2.6571	4.7942	7.8757	11.0031	14.1407
5	100	2.1147		0.8642	3.6706	5.6302	8.0853	11.0750	14.1736
5	1000	3.7606		0.8694	3.9222	6.8943	9.5687	11.9597	14.5838
	10000	6.6874		0.8716	3.9472	7.0651	10.1656	13.2310	16.2367
	100000	11.8921		0.8717	3.9497	7.0808	10.2146	13.3474	16.4768
	1E+12	668.7403		0.8700	3.9500	7.0825	10.2199	13.3592	16.4994

Table 2 First six combined natural frequencies for (C-F) beam with end sub-system SS1 and their discrete modes

considered. SS1 and SS2 is a single-degree of freedom systems having D1 or D3 only, while SS3 is a two-degree of freedom system having resonance frequencies (D1 and D2) or (D3 and D4) as shown in the next examples of this section. Tables 2, 3 and 4 present the results of the first part of this section.

Table 2, presents the first six natural frequencies for a cantilever beam with end sub-system consists of spring-mass (SS1). The values of the stiffness's discussed in this table are $(Z_{s4}) = 0, 1, 10, 100, 1000, 100000$ and 10E+12 respectively. The values of the non-dimensional masses are $(\overline{m}_{s2}) = 0, 0.5, 1$ and 5. Table 3 introduces similar analysis but the attached sub-system model is SS2 and finally Table 4 shows the analysis of a clamped free beam with sub-system model of three spring-two mass SS3 attached to point 5 as shown in Fig. 2(c).

As can be seen from Table 2, the well-known values of the classical C-F beam natural

		Eq. (3	39)						
\overline{m}_{s2}	$Z_{s4} = Z_{s6}$	D 1	D 2	1	2	3	4	5	6
	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1			1.9464	4.6989	7.8558	10.9959	14.1373	17.2789
	10			2.3668	4.7433	7.8651	10.9993	14.1389	17.2797
0	100			3.4009	5.2012	7.9642	11.0342	14.1551	17.2885
0	1000			3.8687	6.6683	8.9969	11.4576	14.3386	17.3836
	10000			3.9209	7.0325	10.0960	13.0717	15.9014	18.5749
	100000			3.9260	7.0650	10.1995	13.3275	16.4468	19.5543
	1E+12			3.9266	7.0686	10.2102	13.3518	16.4934	19.6350
	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	1.4142		1.3554	2.0284	4.7038	7.8568	10.9963	14.1375
	10	2.5149		2.0367	2.8835	4.7979	7.8758	11.0031	14.1407
0.5	100	4.4721		3.2016	4.1686	5.7925	8.0968	11.0760	14.1737
0.5	1000	7.9527		3.8651	6.1770	7.2846	9.7496	12.0508	14.6063
	10000	14.1421		3.9208	7.0299	10.0318	11.6622	13.4201	11.6623
	100000	25.1487		3.9234	7.0463	10.0855	11.6736	13.4989	16.5497
	1E+12	1414.2136		3.9266	7.0686	10.2102	13.3518	16.4934	19.6350
1	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	1.1892		1.1455	2.0182	4.7038	7.8568	10.9963	14.1375
	10	2.1147		1.7981	2.7477	4.7958	7.8757	11.0031	14.1407
	100	3.7606		2.9521	3.8700	5.6952	8.0902	11.0754	14.1736
	1000	6.6874		3.8604	5.4912	7.0146	9.6422	11.9975	14.5934
	10000	11.8921		3.9208	7.0265	9.6515	10.4155	13.2859	16.2775
	100000	21.1474		3.9260	7.0650	10.1988	13.3218	16.3820	17.7040
	1E+12	1189.2071		3.9266	7.0686	10.2102	13.3518	16.4934	19.6350
5	0			1.8751	4.6941	7.8548	10.9955	14.1372	17.2788
	1	0.7953		0.7692	2.0115	4.7038	7.8568	10.9963	14.1375
	10	1.4142		1.2435	2.6578	4.7942	7.8757	11.0031	14.1407
	100	2.5149		2.1047	3.6742	5.6304	8.0853	11.0750	14.1736
	1000	4.4721		3.6479	3.9990	6.8960	9.5691	11.9598	14.5838
	10000	7.9527		3.9205	6.6095	7.1129	10.1680	13.2316	16.2370
	100000	14.1421		3.9260	7.0648	10.1931	11.8648	13.3599	16.4791
	1E+12	795.2707		3.9266	7.0686	10.2102	13.3518	16.4934	19.6350

Table 3 First six combined natural frequencies for (C-F) beam with end sub-system SS2 and their discrete modes.

frequencies are observed for all values of Z_{s4} and $\overline{m}_{s2} = 0$. This means that the sub-system SS1 has no effect on the system. Also for all cases in which $Z_{s4} = 0$ and with variable \overline{m}_{s2} same observations are recorded. Increasing the value of the sub-system mass \overline{m}_{s2} results in decrease the natural frequency parameter λ_i and of the separate sub-system model *D1*. When the value of Z_{s4} tends to ∞ a clamped-free beam carrying an end mass $\overline{m}_{s2} = 0.5$, 1 and 5, λ_i are satisfied. An increase in Z_{s4} results in an increase in the combined natural frequency parameters are observed.

