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Abstract.  In this work, an analytical formulation based on both hyperbolic shear deformation theory and 

stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded 

plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-

mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the 

thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical 

imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions 

of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects 

of different parameters such as material and geometrical characteristics, temperature, boundary conditions, 

foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading 

capacity of the S-FGM plates are investigated. 
 

Keywords:  functionally graded materials; post-buckling; hyperbolic shear deformation theory; elastic 

foundation; imperfection 

 
 
1. Introduction 
 

Functionally Graded Material (FGM) is relatively novel technology employed in components 

subjected to high temperature. Laminated composite materials allow design flexibility to obtain a 

desirable stiffness and strength through the choice of lamination system. Laminated composite 

structures generally subjected to stress concentrations and because of discontinuities in material 

characteristics failures seen in laminated composites in the form of debonding, matrix cracking, 

and adhesive bond separation. FGM can support such problems because of continuous change of 

material characteristics from one surface to the other, especial in thick direction. Thus, these new 
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materials are selected to utilize in structural members of aircraft, aerospace vehicles, nuclear plants 

as well as various temperature shielding structures often employed in industries (Shahrjerdi et al. 

2011, Benachour et al. 2011, Tounsi et al. 2013a, Ould Larbi et al. 2013, Bouderba et al. 2013, 

Golmakani 2013, Chakraverty and Pradhan 2014a, b, Hadji et al. 2014, Zidi et al. 2014, Mantari 

and Granados 2015, Chakraverty and Pradhan 2015, Sallai et al. 2015, Pradhan and Chakraverty 

2015a, b, c, Rad 2015, Mahi et al. 2015, Ait Atmane et al. 2015, Ait Yahia et al. 2015, Attia et al. 

2015, Ebrahimi and Dashti 2015, Kar and Panda 2015, Bouchafa et al. 2015, Akbaş 2015, Arefi 

2015, Darılmaz 2015, Bellifa et al. 2016). 

The buckling and post-buckling of rectangular functionally graded plates has been a topic of 

investigation in solid mechanics for more than a century. Birman (1995) studied the buckling 

behavior of FGM hybrid composite plates based on the multi-cell model. Yang and Shen (2003) 

used a perturbation technique along with one-dimensional differential quadrature approximation 

and Galerkin procedure to examine the post-buckling response of fully clamped FGM rectangular 

plates based on the classical plate theory under the transverse and in-plane loads. The first order 

shear deformation theory is employed by Wu (2004) to determine the analytical expressions of 

critical buckling temperatures for simply supported FGM plates. Woo et al. (2005) utilized a 

mixed Fourier series solution to obtain analytical solutions to investigate the post -buckling 

response of moderately thick FG plates and shallow shells under edge compressive load and 

specified temperature field. Prakash et al. (2008) employed an eight-nodded C0 shear flexible 

quadrilateral plate element to examine the nonlinear bending/pseudo-post-buckling response of 

FGM plates based on the first order shear deformation theory under thermo-mechanical load. 

Matsunaga (2009) proposed a 2 D global higher-order deformation theory for thermal buckling of 

FG plates. He computed the critical buckling temperatures of a simply supported FG plate under 

uniformly and linearly distributed temperatures. Moradi and Mansouri (2012) studied the thermal 

buckling behavior of rectangular composite laminated plates by using the Differential Quadrature 

method. Using different shear deformation theories, Daneshmehra et al. (2013) studied the post-

buckling behavior of FG beams. Ahmed (2014) discussed the post-buckling of FG sandwich 

beams using a consistent higher order theory. A novel refined hyperbolic shear deformation theory 

was developed by El Meiche et al. (2011) utilizing the Navier’s solution method for the buckling 

and free vibration responses of FG sandwich plates. Bourada et al. (2012) presented a new four-

variable refined plate theory for thermal buckling analysis of FG sandwich plates. Duc and Cong 

(2013) investigated the post-buckling behaviors of sigmoid FG plates subjected in-plane 

compressive, thermal and thermo-mechanical loads using Reddy’s third order shear deformation 

plate theory. A refined and simple nth-order shear deformation theory is developed by Yaghoobi 

and Fereidoon (2014) for the buckling analysis of FG plates resting on elastic foundation. 

