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Abstract.  This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded 

beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-

systems. The influence of system design and sub-system parameters on the combined system characteristics 

is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation 

of the beam system is included. The end masses are elastically supported against rotation and translation at 

an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points 

out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral 

deflections and slope due to bending of the beam system including developed shear force frequency 

dependent terms, due to the sub–system suspension, have been formulated. Exact formulae for the modal 

frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies 

are carried out. The geometrical and mechanical parameters of the system under study have been presented 

in non-dimensional analysis. The applied mathematical model is presented to cover wide range of 

mechanical, naval and structural engineering applications. 
 

Keywords:  vibration frequencies; exact solution; Timoshenko beam; eccentric mass; sub-system; 

combined system 

 
 
1. Introduction 
 

The study of vibration of beams with generalized end conditions and integrated with discrete 

sub-systems is crucial, because it has a wide range of applications in mechanical, aerospace and 

structural engineering. Timoshenko (1922) was the first how presented the vibration problem of 

beams with rotary inertia and shear deformation effect. Huang (1961) investigated the frequency 

equations and normal modes of free flexural vibrations of uniform beams including the effect of 

shear and rotary inertia for classical end conditions. Cowper (1966) derived a solution for the shear 

deformation coefficient for the different beam cross sections. The effects of axial load on the 

natural frequencies have been investigated by (Saito and Otomi 1979, Kounadis 1980, Sato 1991, 

Takahashi 1980, Grossi and Laura 1982, Bokaian 1990, Naguleswaran 2004, Ari-Gur and 

                                                           
Corresponding author, Assistant Professor, E-mail: Tamer_Alsayed@m-eng.helwan.edu.eg 
a
Professor, E-mail: Mdm_faceng_Mat@yahoo.com 

mailto:Tamer_Alsayed@m-eng.helwan.edu.eg


 

 

 

 

 

 

Tamer A. El-Sayed and Said H. Farghaly 

Elishakoff 1990). Kounadis (1980) studied the equation of motion of vibrating Timoshenko beam-

column system. Sato (1991) studied also the governing equations of motion for vibration and 

stability of Timoshenko beam based on Hamilton’s principle. Bokaian (1990) derived a frequency 

equation for Bernoulli-Euler beam with several classical boundary conditions. When a beam 

loaded axially in compression it may go through an instability by buckling. The beam instability 

and the critical buckling load have been investigated by (Naguleswaran 2004, Ari-Gur and 

Elishakoff 1990). Naguleswaran (2004) studied the transverse vibration of an uniform Bernoulli-

Eulerbeam under linearly varying fully tensile, partly tensile or fully compressive axial force 

distribution. He also investigated the buckling of the beam when subjected to compressive axial 

load. Beams with generalized end conditions have been considered by (Chang 1993, To 1982, 

Farghaly 1992, Farghaly 1993, Farghaly and Shebl 1995). Farghaly derived an exact frequency 

equation for uniform cantilever Bernoulli-Euler-beam with an elastically mounted nonconcetrated 

tip mass. The beam system is subjected to a constant axial tensile  or compression load acting at 

the center of the tip mass (Farghaly 1992). Farghaly and Shebl (1995) introduced an exact 

frequency equation for Timoshenko beam with a generalized end conditions. The combination 

between continious and discrete mass spring systems has many applications. The vibration of 

beams with an end or intermediate mass spring system has been studied by (Gürgöze 1996, 

Gürgöze and Batan 1996, Chen et al. 2015, Rossi et al. 1993). Snowdon (1966), Bergman and 

Nicholson (1985) have studied the free and forced vibration analyses of Bernoulli-Euler cantilever 

beam  in  which  single mass spring damped sub-systems are attached. Rossi et al. (1993) 

presented an exact solution for classical thick beams carring spring mass system. They model 

studied  the action of the spring on the beam, by equivalent transverse force. Gürgöze (1996) 

investigated the eigenfrequencies of a cantiliver uniform Bernoulli-Euler beam with attached tip 

mass carrying a single spring-mass sub-system. Gürgöze and Batan (1996) investigated a unifom 

beam with an intermediate spring-mass system. Very recently, Chen et al. (2015) presented a 

general exact solution for free vibration of a tensioned beam with any number of  lateral and 

rotational two spring-mass damped sub-systems . His  solution is also suitable for multi-span 

beam. 

The survey of the above references indicates that the title problem with the applied 

mathematical model for exact vibration analysis of axially loaded Timoshenko beam system 

combined with three spring-two mass sub-systems beam has not been extensively investigated. In 

this paper, the exact natural frequency equation and the mode shapes of beam system have been 

investigated. This beam is carrying non-concentrated end masses of finite length, with attached 

three spring-two mass sub-systems acting at center of gravity of end masses out span. The problem 

statement is based on Timoshenko beam bending theory of elasticity. New exact formulae for the 

frequency equation and the modal shape have been derived, including the proposed sub-systems. 

Based on these formulae, detailed parametric study of the modal frequency parameters and the 

modal shapes have been introduced. This includes the effect of changing the non-dimensional 

values of sub-system masses, stiffness and location. 

 
 
2. Applied mathematical model 
 

Timoshenko beam system means here a uniform single span beam carrying two eccentric rigid 

masses elastically supported at an arbitrary offset point from the point of attachment at both ends. 

The combination between Timoshenko beam system and sub-system consisting of three springs-  
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Fig. 1 Present combined system mathematical model 

 

 
(a)                                (b)                                               (c) Present undamped model 

Fig. 2 Sub-system models 

 

 

two mass proposed is satisfied through the attachment of the sub-system to center of gravity of end 

masses rigidly supported to the beam ends respectively. Fig. 1 shows the model to be investigated 

in this work.  

Shown in Fig. 1, is an axially-loaded Timoshenko beam system with generalized end 

conditions including attached three spring-two mass sub-systems at center of gravity of end 

masses. A set of design, general, and specific variables have been considered, such as the elasticity 

modulus, moment of inertia, area, mass density, shear modulus of elasticity, shear shape factor, 

Poisson’s ratio and length of beam span as,                   respectively. The translational, 

rotational spring stiffness and end masses are rigidly attached as shown to the beam ends, 

           respectively. The rotation and translational springs are acting at points at distance    

and    from points of attachment 1, and 2 respectively. The system is subjected to constant axial 
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tensile or compressive load acting at the end masses center of gravity at distance d1 and d2. A 

proposed sub–system consisting of three spring-two mass is attached to the end mass eccentric 

points as shown in Fig. 1. The sub-system masses ms1, ms2, ms3 and ms4 respectively, while ks3, ks4, 

ks5, ks6, ks7, and ks8 represent the linear translational spring stiffness respectively. More details on 

the system non-dimensional parameters will be appeared in the next sections of this work.  