Table 3, shows the variations in λ_i vs the variation in both \overline{m}_{s2} and $(Z_{s4} = Z_{s6})$. As can be seen, that when $\overline{m}_{s2} = Z_{s4} = Z_{s6} = 0$, classical values of λ_i for *C-F* beam are observed. In this case, the sub-system SS2 has no effect on the beam system. For the case in which the value of

Eq. (39) λ_i , Eq. (30) $Z_{s4} = Z_{s6}$ \overline{m}_{s2} D 1 D 2 1 2 3 4 5 6 $= \underline{Z_{s8}}$ $= \overline{m}_s$ 0 1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 0 1 1.9236 4.6973 7.8554 10.9958 14.1373 17.2788 10 2.2418 4.7267 7.8617 10.9981 14.1383 17.2794 100 3.2184 5.0354 7.9264 11.0211 14.1491 17.2853 1000 3.8395 6.4671 11.2885 14.2661 17.3469 8.6647 10000 3.9180 7.0139 10.0335 12.9074 15.5752 18.1743 100000 3.9257 7.0633 10.1940 13.3151 16.4223 19.5102 3.9266 10.2102 13.3518 16.4934 19.6350 1E+127.0686 17.2788 0 1.8751 4.6941 7.8548 10.9955 14.1372 1 1.5651 10.9963 1.1892 1.1423 1.5423 2.0288 4.7038 7.8568 10 1.7224 4.7979 11.0031 2.1147 2.7832 2.5631 2.9367 7.8758 100 3.7606 4.9492 2.7326 3.8679 4.7729 5.8033 8.0969 11.0760 0.5 1000 6.6874 8.8011 3.8181 5.1392 7.0103 8.4416 9.7717 12.0521 10000 11.8921 15.6508 3.9178 6.9975 9.0782 10.3387 13.2711 15.0393 100000 21.1474 27.8316 3.9257 7.0631 10.1923 13.2983 16.0506 16.8820 1E+12 1189.20 1565.08 3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 0 1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 1 1.00001.3161 1.0466 1.3050 2.0183 4.7038 7.8568 10.9963 10 1.7783 2.3403 1.4890 2.2367 2.7538 4.7958 7.8757 11.0031 100 4.1618 2.4113 3.6803 4.0988 5.6962 8.0902 11.0754 3.1623 1 1000 5.6234 7.4008 3.7764 4.4730 6.8304 7.2513 9.6440 11.9976 10000 10.0000 13.1607 3.9176 6.9562 7.8605 10.2022 12.6344 13.3249 100000 17.7828 23.4035 3.9257 7.0630 10.1899 13.2146 14.0071 16.5122 1000 1316.07 3.9266 7.0686 10.2102 13.3518 16.4934 1E+1219.6350 5 0 10.9955 17.2788 1.8751 4.6941 7.8548 14.1372 0.8801 0.7401 0.9147 4.7038 10.9963 1 0.6687 2.0115 7.8568 10 1.1892 1.5651 1.0164 1.5188 2.6579 4.7942 7.8757 11.0031 100 2.1147 2.7832 1.6712 2.6815 3.6748 5.6305 8.0853 11.0750 1000 3.7606 4.9492 2.9296 3.9185 4.7824 6.8962 9.5691 11.9598 10000 6.6874 8.8011 3.9156 5.2436 7.0622 8.5005 10.1690 13.2317 100000 11.8921 15.6508 3.9257 7.0616 9.3163 10.2273 13.3438 15.1186 7.0686 13.3518 668.740 880.111 3.9266 10.2102 19.6350 1E+12 16.4934

Table 4 First six combined natural frequencies for (C-F) beam with end sub-system SS3 and their discrete modes.

 $\overline{m}_{s2} = 0$ and $(Z_{s4} = Z_{s6}) \Rightarrow \infty$, λ_i for clamed-pinned beam are recorded. An increase in Z_s values results in an increase in both D1 and λ_i . Also an increase in \overline{m}_{s2} decreases the values of λ_i and D1. In Table 4, the sub-system SS3 is considered and located at the free end of the C-F beam. The table shows the first six combined natural frequencies for $(\overline{m}_{s2} = \overline{m}_{s4})$ and $(Z_{s4} = Z_{s6} = Z_{s8})$. One can see that for all values of the sub-system masses and

 $(Z_{s4} = Z_{s6} = Z_{s8})$ are zeros, λ_i for classical clamped-free beam are observed, which indicates that the sub-system has no effect on the beam system. On the other hand, when Z_s values approach infinity a clamped-pinned case is satisfied. An increase in Z_s increases the λ_i , D1 and D2. As expected the increase in the masses decrease the combined system natural frequencies and those for the discrete masses. The first section of Table 4, shows the results when $\overline{m}_{s2} = \overline{m}_{s4} = 0$. This means that the sub-system model is equivalent to three spring in series and the value of the equivalent spring is $Z_{eq} = 1/(\frac{1}{Z_{s4}} + \frac{1}{Z_{s6}} + \frac{1}{Z_{s8}})$. Selecting the case where $Z_{s4} = Z_{s6} = Z_{s8} = 10$ and $m_{s2} = m_{s4} = 0$, we can find that the equivalent model is a clamped free beam with end spring of $Z_{eq} = 10/3$. The first five natural frequencies for this case are [2.2418, 4.7267, 7.8617, 10.9981 and 14.1383], respectively, which equals to the third row of the first group in Table 4. In column D1 and D2 the values of $(Z_{s4} = Z_{s6} = Z_{s8})$ equal zero for all values of $\overline{m}_{s2} = \overline{m}_{s4}$. For more understanding of the vibrational behavior of SS1, SS2 and SS3. Fig. 3(a), (b) and (c)

For more understanding of the vibrational behavior of SS1, SS2 and SS3. Fig. 3(a), (b) and (c) present the first, third and fifth natural frequency parameters for the models considered in Tables 2, 3 and 4. The figures plot the variation of natural frequency parameter versus the change in the sub-system spring stiffness parameter Z_s . It is interesting to note from Fig. 3 that the combined natural frequencies of the second and third sub-systems model (SS2 and SS3) approach the same end as Z_s tends to infinity which is the clamped pinned results. As shows in Fig. 3(c) the individual variation in λ_i is diminished in the fifth mode from Z_{s4} equal 1 to Z_{s4} =100. This behavior may be appeared for Z_{s4} >100 especially for higher modes.