Swaminathan and Naveenkumar (2014) proposed an analytical formulation for the stability 

analysis of simply supported FG sandwich plates based on two higher-order refined computational 

models. Ait Amar Meziane et al. (2014) developed an efficient and simple refined shear 

deformation theory for the vibration and buckling of exponentially graded material sandwich plate 

resting on elastic foundations under various boundary conditions. Yaghoobi et al. (2014) studied 

the nonlinear vibration and post-buckling behaviors of FG beams resting on nonlinear elastic 

foundation and subjected to thermo-mechanical loading. Khalfi et al. (2014) proposed a refined 

and simple shear deformation theory for thermal buckling of solar FG plates on elastic foundation. 

Bakora and Tounsi (2015) studied the thermo-mechanical post-buckling response of thick P-FGM 

plates resting on elastic foundations. Nguyen et al. (2015) developed a refined higher-order shear 

deformation theory for bending, vibration and buckling analysis of FG sandwich plates. Tagrara et  

618



 

 

 

 

 

 

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic... 

 

Fig. 1 Symmetrical S-FGM plate on elastic foundation 

 

 

al. (2015) studied the bending, buckling and vibration responses of FG carbon nanotube-reinforced 

composite beams. Tebboune et al. (2015) investigated the thermal buckling analysis of FG plates 

resting on elastic foundation based on an efficient and simple trigonometric shear deformation 

theory. Bouguenina et al. (2015) studied the thermal buckling of FGM plates with variable 

thickness using a finite differential method.  

In this work we research the post-buckling responses of thick FG plates resting on elastic 

foundations and subjected to axial compressive, thermal and thermo-mechanical loads using a new 

hyperbolic shear deformation plate theory, stress function for FGM plate with Sigmoid power law 

distribution of the volume of constituents (S-FGM), considering into account geometrical 

nonlinearity, initial geometrical imperfection, temperature and the plate-foundation interaction is 

represented by Pasternak model. Analytical expressions of buckling loads and post-buckling load-

deflection curves for simply supported FG plates are determined by Galerkin technique. A 

parametric study is considered to assess the influences of geometrical and material properties, 

temperature, boundary conditions, foundation stiffness and imperfection on the buckling and post-

buckling of the symmetric S-FG plates. 

 

 

2. Material properties of symmetric S-FGM plate 
 

In this work, a symmetrical rectangular S-FGM plate that consists of three layers fabricated 

with functionally graded ceramic and metal materials and is midplane-symmetric. The outer 

surface layers of the plate are ceramic-rich, but the midplane layer is fully metallic. A coordinate 

system (x, y, z) is considered in which (x, y) plane is the midplane of the plate and z is thickness 

direction (−h/2≤z≤h/2) as indicated in Fig. 1. 

The material properties P of S-FG plate such as the modulus of elasticity E and the coefficient 

of thermal expansion α, vary in the thickness direction z according to a linear rule of mixture as  

             )()()( zVPzVPzP ccmm   (1) 

where Pm and Pc are the corresponding properties of the metal and ceramic, respectively. The 

volume fractions of metal and ceramic, Vm and Vc, are assumed as 
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where N is the power law index which takes the value greater or equal to zero. 

The reaction-deflection relation of Pasternak foundation is expressed by (Besseghier et al. 

2015, Ait Atmane et al. 2016, Bounouara et al. 2016, Salima et al. 2016) 

              wkwkf gwe

2  (3) 

where 
2
=∂

2
/∂x

2
+∂

2
/∂y

2
, w is the transverse displacement of the plate, kw is Winkler foundation 

modulus and kg is the shear layer foundation stiffness of Pasternak model. 

 

 

3. Theoretical formulations 
 

Based on a new hyperbolic shear deformation theory, the following displacement field is 

assumed 
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here u0, v0, w0, ϕx, ϕy are five unknown displacements of the midplane of the plate. 