 

 

3. End conditions with three spring-two mass sub-system 
 

(Snowdon 1966, Bergman and Nicholson 1985) have studied the free and forced vibration 

analyses of Bernoulli-Euler cantilever beam in which single mass spring damped sub-systems are 

attached. Fig. 2(a) (Rossi et al. 1993) studied the exact analytical solution of Timoshenko beam 

carrying elastically mounted masses. Three beam configurations were presented, P-P; C-P and C-

C. (Gürgöze 1996) studied the vibration problem of Bernoulli-Euler cantilever beam with tip mass 

and single spring mass (SS1) sub-system. Very recently, (Chen et al. 2015) in an interesting work 

studied the vibration problem of Bernoulli-Euler beam carrying two spring mass damped sub-

system at any point along its span (Fig. 2(b)). The authors extended Chen
’
s undamped (SS2) sub-

system general model to another proposed one, consisting of three spring-two mass (SS3) attached 

to a vibrating Timoshenko beam system presented as shown in Fig. 1. The mathematical treatment 

of the present proposed model has not been appeared in literature and will be presented in details 

as follows: 

Fig. 2(c) shows the four independent coordinates                       representing the four 

masses                    . The shear forces acting at point 4 due to the sub-system 1 are 

    (      )     (       )       ̈   ;                                    (1) 

    (       )               ̈                                            (2) 

and the shear forces acting at point 5 due to the sub-system 2 are  

    (      )     (       )       ̈                                        (3) 

    (       )               ̈                                            (4) 

 Using the following solution for Eqs. (1) to (4)  

         
   ,           

   ,           
   , and            

   , 

Therefore, the shear force Eqs. (1), (2), (3) and (4) can be written in the following non-

dimensional forms 

(            ̅  )                       ;                             (5) 

(            ̅  )                ;                                   (6) 

(           ̅  )                           and                         (7) 

(           ̅  )                                                   (8) 

where 

        
   ⁄ ;             

   ⁄ ;             
   ⁄ ; 

        
   ⁄ ;             

   ⁄ ;             
   ⁄ ; 
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In fact, the connection of sub-system with the center of gravity of the eccentric end mass (point 

4 and 5, (cf. Fig. 1)), will affect the shear force and bending moment balance of the system end 

conditions (at point 1 and 2). The additional developed shear force terms due to the sub-system 

connection are     [ (     ( ))      ( )] and     [(     ( ))      ( )] at point 1 and 

2 respectively. On the other hand, the last two terms for the bending moment effect become, 

       [(     ( ))      ( )]  and        [(     ( ))      ( )]  respectively. Four 

governing equations for the present combined system shown in Fig. 1 can be written with special 

care as follows: 

At point 1 (   ); 

(    )(    )( )    [            ]  ( )  (        )  ( )        ( ) 

                                            [ (     ( ))     ( )]                                       (9)  

     ( )   [   (       
 )  (       

 )]  ( )  (            )  ( )       
 ( ) 

                              [(     ( ))      ( )]                                  (10) 

at point 2 (   )  

(    )(    )( )   [            ]  ( )  (         )  ( )       ( ) 

       [(     ( ))      ( )]                                                 (11) 

     ( )    [   (       
 )  (       

 )] ( )  (            )  ( )

       
 ( ) 

           [(     ( ))      ( )]                                            (12) 

Using Eqs. (5) and (6) one can get the relation 

    [
      

           
 ]    

        [
      

           
 ] (  ( )     ( ))                                           (13)  

here         ̅                 and                  ̅           

Similarly, using Eqs. (7) and (8) one can get the relation. 

    [
      

          
 ]    

       [
      

          
 ] (  ( )     ( ))                                              (14) 

here         ̅                and               ̅           

The non-dimensional form of Eqs. (9) to (12) together with Eqs. (13) and (14) can be derived 

and rearranged as follows 

 ̅     ( )        ( )       ( )                                              (15) 

   ( )        ( )       ( )    
    ( )                                        (16) 
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 ̅     ( )       ( )      ( )                                             (17) 

   ( )         ( )       ( )    
    ( )                                   (18) 

Introducing the shear force frequency dependent terms 

       *
    

                        

    
             

+                                             (19)   

         *
    

                      

    
             

+                      (20)  

The different parameters in Eqs. (15)-(18) can be written as follows 

      (    ̅          ) 

      (    ̅  ̅       ̅       ̅ ) 

 ̅           

        (  ̅   ̅  ̅ 
 )          ̅

        ̅ 
           (21 a to d) 

and 

      (     ̅        ) 

      (    ̅  ̅       ̅       ̅ ) 

 ̅           

        (  ̅   ̅  ̅ 
 )          ̅

        ̅ 
  

          

  
      ̅  

  
      ̅                                                       (22 a to g) 

Where.  

 ̅         ̅              ̅             ̅             ̅         ̅        

  ̅          ̅              
               

    ;                          

We can conclude that, the four Eqs. (15)-(18) represent the present system end conditions. The 

system equation of motion and the general solution to get the system frequency equation and mode 

shape are presented in the next sections. 

 
 
4. Equation of motion and solution 

 

The decoupled differential equations of motion based on Timoshenko beam theory of elasticity 

and for axial load consideration presented by (Sato 1991), will be presented for harmonic solution 

in the following non dimensional form 

     ( )       ( )       ( )                                                 (23)  

      ( )        ( )        ( )                                              (24) 
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where 

  
  (     )   (         )

(       )
,                 

  (        )

(       )
 

and  

                              (   )              

The general solution for Eqs. (23) and (24) for small harmonic oscillations are 

 ( )                                                           (25) 

and 

  ( )   (
  

 
)        (

  

 
)        (

  

 
)         (

  

 
)               (26) 

where 

   (
 

 
)  ((

 

 
)
 
   )

 
 ⁄

    and          (
 

 
)  ((

 

 
)
 
   )

 
 ⁄

 

One can obtain the expression of    and    in Eq. (26) in the form 

           (      )                                (27) 

           (      )                                                  (28) 

 

 

5. Frequency and modal shape equations 
 

The system frequency equation can be derived using Eqs. (25), (26) and the two end conditions 

at   = 0, and   =1, Eqs. (15)-(18). This yields to four equations in unknowns A1, A2, A3, and A4. 

These equations form four homogeneous equations in four unknowns. For the problem to have a 

non-trivial solution, the four unknowns cannot all be zero. Hence the determinant of the 

coefficients matrix of the system of equations must be vanished and may be written as follows 

det. 

    (      )     (      ) 

=0 

 

                 

(  

    )      

         

        

 (  

    )      

(      )     

         

        

  (  

    )     

 

         

         

        

           

           

          

        

           
(29) 

Therefore, the expansion of this determinant gives the new exact frequency equation including 

the proposed sub-systems which can be written in the form 

(SST).  sin a sinh b+(SCT). sin a cosh b+(CST). cos a sinh  b+(CCT) . cos a cosh b+(ABT)= 0 

 (30) 
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Here, 

(SST) =       (     )
  (           (      ))(          (      ))   

(           (      ))(           (      ))  (               )(               ) 

(   )     (     ) (          (      ))      (     ) (            (      )) 

 (           (       ))(               )  (           (       ))(               ) 

(   )      (     )(           (      ))      (     )(             (      )) 

 (            (      ))(              )  (          (      ))(              ) 

(   )       (     )(              )      (     )(                )

 (             (      ))(          (      ))

  (           (      ))(           (      )) 

(   )   (           (      ))(           (      )) 

 (           (       ))(           (      )) 

The constants of the mode shape Eqs. (25), (26) letting      , can be written in the form 

         [                                   ]   , i = 1, 2 and 3        (31) 

here 

                                           
        (      )(          (      ))     (             ) 

                        (          (      ))  (      )(             ) 

     (      )(          (      )) 