Table 5 presents the first five combined natural frequency parameter for clamped free beam with end mass having $\bar{m}_2 = 1$ and $Z_2 = vs$ and sub-system (SS3) having $Z_{s4} = Z_{s6} = 100$. The table introduces the effect of changing the location of the end mass center of gravity (sub-system

Fig. 3 (a) first mode, (b) third mode and (c) fifth mode variation vs the spring stiffness parameters: \circ for SS1, for SS2 and Δ for SS3 when located at the free end of *C-F* beam. Input parameters are ($z_{s4} = z_{s6}$) for SS2, ($z_{s4} = z_{s6} = z_{s8}$) for SS3. Two values of \overline{m}_{s4} are distinguished by for $\overline{m}_{s4} = 0$; and --- for $\overline{m}_{s4} = 1$

point of attachment) from the beam end point by changing the value of \bar{d}_2 . The effect of changing the Z_{s8} parameter is also investigated. Connecting the sub-system SS3 with pre-mentioned parameters to the point 5, see Fig. 1, results in adding two natural frequencies to the combined system. The value of the separate natural frequency determines the location of the additional mode through the beam modes. Comparing the natural frequency of $Z_{s8} = 1000 \& \bar{d}_2 = 0$ and $Z_{s8} = 100000 \& \bar{d}_2 = 0$ we can find that the fifth natural frequency in the first case equals to the fourth natural frequency in the second case. This may be explained by the fact that the value of the second discrete natural frequency, D2 is higher than the natural frequency.

Table 6 shows the first five combined natural frequencies parameter for (*C*-*F*) beam carrying an end mass $\bar{m}_2 = 1$, and sub-system SS3 having ($Z_{s6} = Z_{s8}$) = 100000 for different values of ($Z_2 = Z_{s4}$) = 0, 10, 100, 1000, 100000 and *vl*, fixed value of $\bar{c}_2 = 0.5$ and five values of $\bar{d}_2 =$

		Eq. (3	9)		λ_i , Eq. (30)					
Z_{s8}	\bar{d}_2	<i>D</i> 1	D2	1	2	3	4	5		
	0	2.4860	4.0225	0.9777	3.0679	3.9691	4.2237	7.1367		
	0.125			0.9015	3.0623	3.6308	4.1753	6.4408		
0	0.25			0.8381	3.0349	3.3957	4.1676	6.1048		
	0.375			0.7849	2.9803	3.2732	4.1651	5.9357		
	0.5			0.7400	2.9106	3.2199	4.1639	5.8379		
	0	2.5949	4.0334	1.4049	3.1092	3.9739	4.2268	7.1367		
	0.125			1.3864	3.1004	3.6357	4.1806	6.4408		
10	0.25			1.3737	3.0655	3.4070	4.1734	6.1048		
	0.375			1.3648	2.9992	3.2957	4.1709	5.9357		
	0.5			1.3584	2.9211	3.2505	4.1698	5.8379		
	0	3.1623	4.1618	2.0850	3.4383	4.0290	4.2743	7.1367		
	0.125			2.0908	3.3770	3.7144	4.2517	6.4408		
100	0.25			2.0947	3.2298	3.5909	4.2479	6.1048		
	0.375			2.0975	3.0808	3.5584	4.2466	5.9357		
	0.5			2.0995	2.9665	3.5468	4.2460	5.8379		
	0	3.7079	5.7733	2.3761	3.8242	4.1586	5.7735	7.1367		
	0.125			2.3891	3.5528	4.0283	5.7735	6.4408		
1000	0.25			2.3975	3.2991	4.0053	5.7735	6.1048		
	0.375			2.4033	3.1220	3.9982	5.7735	5.9357		
	0.5			2.4076	2.9975	3.9951	5.7735	5.8379		
	0	3.7601	17.7872	2.4146	3.8506	4.1687	7.1367	10.2570		
	0.125			2.4283	3.5622	4.0552	6.4408	9.3690		
100 000	0.25			2.4370	3.3051	4.0357	6.1048	9.0641		
	0.375			2.4430	3.1270	4.0296	5.9357	8.9341		
	0.5			2.4473	3.0022	4.0269	5.8379	8.8641		

Table 5 First five combined natural frequencies parameter and the discrete values for clamped- free beam with end mass having $\bar{m}_2 = 1$, $Z_2 = vs$ and $\bar{c}_2 = 0.5$ for five values of $\bar{d}_2 = 0$, 0.25, 0.375 and 0.5. carrying sub-system (SS3), having $\bar{m}_{s2} = \bar{m}_{s4} = 1$ and $Z_{s4} = Z_{s6} = 100$

0, 0.125, 0.25, 0.375 and 0.5 are considered. As can be seen from this table that increasing the value of $(Z_2 = Z_{s4}) =$ from 0 to 1000, results in slight variations in D1 and D2 this is because the value is recognized of Z_{s4} is relatively small compared with the values of $Z_{s6} = Z_{s8} = 100000$. A significant increase in their value when $Z_{s4}=10000$ or vl.

Table 7 shows the results of the first natural frequency parameters. Tensile and compressive axial loads are acted individually at point 5 of Fig. 1 in which $\bar{d}_2 = 0.25$. Four values for $p^2 = vs$, $0.25\pi^2$, $0.50\pi^2$ and π^2 are considered. The input data for cases are given on the legend of Table 7. As expected, an increase in the tensile axial load increases λ_i , while an increase in the compressive axial load decreases λ_i .