The non-linear von Karman strain-displacement equations are as follows 
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where 
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The linear constitutive relations of an S-FG plate can be expressed as 
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where ΔT is temperature rise from stress free initial state or temperature difference between two 

surfaces of the S-FG plate. 

By utilizing the virtual work principle to minimize the functional of total potential energy 

function result in the expressions for the nonlinear equilibrium equations of a perfect plate resting 

on two parameters elastic foundation as 
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where the force and moment resultants (N, Q, S and M) of the S-FG plate are determined by 
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Substitution of Eqs. (5) and (7) into Eq. (9) yields the constitutive relations as 
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The last three equations of Eq. (8) may be expressed into two equations in terms of variables w0 

and ϕx,x+ϕy,y by substituting Eqs. (6) and (10) into Eqs. (8c)-(8e). Subsequently, elimination of the 

variable ϕx,x+ϕy,y from two the resulting equations, conducts to the following system of equilibrium 

equations 

       

0)2(

)2()(

0

0

2

,,,4

2

,,,

2

3

4

41

62

231

,,

,,









wkwkwNwNwND

wkwkwNwNwNDwDDwDDD

NN

NN

gwyyyxyxyxxx

gwyyyxyxyxxx

yyxxy

yxyxx

 

 
 

(12a) 

       

0)2(

)2()(

0

0

2

,,,4

2

,,,

2

3

4

41

62

231

,,

,,









wkwkwNwNwND

wkwkwNwNwNDwDDwDDD

NN

NN

gwyyyxyxyxxx

gwyyyxyxyxxx

yyxxy

yxyxx

 

 

 
(12b) 

   
0)2(

)2()(

0

0

2

,,,4

2

,,,

2

3

4

41

62

231

,,

,,









wkwkwNwNwND

wkwkwNwNwNDwDDwDDD

NN

NN

gwyyyxyxyxxx

gwyyyxyxyxxx

yyxxy

yxyxx

 

 

 

(12c) 

where 

       
)1(2

,
)1(

,
)1(

,
)1(

8

42

1

2

371

32

5

22

4
1

 













E
D

E

EEE
D

E
D

E
D  (13) 

For an imperfect S-FG plate, Eqs. (12) are modified into form as 
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in which w
*
(x,y) is a known function denoting initial small imperfection of the plate. Note that Eq. 

(14) gets a complicated form under the hyperbolic shear deformation theory which includes the 

6th-order partial differential term 
6
w0. Also, f (x,y) is stress function defined by 

           xyxyxxyyyx fNfNfN ,,, ,,   (15) 

The geometrical compatibility equation for an imperfect plate is expressed as 

       
*

 ,0 ,0

*

 ,0 ,0

*

 ,0 ,0 ,0 ,0

2

 ,0

0

 ,

0

 ,

0

 , 2 xxyyyyxxxyxyyyxxxyxyxyxxyyyx wwwwwwwww    (16) 

From the constitutive relations (10) and Eq. (15) one can write 
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



 (17) 

Substituting Eq. (17) into Eq. (16), the compatibility equation of an imperfect S-FG plate 

becomes 

        
0)2( *

,0,0

*

,0,0

*

,0,0,0,0

2

,01

4  xxyyyyxxxyxyyyxxxy wwwwwwwwwEf  (18) 

It is noted that Eqs. (14) and (18) are nonlinear equations employed to study the stability of 

thick S-FG plates resting on elastic foundations subjected to mechanical, thermal and thermo-

mechanical loads. 

Three cases of boundary conditions are considered in this work, referred to as Cases 1, 2 and 3 

(Librescu and Lin 1997, Lin and Librescu 1998). 