                   (          (      ));      
 

                   (                               )  ; 

                       (          (      )) 

       (      )(          (      )) 

               (          (      ))     (     )(      ) 

      (      )(          (      ))         (     )   
   

         (                               )    

        (      )(          (      )) 

                        (          (      )) 

     (      )(          (      ))     (             ) 

                   (          (      ))  (      )(             )  
 

         (                                )  ; 

                      (          (      ))     (     )(      ) 

        (      )(          (      ))         (     ) 

                   (          (      )) 

      (      )(          (      )) 

where,  
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       (   ⁄ )    
                                   (   ⁄ )    

   

        (   ⁄ )    
                               (   ⁄ )     

   

      ̅  (   ⁄ )                                  ̅  (   ⁄ )      

                            ̅  (   ⁄ )                                      ̅  (   ⁄ )      (32 a to h) 

Eqs. (30) and (31) represent the combined system closed form exact frequency and mode shape 

equations, respectively. It is interesting to note that the size of the coefficients matrix of the 

present beam system models shown in Fig. 1 is only (4×4) without need to extra rows and columns 

due to the presence of sub-systems. This modification represents one of the positive outputs of this 

mathematical treatment.  

             

 

 6. Reliability of results and discussion  
 

The function obtained by using a highly transcendental Eq. (30) shows rapid oscillations 

attaining very large values between successive roots. The slope of the roots, therefore very closed 

to vertical. PC-Matlab version (2012b), software has been used for all the computational processes 

in this work. The results and a brief discussion are presented. All the system design 

parameters                                             
            ̅   ̅    ̅   ̅    ̅   ̅  ̅  

 ̅   ̅    ̅     ̅        ̅   are considered in all of the chosen comparative and presented 

application examples. These 25 non-dimensional system parameters otherwise specified values, 

have one of the two values vs=10 E–12 and vl=10 E+12 equivalent to zero and infinity 

respectively. It is interesting to note that, Eq. (19) and Eq. (20) can be simplified to those presented 

by (Rossi et al. 1993, Gürgöze 1996, Chen et al. 2015) as follows:  

when         ̅    ,         ̅    , Eqs. (19) and (20) are reduced to those derived by 

(Chen et al. 2015), for undamped model (see Fig. 2(b)) in the forms  

        (
    ̅         

    ̅             
)                                                 (33)  

  and           (
    ̅        

    ̅              
)                                           (34) 

when           ̅    ,          ̅    , Eqs. (19), (20) are reduced to those derived 

by (Rossi et al. 1993, Gürgöze 1996) (see Fig. 2(a)) in the forms  

    (
    ̅     

    ̅        
);                                                      (35) 

  and      (
    ̅     

    ̅        
);                                                   (36) 

 
6.1 Verification of previous results 

 

As can be seen from Table 1, that for  ̅  and      . Good agreement between the results 

using the frequency Eq. (30), with those obtained by (Gürgöze 1996), while interesting results are 

observed when values of  ̅    ̅    , in which no variation are observed in the natural 

frequency parameters and the results are equivalent to the well known classical C-F beam as 

shown in this table. This means that the system model is valid even the sub-system is included in  
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Table 1 Comparison of results using Eq. (30) with those obtained by (Gürgöze 1996), for C-F beam carrying 

an end spring mass sub-system 

 Zs3 

 ̅     
  

0 1 10 

(Gürgöze) Present (Gürgöze) Present (Gürgöze) Present 

0 1 - 3.5160 - 3.5160 - 3.5160 

 2 - 22.0347 - 22.0347 - 22.0347 

1 1 - 3.5160 0.8594 0.8594 1.4194 1.4193 

 2 - 22.0347 4.0711 4.0711 7.4474 7.4469 

5 1 - 3.5160 0.3867 0.3867 0.6700 0.6700 

 2 - 22.0347 4.0466 4.0461 7.0604 7.0601 

10 1 - 3.5160 0.2736 0.2737 0.4771 0.4771 

 2 - 22.0347 4.0431 4.0431 7.0123 7.0120 

- not included in (Gürgöze 1996) 

 

 

the combined system.  

 

6.2 Results for the present combined system 
 

To deeply understand the effect of the sub-system on the natural frequencies of the beam, the 

sub-system models shown in Fig. 2(c) are considered. The frequency equations of the discrete 

system are investigated separately considering point 4 and 5 are fixed, as follows: 

The governing equations for the RH sub-system are 

(             )               

         (             )                                             (37) 

Multiplying these equations by the beam stiffness  
  

  
 in order to simply compare the discrete 

system results with those of the combined system, these equations may be written in the form 

(    ̅          )               

         (    ̅          )                                         (38) 

For nontrivial solution, one can obtain the frequency equation of RH sub-system in the from  

(    ̅          )(    ̅          )    
         (39) 

and similarly for LH sub-system   

(    ̅          )(    ̅          )     
                             (40) 

The roots of Eqs. (39), (40) represent the natural frequency parameters for the individual sub-

systems (indicated in Tables from 2 to 9 by D1, D2, D3 and D4). The roots of Eq. (30) represent 

the combined natural frequency parameters for system model shown in Fig. 1,    values in all of 

the following examples are included when the sub-system model considering points 4 and 5 are 

transversally vibrated. Three undamped models SS1, SS2, SS3 shown in Fig. 2(a), (b) and (c) are  
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Table 2 First six combined natural frequencies for (C-F) beam with end sub-system SS1 and their discrete 

modes 

Eq. (39)                                   , Eq. (30) 

 ̅       D 1 D 2 1 2 3 4 5 6 

0 All   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

0.5 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 1.1892  1.0979 2.0261 4.7038 7.8568 10.9963 14.1375 

10 2.1147  1.3725 2.8158 4.7978 7.8758 11.0031 14.1407 

100 3.7606  1.4151 3.8901 5.7607 8.0962 11.0760 14.1737 

1000 6.6874  1.4195 4.0907 7.0355 9.7081 12.0410 14.6052 

10000 11.8921  1.4199 4.1091 7.1762 10.2520 13.3072 16.3110 

100000 21.1474  1.4200 4.1109 7.1889 10.2940 13.4105 16.5299 

1E+12 1189.2071  1.4200 4.1111 7.1903 10.2984 13.4210 16.5503 

1 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 1.0000  0.9271 2.0177 4.7038 7.8568 10.9963 14.1375 

10 1.7783  1.1914 2.7289 4.7957 7.8757 11.0031 14.1407 

100 3.1623  1.2419 3.7785 5.6876 8.0900 11.0754 14.1736 

1000 5.6234  1.2473 4.0069 6.9615 9.6321 11.9952 14.5931 

10000 10.0000  1.2479 4.0287 7.1183 10.2060 13.2661 16.2707 

100000 17.7828  1.2479 4.0309 7.1326 10.2517 13.3765 16.5011 

1E+12 1000.0000  1.2479 4.0311 7.1341 10.2566 13.3878 16.5227 

5 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 0.6687  0.5626 2.0115 4.7038 7.8568 10.9963 14.1375 

10 1.1892  0.8185 2.6571 4.7942 7.8757 11.0031 14.1407 

100 2.1147  0.8642 3.6706 5.6302 8.0853 11.0750 14.1736 

1000 3.7606  0.8694 3.9222 6.8943 9.5687 11.9597 14.5838 

10000 6.6874  0.8716 3.9472 7.0651 10.1656 13.2310 16.2367 

100000 11.8921  0.8717 3.9497 7.0808 10.2146 13.3474 16.4768 

1E+12 668.7403  0.8700 3.9500 7.0825 10.2199 13.3592 16.4994 

 

 

considered. SS1 and SS2 is a single-degree of freedom systems having D1 or D3 only, while SS3 

is a two–degree of freedom system having resonance frequencies (D1 and D2) or (D3 and D4) as 

shown in the next examples of this section. Tables 2, 3 and 4 present the results of the first part of 

this section.  