		Eq. (39))			λ_i , Eq. (30)		
$Z_2 = Z_{s4}$	\bar{d}_2	D1	D2	1	2	3	4	5
	0	13.9800	22.6201	1.2479	4.0311	7.1341	10.2566	13.3878
	0.125			1.1609	3.6068	6.4380	9.3687	12.3671
0	0.25	Fig.4 (a)		1.0856	3.3166	6.1028	9.0640	12.1042
	0.375			1.0209	3.1247	5.9344	8.9340	12.0016
	0.5			0.9650	2.9927	5.8370	8.8640	11.9480
	0	13.9806	22.6201	2.1941	4.3606	7.3085	10.3774	13.4802
	0.125			2.1889	3.8524	6.5169	9.4037	12.3850
10	0.25			2.1690	3.4418	6.1229	9.0704	12.1070
	0.375			2.1366	3.1725	5.9380	8.9349	12.0019
	0.5			2.0965	3.0056	5.8371	8.8640	11.9480
	0	13.9866	22.6207	3.0670	4.9181	7.7840	10.8051	13.8677
	0.125			3.0379	4.7636	7.0888	9.7124	12.5499
100	0.25	Fig.4 (b)		2.9997	4.4347	6.3284	9.1308	12.1322
	0.375			2.9579	4.0561	5.9758	8.9432	12.0051
	0.5			2.9279	3.7865	5.8388	8.8641	11.9480
	0	14.0456	22.6261	4.4017	5.6826	8.0373	11.0744	14.0461
	0.125			4.2133	5.7106	8.0260	10.8358	13.6280
1000	0.25			3.8655	5.7469	7.8415	9.8943	12.4360
	0.375			3.3217	5.7876	7.2542	9.0632	12.0400
	0.5			2.9505	5.8165	6.6840	8.8653	11.9481
	0	17.7828	23.4035	4.7234	7.8249	10.8144	11.8823	14.2152
	0.125			4.7178	7.8011	10.6910	11.8919	14.2611
100 000	0.25			4.7010	7.7293	10.3990	11.9080	14.3539
	0.375			4.608	7.347	9.6172	11.9314	14.5781
	0.5			2.9521	5.8283	8.8612	11.9466	15.0535
	0	21.1474	1000.000	4.7258	7.8347	10.8887	12.1313	14.2160
	0.125			4.7224	7.8203	10.8106	12.1098	14.2680
vl	0.25	Fig.4 (c)		4.7130	7.7788	10.6106	12.0683	14.3854
	0.375			4.6623	7.5569	9.9399	11.9971	14.6824
	0.5			2.9522	5.8284	8.8614	11.9468	15.0546

Table 6 First five combined natural frequencies parameter for (*C-F*) beam carrying an end mass $\overline{m}_2 = 1$, $\overline{c}_2 = 0.5$ and sub-system SS3 having $Z_{s6} = Z_{s8} = 100000$ for different values of $(Z_2 = Z_{s4}) = 0$, 10, 100, 10000 and *vl*, and five values of $\overline{d}_2 = 0$, 0.125, 0.25, 0.375 and 0.5

Selected cases are chosen from results shown in Table 6. These cases are underlined inside the table. Interesting modal shapes are presented in Fig. 4(a) shows the first five modal shapes between the point of attachment 1 and 2 for a clamped free beam. Fig. 4(b) shows that the elastic support affect slightly the modal shapes. This is because the Z_2 and $Z_{s4} = 100$ are considered small elastic spring. An interesting modal shapes are observed in Fig. 4(c) in which the extension of the tangents at point 2 are intersected at the pin location at point 6 in which $Z_2 \rightarrow \infty$.

		Eq. (39)		λ_i , Eq. (30)					
$Z_2 = Z_{s4}$	p^2	D1	D2	1	2	3	4	5		
	$-\pi^2$	13.9800	22.6201	1.7427	3.8030	6.4231	9.2987	12.2876		
	$-0.5\pi^{2}$			1.5255	3.5851	6.2691	9.1836	12.1969		
	$-0.25\pi^2$			1.3619	3.4589	6.1877	9.1244	12.1508		
VS	VS			1.0856	3.3166	6.1028	9.0640	12.1042		
	$0.25\pi^{2}$			-	3.1532	6.0143	9.0024	12.0570		
	$0.5\pi^2$			-	2.9599	5.9216	8.9395	12.0093		
	π^2			-	2.4101	5.7222	8.8095	11.9121		
	$-\pi^2$	13.9806	22.6201	2.3273	3.8882	6.4406	9.3046	12.2902		
	$-0.5\pi^{2}$			2.2529	3.6862	6.2879	9.1898	12.1996		
	$-0.25\pi^{2}$			2.2123	3.5705	6.2070	9.1307	12.1535		
10	VS			2.1690	3.4418	6.1229	9.0704	12.1070		
	$0.25\pi^{2}$			2.1224	3.2961	6.0351	9.0089	12.0598		
	$0.5\pi^{2}$			2.0717	3.1271	5.9433	8.9461	12.0121		
	π^2			1.9502	2.6661	5.7458	8.8164	11.9150		
	$-\pi^2$	14.0456	22.6261	4.0656	5.9569	7.9975	10.0581	12.6018		
	$-0.5\pi^{2}$			3.9709	5.8559	7.9210	9.9769	12.5197		
	$-0.25\pi^{2}$			3.9197	5.8025	7.8817	9.9358	12.4780		
1000	VS			3.8655	5.7469	7.8415	9.8943	12.4360		
	$0.25\pi^{2}$			3.8079	5.6889	7.8005	9.8526	12.3935		
	$0.5\pi^{2}$			3.7464	5.6285	7.7585	9.8105	12.3507		
	π^2			3.6092	5.4991	7.6716	9.7252	12.2637		
	$-\pi^2$	21.1474	1000.00	4.9720	7.9952	10.7429	12.1499	14.5236		
	$-0.5\pi^{2}$			4.8482	7.8896	10.6784	12.1087	14.4549		
	$-0.25\pi^{2}$			4.7821	7.8349	10.6449	12.0884	14.4203		
vl	VS			4.7130	7.7788	10.6106	12.0683	14.3854		
	$0.25\pi^{2}$			4.6403	7.7214	10.5755	12.0484	14.3503		
	$0.5\pi^2$			4.5637	7.6625	10.5395	12.0287	14.3150		
	π^2			4.3967	7.5398	10.4649	11.9898	14.2437		