Table 2, presents the first six natural frequencies for a cantilever beam with end sub-system 

consists of spring-mass (SS1). The values of the stiffness’s discussed in this table are (   )  
         100, 1000,        and 10E+12 respectively. The values of the non-dimensional masses 

are ( ̅  )   0, 0.5, 1 and 5.  Table 3 introduces similar analysis but the attached sub-system 

model is SS2 and finally Table 4 shows the analysis of a clamped free beam with sub-system 

model of three spring-two mass SS3 attached to point 5 as shown in Fig. 2(c). 

As can be seen from Table 2, the well-known values of the classical C-F beam natural  
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Table 3 First six combined natural frequencies for (C-F) beam with end sub-system SS2 and their discrete 

modes. 

Eq. (39)                                                            , Eq. (30) 

 ̅           D 1 D 2 1 2 3 4 5 6 

0 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1   1.9464 4.6989 7.8558 10.9959 14.1373 17.2789 

10   2.3668 4.7433 7.8651 10.9993 14.1389 17.2797 

100   3.4009 5.2012 7.9642 11.0342 14.1551 17.2885 

1000   3.8687 6.6683 8.9969 11.4576 14.3386 17.3836 

10000   3.9209 7.0325 10.0960 13.0717 15.9014 18.5749 

100000   3.9260 7.0650 10.1995 13.3275 16.4468 19.5543 

1E+12   3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

0.5 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 1.4142  1.3554 2.0284 4.7038 7.8568 10.9963 14.1375 

10 2.5149  2.0367 2.8835 4.7979 7.8758 11.0031 14.1407 

100 4.4721  3.2016 4.1686 5.7925 8.0968 11.0760 14.1737 

1000 7.9527  3.8651 6.1770 7.2846 9.7496 12.0508 14.6063 

10000 14.1421  3.9208 7.0299 10.0318 11.6622 13.4201 11.6623 

100000 25.1487  3.9234 7.0463 10.0855 11.6736 13.4989 16.5497 

1E+12 1414.2136  3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

1 0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

 1 1.1892  1.1455 2.0182 4.7038 7.8568 10.9963 14.1375 

 10 2.1147  1.7981 2.7477 4.7958 7.8757 11.0031 14.1407 

 100 3.7606  2.9521 3.8700 5.6952 8.0902 11.0754 14.1736 

 1000 6.6874  3.8604 5.4912 7.0146 9.6422 11.9975 14.5934 

 10000 11.8921  3.9208 7.0265 9.6515 10.4155 13.2859 16.2775 

 100000 21.1474  3.9260 7.0650 10.1988 13.3218 16.3820 17.7040 

 1E+12 1189.2071  3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

5 0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

 1 0.7953  0.7692 2.0115 4.7038 7.8568 10.9963 14.1375 

 10 1.4142  1.2435 2.6578 4.7942 7.8757 11.0031 14.1407 

 100 2.5149  2.1047 3.6742 5.6304 8.0853 11.0750 14.1736 

 1000 4.4721  3.6479 3.9990 6.8960 9.5691 11.9598 14.5838 

 10000 7.9527  3.9205 6.6095 7.1129 10.1680 13.2316 16.2370 

 100000 14.1421  3.9260 7.0648 10.1931 11.8648 13.3599 16.4791 

 1E+12 795.2707  3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

 

 

frequencies are observed for all values of          ̅    . This means that the sub-system SS1 

has no effect on the system. Also for all cases in which       and with variable  ̅   same 

observations are recorded. Increasing the value of the sub-system mass  ̅    results in decrease the 

natural frequency parameter    and of the separate sub-system model D1. When the value of     

tends to   a clamped-free beam carrying an end mass  ̅      , 1 and 5,    are satisfied. An 

increase in     results in an increase in the combined natural frequency parameters are observed.  
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Table 3, shows the variations in    vs the variation in both  ̅   and (       ). As can be 

seen, that when  ̅            , classical values of    for C-F beam are observed. In this 

case, the sub-system SS2 has no effect on the beam system. For the case in which the value of 

 

 
Table 4 First six combined natural frequencies for (C-F) beam with end sub-system SS3 and their discrete 

modes. 

               (  )                                                                     (  )  

 ̅  

  ̅   

       

     
D 1 D 2 1 2 3 4 5 6 

0 0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

 1   1.9236 4.6973 7.8554 10.9958 14.1373 17.2788 

 10   2.2418 4.7267 7.8617 10.9981 14.1383 17.2794 

 100   3.2184 5.0354 7.9264 11.0211 14.1491 17.2853 

 1000   3.8395 6.4671 8.6647 11.2885 14.2661 17.3469 

 10000   3.9180 7.0139 10.0335 12.9074 15.5752 18.1743 

 100000   3.9257 7.0633 10.1940 13.3151 16.4223 19.5102 

 1E+12   3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

0.5 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 1.1892 1.5651 1.1423 1.5423 2.0288 4.7038 7.8568 10.9963 

10 2.1147 2.7832 1.7224 2.5631 2.9367 4.7979 7.8758 11.0031 

100 3.7606 4.9492 2.7326 3.8679 4.7729 5.8033 8.0969 11.0760 

1000 6.6874 8.8011 3.8181 5.1392 7.0103 8.4416 9.7717 12.0521 

10000 11.8921 15.6508 3.9178 6.9975 9.0782 10.3387 13.2711 15.0393 

100000 21.1474 27.8316 3.9257 7.0631 10.1923 13.2983 16.0506 16.8820 

1E+12 1189.20 1565.08 3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

1 

0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

1 1.0000 1.3161 1.0466 1.3050 2.0183 4.7038 7.8568 10.9963 

10 1.7783 2.3403 1.4890 2.2367 2.7538 4.7958 7.8757 11.0031 

100 3.1623 4.1618 2.4113 3.6803 4.0988 5.6962 8.0902 11.0754 

1000 5.6234 7.4008 3.7764 4.4730 6.8304 7.2513 9.6440 11.9976 

10000 10.0000 13.1607 3.9176 6.9562 7.8605 10.2022 12.6344 13.3249 

100000 17.7828 23.4035 3.9257 7.0630 10.1899 13.2146 14.0071 16.5122 

1E+12 1000 1316.07 3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 

5 0   1.8751 4.6941 7.8548 10.9955 14.1372 17.2788 

 1 0.6687 0.8801 0.7401 0.9147 2.0115 4.7038 7.8568 10.9963 

 10 1.1892 1.5651 1.0164 1.5188 2.6579 4.7942 7.8757 11.0031 

 100 2.1147 2.7832 1.6712 2.6815 3.6748 5.6305 8.0853 11.0750 

 1000 3.7606 4.9492 2.9296 3.9185 4.7824 6.8962 9.5691 11.9598 

 10000 6.6874 8.8011 3.9156 5.2436 7.0622 8.5005 10.1690 13.2317 

 100000 11.8921 15.6508 3.9257 7.0616 9.3163 10.2273 13.3438 15.1186 

 1E+12 668.740 880.111 3.9266 7.0686 10.2102 13.3518 16.4934 19.6350 
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 ̅     and (       )   ,    for clamed-pinned beam are recorded. An increase in Zs values 

results in an increase in both D1 and   . Also an increase in  ̅   decreases the values of    and D1.  

In Table 4, the sub-system SS3 is considered and located at the free end of the C-F beam. The 

table shows the first six combined natural frequencies for ( ̅    ̅  ) and (           ). 

One can see that for all values of the sub-system masses and  
(           ) are zeros,    for classical clamped-free beam are observed, which indicates 

that the sub-system has no effect on the beam system. On the other hand, when Zs values approach 

infinity a clamped-pinned case is satisfied. An increase in Zs increases the   , D1 and D2. As 

expected the increase in the masses decrease the combined system natural frequencies and those 

for the discrete masses. The first section of Table 4, shows the results when  ̅    ̅    . This 

means that the sub-system model is equivalent to three spring in series and the value of the 

equivalent spring is       ( 
 

   
 

 

   
 

 

   
) . Selecting the case where                

and            we can find that the equivalent model is a clamped free beam with end spring 

of     = 10/3. The first five natural frequencies for this case are [2.2418, 4.7267, 7.8617, 10.9981 

and 14.1383], respectively, which equals to the third row of the first group in Table 4. In column 

D1 and D2 the values of  (           ) equal zero for all values of  ̅    ̅  .  

For more understanding of the vibrational behavior of SS1, SS2 and SS3. Fig. 3(a), (b) and (c) 

present the first, third and fifth natural frequency parameters for the models considered in Tables 

2, 3 and 4. The figures plot the variation of natural frequency parameter versus the change in the 

sub-system spring stiffness parameter Zs. It is interesting to note from Fig. 3 that the combined 

natural frequencies of the second and third sub-systems model (SS2 and SS3) approach the same 

end as Zs tends to infinity which is the clamped pinned results. As shows in Fig. 3(c) the individual 

variation in    is diminished in the fifth mode from Zs4 equal 1 to Zs4=100. This behavior may be 

appeared for Zs4>100 especially for higher modes. 

Table 5 presents the first five combined natural frequency parameter for clamped free beam 

with end mass having  ̅    and       and sub-system (SS3) having              . The 

table introduces the effect of changing the location of the end mass center of gravity (sub-system 

 

 

 
Fig. 3 (a) first mode, (b) third mode and (c) fifth mode variation vs the spring stiffness parameters: ○ for 

SS1, for SS2 and ∆ for SS3 when located at the free end of C-F beam. Input parameters are (        ) 

for SS2, (             ) for SS3. Two values of  ̅      distinguished by for  ̅           
      ̅     
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Fig. 3 Continued 

 

 

point of attachment) from the beam end point by changing the value of   ̅ . The effect of changing 

the     parameter is also investigated. Connecting the sub-system SS3 with pre-mentioned 

parameters to the point 5, see Fig. 1, results in adding two natural frequencies to the combined 

system. The value of the separate natural frequency determines the location of the additional mode 

through the beam modes. Comparing the natural frequency of             ̅ = 0 and      
          ̅  = 0 we can find that the fifth natural frequency in the first case equals to the fourth 

natural frequency in the second case. This may be explained by the fact that the value of the 

second discrete natural frequency, D2 is higher than the natural frequency investigated range. 

Therefore, the sub-system adds to the beam an extra one natural frequency. 

Table 6 shows the first five combined natural frequencies parameter for (C-F) beam carrying an 

end mass   ̅     and sub-system SS3 having (        )          for different values of 

(       ) =  , 10, 100, 1000, 100000 and vl, fixed value of   ̅      and five values of   ̅   
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Table 5 First five combined natural frequencies parameter and the discrete values for clamped- free beam 

with end mass having   ̅                 ̅      for five values of  ̅   , 0.25, 0.375 and 0.5. 

carrying sub-system (SS3) , having  ̅     ̅     and             

  Eq. (39)                                                                              Eq. (30)  

     ̅  D1 D2 1 2 3 4 5 

0 

0 2.4860 4.0225 0.9777 3.0679 3.9691 4.2237 7.1367 

0.125   0.9015 3.0623 3.6308 4.1753 6.4408 

0.25   0.8381 3.0349 3.3957 4.1676 6.1048 

0.375   0.7849 2.9803 3.2732 4.1651 5.9357 

0.5   0.7400 2.9106 3.2199 4.1639 5.8379 

10 

0 2.5949 4.0334 1.4049 3.1092 3.9739 4.2268 7.1367 

0.125   1.3864 3.1004 3.6357 4.1806 6.4408 

0.25   1.3737 3.0655 3.4070 4.1734 6.1048 

0.375   1.3648 2.9992 3.2957 4.1709 5.9357 

0.5   1.3584 2.9211 3.2505 4.1698 5.8379 

100 

0 3.1623 4.1618 2.0850 3.4383 4.0290 4.2743 7.1367 

0.125   2.0908 3.3770 3.7144 4.2517 6.4408 

0.25   2.0947 3.2298 3.5909 4.2479 6.1048 

0.375   2.0975 3.0808 3.5584 4.2466 5.9357 

0.5   2.0995 2.9665 3.5468 4.2460 5.8379 

1000 

0 3.7079 5.7733 2.3761 3.8242 4.1586 5.7735 7.1367 

0.125   2.3891 3.5528 4.0283 5.7735 6.4408 

0.25   2.3975 3.2991 4.0053 5.7735 6.1048 

0.375   2.4033 3.1220 3.9982 5.7735 5.9357 

0.5   2.4076 2.9975 3.9951 5.7735 5.8379 

100 000 

0 3.7601 17.7872 2.4146 3.8506 4.1687 7.1367 10.2570 

0.125   2.4283 3.5622 4.0552 6.4408 9.3690 

0.25   2.4370 3.3051 4.0357 6.1048 9.0641 

0.375   2.4430 3.1270 4.0296 5.9357 8.9341 

0.5   2.4473 3.0022 4.0269 5.8379 8.8641 

 

 
                            are considered.  As can be seen from this table that increasing the 

value of (Z2 = Zs4) = from 0 to 1000, results in slight variations in D1 and D2 this is because the 

value is recognized of Zs4 is relatively small compared with the values of                . A 

significant increase in their value when Zs4=10000 or vl. 