Table 7 First five combined natural frequencies parameter for (C-F) beam carrying an end mass $\bar{m}_2 = 1$, $\bar{c}_2 = 0.5$, $\bar{d}_2 = 0.25$ and sub-system SS3 having $Z_{s6} = Z_{s8} = 100000$ for different values of ($Z_2 = Z_{s4}$) = vs, 10, 1000 and vl, and four values of $p^2 = vs$, $0.25 \pi^2$, $0.50\pi^2$ and π^2 .(tensile and compressive)

Tables 8, 9 and 10 show the first five combined natural frequency parameter for symmetric models having $\bar{c}_1 = \bar{c}_2 = 0.5$ and $\bar{m}_1 = \bar{m}_2 = 1$. Two sub-systems are connected to points 4 ad 5 with $\bar{m}_{s1} = (\bar{m}_{s2} = \bar{m}_{s3} = \bar{m}_{s4}) = 1$, see Figs. 1 and 2. The values of $(Z_{s4} = Z_{s6} = Z_{s8} = Z_{s3} = Z_{s5} = Z_{s7} = Z_s)$, where Z_s equals to 0, 10, 100, 1000, 100000, vl respectively. The results of Table 10 are calculated at $\bar{d}_1 = \bar{d}_2 = 0$, the results of Table 9 are calculated at $\bar{d}_1 = \bar{d}_2 = 0.25$ while Table 8 for $\bar{d}_1 = \bar{d}_2 = 0.5$.

Fig. 4 first five modal shapes for C-F beam chosen form Table 6 for case of $\bar{d}_2 = 0.25$ and (a) $Z_2 = Z_{s4} = 0$, (b) $Z_{s4} = 100$ and (c) $Z_2 = Z_{s4} = vl$

The attached sub-systems to points 4 and 5 add four natural frequencies to the combined system. In the first group in Table 10, $Z_1 = Z_2 = 0$ and $Z_s = 0$, this represent the case of free-free beam with two end masses of ratios 1. In this case the sub-system has no effect on the combined system. Increasing the value of Z_s , the two attached sub-systems add four natural frequencies to the combined system as shown in the second group of Table 10. Increasing the value of Z_s results in an increase in the natural frequency. When the value of Z_s approaches infinity a pinned support is created at points 4 and 5. This explains why the sixth row in Table 10 represent the classical *P-P* beam configuration with classical natural frequency parameters π , 2π , ..., $n\pi$, respectively The same results are recognized in Tables 8 and 9, but the natural frequency deviates from the classical *P-P* because the sub-system point of attachment is not located at the beam end points.

When $Z_1 = Z_2$ approaches infinity a pinned support is created at points 3 and 6, and when Z_s approaches infinity a pinned support is created at points 4 and 5, in which the end mass is considered as a rigid wall. If the two hinges coincide to each other the beam behaves as pinned support at the location of attachment as shown in the last group of Table 8.

Selected cases are chosen from results shown in Tables 8, 9 and 10. These cases are underlined inside the tables. Using Eq. (31), interesting modal shapes are presented in Fig. 5 and Fig. 6. Fig. 5(a) shows the first five mode shapes between the beam ends 1 and 2. If we linearly extend the tangent to the mode shapes at point 1 and 2, this will intersect the pin location as shown in Fig. 5(a). On the other hand, when two pinned support are adjacent each other, the end mass becomes as a rigid wall in which the beam becomes C-C configurations. Fig. 5 (b) and (c) show the modal shapes for this case and the extension of tangents passes through the pinned support locations. It is

		Eqs. (3	9), (40)		λ_i , Eq. (30)				
	$Z_{s3} = Z_{s5},$								
$Z_1 = Z_2$	$Z_{s7} = Z_{s4},$ $Z_{s7} = Z_{s4},$	D1, D3	<i>D</i> 2, <i>D</i> 4	1	2	3	4	5	
	$\frac{Z_{s6} - Z_{s8}}{0}$			1.9009	4.0971	6.8619	9.8303	12.8764	
	10	1.7783	2.3403	1.1037	1.1796	1.7467	1.9784	2.0867	
0	100	3.1622	4.1617	1.6440	2.0969	2.1993	3.5048	3.5381	
0	1000	5.6234	7.4008	1.7149	3.6888	3.7592	4.1219	6.2694	
	100000	17.7827	23.4034	1.7206	4.0572	6.8505	9.8244	11.8612	
	vl	1000	1316.074	1.7207	4.0575	6.8512	9.8264	12.8746	
	0			1.4787	1.7596	2.0657	4.0986	6.8619	
	10			1.4541	1.5516	1.7487	2.1031	2.1949	
10	100			1.6654	2.2249	2.3029	3.5225	3.5587	
10	1000			1.7151	3.7109	3.7842	4.1251	6.2728	
	100000			1.7206	4.0572	6.8505	9.8244	11.8620	
	vl			1.7207	4.0575	6.8512	9.8264	12.8746	
	0			1.7009	3.1145	3.1932	4.1178	6.8624	
	10			1.6953	1.7551	1.7627	2.3293	3.1955	
100	100			1.7055	2.7574	2.7798	3.7017	3.7676	
100	1000			1.7163	3.8685	3.9845	4.1692	6.3041	
	100000			1.7206	4.0572	6.8505	9.8244	11.8693	
	vl			1.7207	4.0575	6.8512	9.8264	12.8746	
	0			1.7188	4.0427	5.6127	5.6410	6.8705	
	10			1.7187	4.0429	5.6266	5.6549	6.8706	
1000	100			1.7188	3.1214	4.0423	4.1408	4.1437	
1000	1000	Fig. 6(a)		1.7193	4.0450	4.9191	4.9294	6.6444	
	100000			1.7206	4.0572	6.8505	9.8245	11.9412	
	vl			1.7207	4.0575	6.8512	9.8264	12.8746	
	0			1.7206	4.0574	6.8510	9.8260	12.8739	
	10			1.7206	4.0574	6.8510	9.8260	12.8739	
100000	100			1.7206	4.0574	6.8510	9.8260	12.8739	
100000	1000			1.7206	4.0574	6.8510	9.8260	12.8739	
	100000			1.7206	4.0574	6.8511	9.8261	12.8740	
	vl			1.7207	4.0575	6.8512	9.8264	12.8746	
	0			1.7207	4.0575	6.8512	9.8264	12.8746	
	10			1.7207	4.0575	6.8512	9.8264	12.8746	
1	100			1.7207	4.0575	6.8512	9.8264	12.8746	
vi	1000			1.7207	4.0575	6.8512	9.8264	12.8746	
	100000			1.7207	4.0575	6.8512	9.8264	12.8746	
	vl	Fig. 5(a)		1.7207	4.0575	6.8512	9.8264	12.8746	