Table 7 shows the results of the first natural frequency parameters. Tensile and compressive 

axial loads are acted individually at point 5 of Fig. 1 in which  ̅      . Four values for     
         ,         and    are considered. The input data for cases are given on the legend of 

Table 7. As expected, an increase in the tensile axial load increases      while an increase in the 

compressive axial load decreases      
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Table 6 First five combined natural frequencies parameter for (C-F) beam carrying an end mass   ̅  
     ̅      and sub-system SS3 having                  for different values of (       ) =   , 10, 

100, 1000, 100000 and vl, and five values of  ̅                             

   (  )                                                                          (  ) 

         ̅  D1 D2 1 2 3 4 5 

0 

0 13.9800 22.6201 1.2479 4.0311 7.1341 10.2566 13.3878 

0.125   1.1609 3.6068 6.4380 9.3687 12.3671 

0.25 Fig.4 (a)  1.0856 3.3166 6.1028 9.0640 12.1042 

0.375   1.0209 3.1247 5.9344 8.9340 12.0016 

0.5   0.9650 2.9927 5.8370 8.8640 11.9480 

10 

0 13.9806 22.6201 2.1941 4.3606 7.3085 10.3774 13.4802 

0.125   2.1889 3.8524 6.5169 9.4037 12.3850 

0.25   2.1690 3.4418 6.1229 9.0704 12.1070 

0.375   2.1366 3.1725 5.9380 8.9349 12.0019 

0.5   2.0965 3.0056 5.8371 8.8640 11.9480 

100 

0 13.9866 22.6207 3.0670 4.9181 7.7840 10.8051 13.8677 

0.125   3.0379 4.7636 7.0888 9.7124 12.5499 

0.25 Fig.4 (b)  2.9997 4.4347 6.3284 9.1308 12.1322 

0.375   2.9579 4.0561 5.9758 8.9432 12.0051 

0.5   2.9279 3.7865 5.8388 8.8641 11.9480 

1000 

0 14.0456 22.6261 4.4017 5.6826 8.0373 11.0744 14.0461 

0.125   4.2133 5.7106 8.0260 10.8358 13.6280 

0.25   3.8655 5.7469 7.8415 9.8943 12.4360 

0.375   3.3217 5.7876 7.2542 9.0632 12.0400 

0.5   2.9505 5.8165 6.6840 8.8653 11.9481 

100 000 

0 17.7828 23.4035 4.7234 7.8249 10.8144 11.8823 14.2152 

0.125   4.7178 7.8011 10.6910 11.8919 14.2611 

0.25   4.7010 7.7293 10.3990 11.9080 14.3539 

0.375   4.608 7.347 9.6172 11.9314 14.5781 

0.5   2.9521 5.8283 8.8612 11.9466 15.0535 

vl 

0 21.1474 1000.000 4.7258 7.8347 10.8887 12.1313 14.2160 

0.125   4.7224 7.8203 10.8106 12.1098 14.2680 

0.25 Fig.4 (c)  4.7130 7.7788 10.6106 12.0683 14.3854 

0.375   4.6623 7.5569 9.9399 11.9971 14.6824 

0.5   2.9522 5.8284 8.8614 11.9468 15.0546 

 

 

Selected cases are chosen from results shown in Table 6. These cases are underlined inside the 

table. Interesting modal shapes are presented in Fig. 4(a) shows the first five modal shapes 

between the point of attachment 1 and 2 for a clamped free beam. Fig. 4(b) shows that the elastic 

support affect slightly the modal shapes. This is because the                  are considered 

small elastic spring. An interesting modal shapes are observed in Fig. 4(c) in which the extension 

of the tangents at point 2 are intersected at the pin location at point 6 in which   →∞. 
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Table 7 First five combined natural frequencies parameter for (C-F) beam carrying an end mass   ̅  
    ̅       ̅        and sub-system SS3 having                   for different values of (    
   ) =    , 10, 1000 and vl, and four values of                      and   .(tensile and compressive) 

   (  )                                                                          (  ) 

           D1 D2 1 2 3 4 5 

vs 

    13.9800 22.6201 1.7427 3.8030 6.4231 9.2987 12.2876 

        
  

1.5255 3.5851 6.2691 9.1836 12.1969 

         
  

1.3619 3.4589 6.1877 9.1244 12.1508 

vs 
  

1.0856 3.3166 6.1028 9.0640 12.1042 

       
  

- 3.1532 6.0143 9.0024 12.0570 

      
  

- 2.9599 5.9216 8.9395 12.0093 

    
  

- 2.4101 5.7222 8.8095 11.9121 

10 

     13.9806 22.6201 2.3273 3.8882 6.4406 9.3046 12.2902 

        
  

2.2529 3.6862 6.2879 9.1898 12.1996 

         
  

2.2123 3.5705 6.2070 9.1307 12.1535 

vs 
  

2.1690 3.4418 6.1229 9.0704 12.1070 

       
  

2.1224 3.2961 6.0351 9.0089 12.0598 

      
  

2.0717 3.1271 5.9433 8.9461 12.0121 

    
  

1.9502 2.6661 5.7458 8.8164 11.9150 

1000 

     14.0456 22.6261 4.0656 5.9569 7.9975 10.0581 12.6018 

        
  

3.9709 5.8559 7.9210 9.9769 12.5197 

         
  

3.9197 5.8025 7.8817 9.9358 12.4780 

vs 
  

3.8655 5.7469 7.8415 9.8943 12.4360 

       
  

3.8079 5.6889 7.8005 9.8526 12.3935 

      
  

3.7464 5.6285 7.7585 9.8105 12.3507 

    
  

3.6092 5.4991 7.6716 9.7252 12.2637 

vl 

     21.1474 1000.00 4.9720 7.9952 10.7429 12.1499 14.5236 

        
  

4.8482 7.8896 10.6784 12.1087 14.4549 

         
  

4.7821 7.8349 10.6449 12.0884 14.4203 

vs 
  

4.7130 7.7788 10.6106 12.0683 14.3854 

       
  

4.6403 7.7214 10.5755 12.0484 14.3503 

      
  

4.5637 7.6625 10.5395 12.0287 14.3150 

    
  

4.3967 7.5398 10.4649 11.9898 14.2437 

 

 

Tables 8, 9 and 10 show the first five combined natural frequency parameter for symmetric 

models having   ̅     ̅      and  ̅    ̅     Two sub-systems are connected to points 4 ad 5 

with    ̅    ( ̅    ̅     ̅  )   , see Figs. 1 and 2. The values of (             
               ), where    equals to 0, 10, 100, 1000, 100000, vl respectively. The results 

of Table 10 are calculated at  ̅    ̅    , the results of Table 9 are calculated at  ̅    ̅  
     while Table 8 for  ̅    ̅     . 
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Fig. 4 first five modal shapes for C-F beam chosen form Table 6 for case of  ̅              (a) 

          ( )         and (c)           

 

 
The attached sub-systems to points 4 and 5 add four natural frequencies to the combined 

system. In the first group in Table 10,        = 0 and      , this represent the case of free-free 

beam with two end masses of ratios 1. In this case the sub-system has no effect on the combined 

system. Increasing the value of     the two attached sub-systems add four natural frequencies to the 

combined system as shown in the second group of Table 10. Increasing the value of    results in 

an increase in the natural frequency. When the value of     approaches infinity a pinned support is 

created at points 4 and 5. This explains why the sixth row in Table 10 represent the classical P-P 

beam configuration with classical natural frequency parameters             respectively The 

same results are recognized in Tables 8 and 9, but the natural frequency deviates from the classical 

P-P because the sub-system point of attachment is not located at the beam end points. 

When        approaches infinity a pinned support is created at points 3 and 6, and when 

   approaches infinity a pinned support is created at points 4 and 5, in which the end mass is 

considered as a rigid wall. If the two hinges coincide to each other the beam behaves as pinned 

support at the location of attachment as shown in the last group of Table 8. 

Selected cases are chosen from results shown in Tables 8, 9 and 10. These cases are underlined 

inside the tables. Using Eq. (31), interesting modal shapes are presented in Fig. 5 and Fig. 6. Fig. 

5(a) shows the first five mode shapes between the beam ends 1 and 2. If we linearly extend the 

tangent to the mode shapes at point 1 and 2, this will intersect the pin location as shown in Fig. 

5(a). On the other hand, when two pinned support are adjacent each other, the end mass becomes 

as a rigid wall in which the beam becomes C-C configurations. Fig. 5 (b) and (c) show the modal 

shapes for this case and the extension of tangents passes through the pinned support locations. It is 
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Table 8 First five combined natural frequency parameters    and for the discrete masses of the sub-system 

for symmetric model having   ̅    ̅      and  ̅    ̅
      . ̅    ̅    . No axial load, and  ̅    

 ̅    ̅     ̅     

      (  ) (  )                                                                        (  )  

       

        , 

        , 

         

D1, D3 D2, D4 1 2 3 4 5 

0 

0   1.9009 4.0971 6.8619 9.8303 12.8764 

10 1.7783 2.3403 1.1037 1.1796 1.7467 1.9784 2.0867 

100 3.1622 4.1617 1.6440 2.0969 2.1993 3.5048 3.5381 

1000 5.6234 7.4008 1.7149 3.6888 3.7592 4.1219 6.2694 

100000 17.7827 23.4034 1.7206 4.0572 6.8505 9.8244 11.8612 

vl 1000 1316.074 1.7207 4.0575 6.8512 9.8264 12.8746 

10 

0   1.4787 1.7596 2.0657 4.0986 6.8619 

10   1.4541 1.5516 1.7487 2.1031 2.1949 

100   1.6654 2.2249 2.3029 3.5225 3.5587 

1000   1.7151 3.7109 3.7842 4.1251 6.2728 

100000   1.7206 4.0572 6.8505 9.8244 11.8620 

vl   1.7207 4.0575 6.8512 9.8264 12.8746 

100 

0   1.7009 3.1145 3.1932 4.1178 6.8624 

10   1.6953 1.7551 1.7627 2.3293 3.1955 

100   1.7055 2.7574 2.7798 3.7017 3.7676 

1000   1.7163 3.8685 3.9845 4.1692 6.3041 

100000   1.7206 4.0572 6.8505 9.8244 11.8693 

vl   1.7207 4.0575 6.8512 9.8264 12.8746 

1000 

0   1.7188 4.0427 5.6127 5.6410 6.8705 

10   1.7187 4.0429 5.6266 5.6549 6.8706 

100   1.7188 3.1214 4.0423 4.1408 4.1437 

1000 Fig. 6(a)  1.7193 4.0450 4.9191 4.9294 6.6444 

100000   1.7206 4.0572 6.8505 9.8245 11.9412 

vl   1.7207 4.0575 6.8512 9.8264 12.8746 

100000 

0   1.7206 4.0574 6.8510 9.8260 12.8739 

10   1.7206 4.0574 6.8510 9.8260 12.8739 

100   1.7206 4.0574 6.8510 9.8260 12.8739 

1000   1.7206 4.0574 6.8510 9.8260 12.8739 

100000   1.7206 4.0574 6.8511 9.8261 12.8740 

vl   1.7207 4.0575 6.8512 9.8264 12.8746 

vl 

0   1.7207 4.0575 6.8512 9.8264 12.8746 

10   1.7207 4.0575 6.8512 9.8264 12.8746 

100   1.7207 4.0575 6.8512 9.8264 12.8746 

1000   1.7207 4.0575 6.8512 9.8264 12.8746 

100000   1.7207 4.0575 6.8512 9.8264 12.8746 

vl Fig. 5(a)  1.7207 4.0575 6.8512 9.8264 12.8746 
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Table 9 First five combined natural frequency parameters    and for the discrete masses of the sub-system 

for symmetric model having    ̅    ̅      and  ̅    ̅       .  ̅    ̅   . No axial load, and  

 ̅     ̅    ̅     ̅      

      (  ) (  )                                                                     (  ) 

       

        , 

        , 

         

D1, D3 D2, D4 1 2 3 4 5 

0 

0   2.3727 4.6532 7.3155 10.1863 13.1628 

10 1.7783 2.3403 1.1113 1.1746 1.8804 1.9732 2.3044 

100 3.1622 4.1617 1.8661 2.0880 2.4102 3.5001 3.5494 

1000 5.6234 7.4008 2.1356 3.6905 3.7710 4.6374 6.2633 

100000 17.7827 23.4034 2.1536 4.5768 7.2844 10.1658 11.8580 

vl 1000 1316.074 2.1537 4.5779 7.2872 10.1740 13.1567 

10 

0   1.3769 1.9826 2.7593 4.7290 7.3378 

10   1.3849 1.6305 1.8813 2.1731 2.3384 

100   1.8697 2.2837 2.6508 3.5217 3.6083 

1000   2.2502 3.7156 3.8341 4.7017 6.2690 

100000   2.2983 4.6240 7.3017 10.1727 11.8602 

vl   2.2987 4.6255 7.3049 10.1817 13.1605 

100 

0   1.5886 3.0776 4.1200 5.3645 7.5448 

10   1.5349 1.7589 1.8822 2.3300 2.3484 

100   1.8730 2.7715 3.1285 3.6364 4.0478 

1000   2.6093 3.8133 4.2742 5.1506 6.3117 

100000   2.9818 4.9799 7.4509 10.2340 11.8790 

vl   2.9863 4.9868 7.4596 10.2508 13.1953 

1000 

0   1.6173 3.5034 5.6440 7.5714 9.2233 

10   1.5590 1.7738 1.8824 2.3384 2.3498 

100   1.8737 2.9763 3.2298 3.7461 4.1623 

1000 Fig. 6(b)  2.8094 3.8831 5.1253 5.8223 6.4352 

100000   4.1594 6.3696 8.4427 10.6816 12.0192 

vl   4.1896 6.4498 8.5711 10.8968 13.5464 

100000 

0   1.6205 3.5599 5.9908 8.7389 11.6436 

10   1.5618 1.7738 1.8825 2.3384 2.3499 

100   1.8738 3.0031 3.2400 3.7661 4.1686 

1000   2.8398 3.8950 5.3605 5.9115 6.4878 

100000   4.6728 7.6177 10.0786 11.2628 12.3000 

vl   4.7230 7.8312 10.9462 14.0434 17.1188 

vl 

0   1.6206 3.5605 5.9943 8.7511 11.6739 

10   1.5618 1.7738 1.8825 2.3384 2.3499 

100   1.8738 3.0033 3.2401 3.7663 4.1686 

1000   2.8401 3.8952 5.3630 5.9123 6.4884 

100000   4.6796 7.6381 10.1091 11.2697 12.3058 

vl Fig. 5(b)  4.7300 7.8532 10.9956 14.1372 17.2788 

1009



 

 

 

 

 

 

Tamer A. El-Sayed and Said H. Farghaly 

Table 10 First five combined natural frequency parameters    and for the discrete masses of the sub-system 

for symmetric model having   ̅    ̅       and  ̅    ̅   .  ̅    ̅    . No axial load, and  ̅    
 ̅    ̅     ̅     