Table 8 First five combined natural frequency parameters λ_i and for the discrete masses of the sub-system for symmetric model having $\bar{c}_1 = \bar{c}_2 = 0.5$ and $\bar{d}_1 = \bar{d}_2 = 0.5 \cdot \bar{m}_1 = \bar{m}_2 = 1$. No axial load, and $\bar{m}_{s1} = \bar{m}_{s3} = \bar{m}_{s4} = \bar{m}_{s2} = 1$

		Eqs. (39), (40))	λ_i , Eq. (30)						
$Z_1 = Z_2$	$Z_{s3} = Z_{s5},$ $Z_{s7} = Z_{s4},$ $Z_{s6} = Z_{s8}$	D1, D3	D2, D4	1	2	3	4	5		
	0			2.3727	4.6532	7.3155	10.1863	13.1628		
	10	1.7783	2.3403	1.1113	1.1746	1.8804	1.9732	2.3044		
0	100	3.1622	4.1617	1.8661	2.0880	2.4102	3.5001	3.5494		
0	1000	5.6234	7.4008	2.1356	3.6905	3.7710	4.6374	6.2633		
	100000	17.7827	23.4034	2.1536	4.5768	7.2844	10.1658	11.8580		
	vl	1000	1316.074	2.1537	4.5779	7.2872	10.1740	13.1567		
	0			1.3769	1.9826	2.7593	4.7290	7.3378		
	10			1.3849	1.6305	1.8813	2.1731	2.3384		
10	100			1.8697	2.2837	2.6508	3.5217	3.6083		
10	1000			2.2502	3.7156	3.8341	4.7017	6.2690		
	100000			2.2983	4.6240	7.3017	10.1727	11.8602		
	vl			2.2987	4.6255	7.3049	10.1817	13.1605		
	0			1.5886	3.0776	4.1200	5.3645	7.5448		
100	10			1.5349	1.7589	1.8822	2.3300	2.3484		
	100			1.8730	2.7715	3.1285	3.6364	4.0478		
	1000			2.6093	3.8133	4.2742	5.1506	6.3117		
	100000			2.9818	4.9799	7.4509	10.2340	11.8790		
	vl			2.9863	4.9868	7.4596	10.2508	13.1953		
	0			1.6173	3.5034	5.6440	7.5714	9.2233		
	10			1.5590	1.7738	1.8824	2.3384	2.3498		
1000	100			1.8737	2.9763	3.2298	3.7461	4.1623		
1000	1000	Fig. 6(b)		2.8094	3.8831	5.1253	5.8223	6.4352		
	100000			4.1594	6.3696	8.4427	10.6816	12.0192		
	vl			4.1896	6.4498	8.5711	10.8968	13.5464		
	0			1.6205	3.5599	5.9908	8.7389	11.6436		
	10			1.5618	1.7738	1.8825	2.3384	2.3499		
100000	100			1.8738	3.0031	3.2400	3.7661	4.1686		
100000	1000			2.8398	3.8950	5.3605	5.9115	6.4878		
	100000			4.6728	7.6177	10.0786	11.2628	12.3000		
	vl			4.7230	7.8312	10.9462	14.0434	17.1188		
	0			1.6206	3.5605	5.9943	8.7511	11.6739		
	10			1.5618	1.7738	1.8825	2.3384	2.3499		
1 ,1	100			1.8738	3.0033	3.2401	3.7663	4.1686		
VI	1000			2.8401	3.8952	5.3630	5.9123	6.4884		
	100000			4.6796	7.6381	10.1091	11.2697	12.3058		
	vl	Fig. 5(b)		4.7300	7.8532	10.9956	14.1372	17.2788		

Table 9 First five combined natural frequency parameters λ_i and for the discrete masses of the sub-system for symmetric model having $\bar{c}_1 = \bar{c}_2 = 0.5$ and $\bar{d}_1 = \bar{d}_2 = 0.25$. $\bar{m}_1 = \bar{m}_2 = 1$. No axial load, and $\bar{m}_{s1} = \bar{m}_{s3} = \bar{m}_{s2} = \bar{m}_{s4} = 1$