     (  ) (  )                                                               (  ) 

       

        , 

        , 

         

D1, D3 D2, D4 1 2 3 4 5 

0 

0   3.3988 6.4273 9.5245 12.6424 15.7694 

10 1.7783 2.3403 1.1150 1.1607 1.9176 1.9600 2.3641 

100 3.1622 4.1617 1.9683 2.0637 3.1506 3.4830 3.6806 

1000 5.6234 7.4008 3.0006 3.6642 3.8684 6.0257 6.2391 

100000 17.782 23.403 3.1407 6.2752 9.3845 11.6598 11.8219 

vl 1000 1316.074 3.1416 6.2832 9.4248 12.5664 15.7080 

10 

0   1.2689 2.1975 4.0656 6.8006 9.7799 

10   1.3276 1.6865 1.9292 2.2441 2.3641 

100   1.9888 2.3566 3.3000 3.5200 4.0417 

1000   3.2050 3.7135 4.1907 6.0721 6.2571 

100000   3.6448 6.5849 9.5934 11.6621 11.8409 

vl   3.6477 6.5989 9.6531 12.7445 15.8539 

100 

0   1.4102 2.7764 4.9916 7.7137 10.6244 

10   1.4050 1.7470 1.9362 2.3215 2.3641 

100   1.9992 2.6275 3.3457 3.5861 4.1757 

1000   3.3165 3.7846 4.8308 6.1077 6.3118 

100000   4.4212 7.3666 10.2551 11.6672 11.9333 

vl   4.4304 7.4040 10.4233 13.4637 16.5214 

1000 

0   1.4291 2.8936 5.2758 8.1271 11.1370 

10   1.4161 1.7527 1.9374 2.3257 2.3641 

100   2.0009 2.6851 3.3512 3.6076 4.1828 

1000 Fig. 6(c)  3.3326 3.8047 5.0398 6.1141 6.3425 

100000   4.6809 7.7400 10.6249 11.6693 12.0299 

vl   4.6932 7.7928 10.9120 14.0310 17.1505 

100000 

0   1.4313 2.9080 5.3141 8.1888 11.2215 

10   1.4173 1.7533 1.9376 2.3262 2.3641 

100   2.0011 2.6922 3.3518 3.6105 4.1835 

1000   3.3345 3.8073 5.0677 6.1148 6.3475 

100000   4.7169 7.7972 10.6821 11.6696 12.0507 

vl   4.7297 7.8526 10.9947 14.1360 17.2774 

vl 

0   1.4313 2.9082 5.3145 8.1895 11.2224 

10   1.4174 1.7533 1.9376 2.3262 2.3641 

100   2.0011 2.6922 3.3518 3.6105 4.1835 

1000   3.3345 3.8074 5.0680 6.1148 6.3475 

100000   4.7173 7.7978 10.6827 11.6696 12.0509 

vl Fig. 5(c)  4.7300 7.8532 10.9956 14.1372 17.2788 
 

1010



 

 

 

 

 

 

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems 

 

 

 

 

 
Fig. 5 first five modal shapes for symmetric model,   ̅    ̅      (a)  ̅    ̅      , ( )  ̅    ̅  

            ( )  ̅    ̅
    

 

 

 

 
Fig. 6 first five modal shapes for elastically supported symmetric model,    ̅    ̅      (a)  ̅    ̅  
    , ( )  ̅    ̅              ( )  ̅    ̅    
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clear that the first five modals shapes are identical to those for C-C beam configurations. Fig. 6(a) 

shows the first five modal shapes for elastically supported end masses and carrying SS3 at points 4 

and 5. As can be seen from Fig. 6(b) and Fig. 6(c), the modal shapes are influenced by the change 

in the spring stiffness and locations.     

 
 
7. Conclusions 
 

Exact vibration analysis of an axially loaded Timoshenko beam  combined system with 

generalised end conditions including three spring-two mass sub-system are presented. The 

significance of this work may be drawn in the following contributions: 

1- Mathematical model valid for, mechanical, naval and structural applications.  

2- Three spring-two mass sub-system located at the center of  both of the eccentric masses. 

3- New frequency dependent shear force and bending moment terms are derived. 

4- No need to extra columns and rows due to the sub-system presence. 

5- Exact closed form frequency and mode shape equations for the combined system are 

derived.  

6- Resonance frequencies are appeared equal to the degree of freedom of the located sub-

system. 

7- Previous results are verified. 

8- Interesting results for combined system natural frequencies and mode shapes are presented. 
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Nomenclature 
 

A cross-section area of the beam. Zs3 stiffness parameter of ks3. 

a, b  polynomial roots Zs4  stiffness parameter of ks4. 

c1, c2 distance from    to 1 and    to 2. Zs5 stiffness parameter of ks5 

  ̅   ̅              L respectively Zs6 stiffness parameter of ks6 

       
distance between the mass center of 

gravity and the point of attachment 
Zs7 stiffness parameter of ks7 

 ̅   ̅  ratio defined as    ⁄ ,       Zs8 stiffness parameter of ks8 

E   Young’s modulus of elasticity       
set of non-dimensional terms defined 

as in Eqs. (21d), (22d). 

G   shear modulus of rigidity       parameter defined as in Eqs. (31), (32) 

I   
moment of inertia of the beam cross 

section about the neutral axis. 
 ̅   

set of non-dimensional terms defined 

as in Eq. (21c). 

      
rotational moment of inertia of the 

end mass. 
 ̅   

set of non-dimensional terms defined 

as in Eq. (22c). 

  ̅   ̅ ratio (      ⁄ ) (      ⁄ )                        
set of non-dimensional terms defined 

as in Eqs. (21 b), (22 b). 

 ́ shear deformation shape coefficient    LH end rotational spring stiffness. 

            elastic stiffness.    RH end rotational spring stiffness 

L   
length of the beam (between points 

1 & 2). 
   LH rotational rigidity parameter       
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m mass of the beam.    
RH rotational rigidity parameter 

(      ). 

 ̅   ̅       ⁄      ⁄  respectively.    frequency parameter (         ). 

M1, M2 end masses.   circular frequency. 

ms1, ms2    mass of sub-system 1 and 2.   slope due to bending. 

ms3, ms4    mass of sub-system 1 and 2.    
non-dimensional slope due to 

bending. 

 ̅    ̅   non-dimensional sub-system mass.   Poisson’s ratio. 

 ̅    ̅   non-dimensional sub-system mass.   mass density of the beam material. 

  axial load.         
set of non- dimensional terms defined 

as in Eqs. (21 a) and (22 a). 

   axial load parameter (      ⁄ ).     
nondimensional shear force parameter 

defined as in Eqs. (19) and (20). 

   rotary inertia parameter (     ).   non-dimensional beam length x/L. 

s
2 shear deformation parameter 

(Er
2
/G ́ ). 

C Clamped (fixed) support 

Y non-dimensional lateral vibration. F Free support. 

          system co-ordinate of the beam. P Pinned (hinged) support. 

ys1, ys2, system co-ordinate of the masses vs 10 E-12. 

Z1            
LH lateral rigidity parameter 

(k1L
3
/EI). 

vl 10 E+12. 

Z2  

RH lateral rigidity parameter 

(   
    ). 
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