		Eqs. (39	9), (40)		λ_i , Eq. (30)				
$Z_1 = Z_2$	$Z_{s3} = Z_{s5},$ $Z_{s7} = Z_{s4},$ $Z_{s6} = Z_{s8}$	D1, D3	D2, D4	1	2	3	4	5	
	0			3.3988	6.4273	9.5245	12.6424	15.7694	
	10	1.7783	2.3403	1.1150	1.1607	1.9176	1.9600	2.3641	
0	100	3.1622	4.1617	1.9683	2.0637	3.1506	3.4830	3.6806	
0	1000	5.6234	7.4008	3.0006	3.6642	3.8684	6.0257	6.2391	
	100000	17.782	23.403	3.1407	6.2752	9.3845	11.6598	11.8219	
	vl	1000	1316.074	3.1416	6.2832	9.4248	12.5664	15.7080	
	0			1.2689	2.1975	4.0656	6.8006	9.7799	
	10			1.3276	1.6865	1.9292	2.2441	2.3641	
10	100			1.9888	2.3566	3.3000	3.5200	4.0417	
10	1000			3.2050	3.7135	4.1907	6.0721	6.2571	
	100000			3.6448	6.5849	9.5934	11.6621	11.8409	
	vl			3.6477	6.5989	9.6531	12.7445	15.8539	
	0			1.4102	2.7764	4.9916	7.7137	10.6244	
	10			1.4050	1.7470	1.9362	2.3215	2.3641	
100	100			1.9992	2.6275	3.3457	3.5861	4.1757	
100	1000			3.3165	3.7846	4.8308	6.1077	6.3118	
	100000			4.4212	7.3666	10.2551	11.6672	11.9333	
	vl			4.4304	7.4040	10.4233	13.4637	16.5214	
	0			1.4291	2.8936	5.2758	8.1271	11.1370	
	10			1.4161	1.7527	1.9374	2.3257	2.3641	
1000	100			2.0009	2.6851	3.3512	3.6076	4.1828	
1000	1000	Fig. 6(c)		3.3326	3.8047	5.0398	6.1141	6.3425	
	100000			4.6809	7.7400	10.6249	11.6693	12.0299	
	vl			4.6932	7.7928	10.9120	14.0310	17.1505	
	0			1.4313	2.9080	5.3141	8.1888	11.2215	
	10			1.4173	1.7533	1.9376	2.3262	2.3641	
100000	100			2.0011	2.6922	3.3518	3.6105	4.1835	
100000	1000			3.3345	3.8073	5.0677	6.1148	6.3475	
	100000			4.7169	7.7972	10.6821	11.6696	12.0507	
	vl			4.7297	7.8526	10.9947	14.1360	17.2774	
	0			1.4313	2.9082	5.3145	8.1895	11.2224	
	10			1.4174	1.7533	1.9376	2.3262	2.3641	
1	100			2.0011	2.6922	3.3518	3.6105	4.1835	
vi	1000			3.3345	3.8074	5.0680	6.1148	6.3475	
	100000			4.7173	7.7978	10.6827	11.6696	12.0509	
	vl	Fig. 5(c)		4.7300	7.8532	10.9956	14.1372	17.2788	

Table 10 First five combined natural frequency parameters λ_i and for the discrete masses of the sub-system for symmetric model having $\bar{c}_1 = \bar{c}_2 = 0.5$ and $\bar{d}_1 = \bar{d}_2 = 0$. $\bar{m}_1 = \bar{m}_2 = 1$. No axial load, and $\bar{m}_{s1} = \bar{m}_{s2} = \bar{m}_{s3} = \bar{m}_{s4} = 1$

Fig. 5 first five modal shapes for symmetric model, $\bar{c}_1 = \bar{c}_2 = 0.5$ (a) $\bar{d}_1 = \bar{d}_2 = 0.5$, (b) $\bar{d}_1 = \bar{d}_2 = 0.25$ and (c) $\bar{d}_1 = \bar{d}_2 = 0$

Fig. 6 first five modal shapes for elastically supported symmetric model, $\bar{c}_1 = \bar{c}_2 = 0.5$ (a) $\bar{d}_1 = \bar{d}_2 = 0.5$, (b) $\bar{d}_1 = \bar{d}_2 = 0.25$ and (c) $\bar{d}_1 = \bar{d}_2 = 0$

clear that the first five modals shapes are identical to those for C-C beam configurations. Fig. 6(a) shows the first five modal shapes for elastically supported end masses and carrying SS3 at points 4 and 5. As can be seen from Fig. 6(b) and Fig. 6(c), the modal shapes are influenced by the change in the spring stiffness and locations.

7. Conclusions

Exact vibration analysis of an axially loaded Timoshenko beam combined system with generalised end conditions including three spring-two mass sub-system are presented. The significance of this work may be drawn in the following contributions:

1- Mathematical model valid for, mechanical, naval and structural applications.

2- Three spring-two mass sub-system located at the center of both of the eccentric masses.

3- New frequency dependent shear force and bending moment terms are derived.

4- No need to extra columns and rows due to the sub-system presence.

5- Exact closed form frequency and mode shape equations for the combined system are derived.

6- Resonance frequencies are appeared equal to the degree of freedom of the located subsystem.

7- Previous results are verified.

8- Interesting results for combined system natural frequencies and mode shapes are presented.

References

Ari-Gur, J. and Elishakoff, I. (1990), "On the effect of shear deformation on buckling of columns with overhang", J. Sound Vib., 139(1), 165-169.

Bergman, L. and Nicholson, J. (1985), "Forced vibration of a damped combined linear system", J. Vib. Acoust., 107(3), 275-281.

Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142(3), 481-498.

Chang, T.P. (1993), "Forced vibration of a mass-loaded beam with a heavy tip body", *J. Sound Vib.*, **164**(3), 471-484.

Chen, Y., McFarland, D.M., Spencer, B.F. and Bergman, L.A. (2015), "Exact solution of free vibration of a uniform tensioned beam combined with both lateral and rotational linear sub-systems", J. Sound Vib., 341, 206-221.

Cowper, G. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340.

- Farghaly, S.H. and Shebl, M. (1995), "Exact frequency and mode shape formulae for studying vibration and stability of Timoshenko beam system", J. Sound Vib., 180(2), 205-227.
- Farghaly, S.H. (1992), "Bending vibrations of an axially loaded cantilever beam with an elastically mounted end mass of finite length", *J. Sound Vib.*, **156**(2), 373-380.
- Farghaly, S.H. (1993), "Comments on "The general equation of frequencies for vibrating uniform one-span beams under compressive axial loads", *J. Sound Vib.*, **161**(1), 181-183.
- Grossi, R.O. and Laura, P.A.A. (1982), "Further results on a vibrating beam with a mass and spring at the end subjected to an axial force", J. Sound Vib., 84(4), 593-594.
- Gürgöze, M. (1996), "On the eigenfrequencies of a cantilever beam with attached tip mass and a springmass system", J. Sound Vib., 190(2), 149-162.

Gürgöze, M. and Batan, H. (1996), "On the effect of an attached spring-mass system on the frequency

spectrum of a cantilevered beam", J. Sound Vib., 195(1), 163-168.

- Huang, T. (1961), "The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions", J. Appl. Mech., 28(4), 579-584.
- Kounadis, A.N. (1980), "On the derivation of equations of motion for a vibrating Timoshenko column", J. Sound Vib., **73**(2), 177-184.
- Naguleswaran, S. (2004), "Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force", J. Sound Vib., 275(1), 47-57.
- Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H. (1993), "Free vibrations of Timoshenko beams carrying elastically mounted, concentrated masses", J. Sound Vib., 165(2), 209-223.
- Saito, H. and Otomi, K. (1979), "Vibration and stability of elastically supported beams carrying an attached mass under axial and tangential loads", J. Sound Vib., **62**(2), 257-266.
- Sato, K. (1991), "On the governing equations for vibration and stability of a Timoshenko beam: Hamilton's principle", *J. Sound Vib.*, **145**(2), 338-340.
- Snowdon, J. (1966), "Vibration of cantilever beams to which dynamic absorbers are attached", J. Acoust. Soc. Am., **39**(5A), 878-886.
- Takahashi, K. (1980), "Eigenvalue problem of a beam with a mass and spring at the end subjected to an axial force", *J. Sound Vib.*, **71**(3), 453-457.
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", London, Edinburgh, and Dublin Philos. Mag. J. Sci., 43(253), 125-131.
- To, C.W.S. (1982), "Vibration of a cantilever beam with a base excitation and tip mass", J. Sound Vib., **83**(4), 445-460.

PL

Nomenclature

Α	cross-section area of the beam.	Zs_3	stiffness parameter of k_{s3} .
a, b	polynomial roots	Zs_4	stiffness parameter of k_{s4} .
c_1, c_2	distance from k_1 to 1 and k_2 to 2.	Zs_5	stiffness parameter of k_{s5}
$\bar{c}_{1,}\bar{c}_{2}$	$c_1 / L_c_2 / L$ respectively	Zs_6	stiffness parameter of k_{s6}
d_2, d_1	distance between the mass center of gravity and the point of attachment	Zs_7	stiffness parameter of k_{s7}
$\bar{d}_{2}\bar{d}_{1}$	ratio defined as d_2/L , d_1/L .	Zs_8	stiffness parameter of k_{s8}
E	Young's modulus of elasticity	γ_1, γ_2	set of non-dimensional terms defined as in Eqs. (21d), (22d).
G	shear modulus of rigidity	δ_1, δ_2	parameter defined as in Eqs. (31), (32)
Ι	moment of inertia of the beam cross section about the neutral axis.	$\bar{\eta}_{1s}$	set of non-dimensional terms defined as in Eq. (21c).
J_{1}, J_{2}	rotational moment of inertia of the end mass.	$\bar{\eta}_{2s}$	set of non-dimensional terms defined as in Eq. (22c).
\bar{J}_1, \bar{J}_2	ratio $(J_1/\rho AL^3), (J_2/\rho AL^3)$	$\epsilon_{1s},\epsilon_{2s}$	set of non-dimensional terms defined as in Eqs. (21 b), (22 b).
ƙ	shear deformation shape coefficient	ϕ_1	LH end rotational spring stiffness.
k	elastic stiffness.	ϕ_2	RH end rotational spring stiffness
L	length of the beam (between points 1 & 2).	Φ_1	LH rotational rigidity parameter $\phi_1 L/EI$

т	mass of the beam.	¢
$\overline{m}_1, \overline{m}_2$ M_1, M_2	$= M_1/m$, M_2/m respectively. end masses.	λ
$m_{s1,} m_{s2}$	mass of sub-system 1 and 2.	ų
$m_{s3} m_{s4}$	mass of sub-system 1 and 2.	L
$\overline{m}_{s1}, \overline{m}_{s2}$	non-dimensional sub-system mass.	ν
$\overline{m}_{s3}, \overline{m}_{s4}$	non-dimensional sub-system mass.	ρ
Р	axial load.	θ
p^2	axial load parameter (PL^2/EI).	τ
r^2	rotary inertia parameter (I/AL^2) .	ζ
s^2	shear deformation parameter $(Er^2/G\hat{k})$.	0
Y	non-dimensional lateral vibration.	F
x, y, ψ	system co-ordinate of the beam.	P
$y_{s1}, y_{s2},$	system co-ordinate of the masses	v
Z_1	LH lateral rigidity parameter (k_1L^3/EI) .	v
Z_2	RH lateral rigidity parameter (k_2L^3/EI) .	

RH rotational rigidity parameter Φ_2 $(\phi_2 L/EI).$ 4 frequency parameter ($\rho AL^4 \omega^2 / EI$). circular frequency. ω slope due to bending. b non-dimensional slope due to Ψ bending. Poisson's ratio. mass density of the beam material. n set of non- dimensional terms defined θ_{1s}, θ_{2s} as in Eqs. (21 a) and (22 a). nondimensional shear force parameter ^ris defined as in Eqs. (19) and (20). non-dimensional beam length x/L. С Clamped (fixed) support . Free support. D Pinned (hinged) support. 10 *E*-12. 'S ı 10 *E*+12.