• Case 1: Four edges of the plate are simply supported and freely movable (FM). The associated 

boundary conditions are 

        
axNNSMNw xxxxyxy  at          ,0,0 00    (19a) 

        
byNNSMNw yyyyxxy  at          ,0,0 00    (19b) 

• Case 2: Four edges of the plate are simply supported and immovable (IM). In this case, 

boundary conditions are  

        
axNNSMuw xxxxy  at          ,0,0 000    (20a) 

        
byNNSMvw yyyyx  at          ,0,0 000    (20b) 

• Case 3: All edges are simply supported. Two edges x=0, a are freely movable and subjected to 

compressive load in the x direction, whereas the remaining two edges y=0, b are unloaded and 

immovable. For this case, the boundary conditions are defined as  

        
axNNSMNw xxxxyxy  at          ,0,0 00    (21a) 

        
byNNSMvw yyyyx  at          ,0,0 0    (21b) 
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Ny0 are axial compressive loads at movable edges (i.e., Case 1 and the first of Case 3) or are 

fictitious compressive edge loads at immovable edges (i.e., Case 2 and the second of Case 3). 

The proposed solutions of w and f respecting boundary conditions (17)-(19) are considered to 

be (Librescu and Lin 1997, Lin and Librescu 1998)  

        
  )sin()sin(),(, * yxhWww nm    (22a) 

        2

0

2

0

321

2

1

2
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)sin()sin()2cos()2cos(
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yxAyAxAf

yx

nmnm





                            



 (22b) 

        
)cos()sin(),sin()cos( 21 yxByxB nmynmx       (22c) 

where λm=mπ/a, δn=nπ/b, m, n are odd numbers, W is amplitude of the deflection and μ is 

imperfection parameter. The coefficients Ai (i=1,2,3) are determined by substitution of Eqs. (22a, 

b) into Eq. (18) as 

        )2(
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 ,  0A3   (23) 

Using Eqs. (6) and (10) in Eqs. (8d, e) and substituting Eqs. (22a, c) into the resulting 

equations, the coefficients B1 and B2 are determined as 
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in which 
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),(),( 2323

22313 mnnnmmDaa                                         (25b) 

Then, setting Eqs. (22a, b) into Eq. (14) and employing the Galerkin method for the resulting 

equation yield 
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  (26)
 

This equation will be employed to investigate the buckling and post-buckling responses of 

thick S-FG plates under mechanical, thermal and thermo-mechanical loads. 

 

3.1 Mechanical post-buckling analysis 
 

A simply supported symmetric S-FG plate with all movable edges is considered and this plate 
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is supported by elastic foundations and subjected to axial edge compressive loads (Fx, Fy) 

uniformly distributed on edges x=0, a and y=0, b, respectively. In this case, pre-bucking force 

resultants are (Samsam Shariat and Eslami 2007) 

hFN xx 0
, hFN yy 0                                                    (27) 

and Eq. (26) leads to 
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in which 
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For a perfect FG plate, Eq. (28) reduces to an equation from which buckling compressive load 

may be determined as 
1

1eFxb  . 

 

3.2 Thermal post-buckling analysis 
 

A simply supported symmetric S-FG plate with all immovable edges is assumed here. The plate 

is also supported by an elastic foundation and under temperature environments or subjected to 

through the thickness temperature gradient. The in-plane condition on immovability at all edges, 

i.e., u0=0 at x=0, a and v0=0 at y=0, b, is given in an average sense as (Tung and Duc 2010) 

  
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dxdy
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0 0

0 0
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                                             (31) 

From Eqs. (6) and (10) one can determine the following expressions in which Eq. (15) and 

imperfection have been introduced  
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Introduction of Eq. (22) into Eq. (32) and then the result into Eq. (31) give 
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When the deflection dependence of fictitious edge loads is ignored, i.e., W=0, Eq. (33) becomes  

        




1

1
00 yx NN  (34) 

Substituting Eq. (33) into Eq. (26) yields the expression of thermal parameter as 
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(35) 

 

3.3 Uniform temperature rise 
 

The symmetric S-FG plate is exposed to temperature environments uniformly raised from stress 

free initial state Ti to final value Tf, and temperature change ΔT=Tf−Ti is assumed to be 

independent from thickness variable. The thermal parameter Ф1 is obtained from Eq. (11b), and 

substitution of the result into Eq. (35) yields 
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(37c) 

in which 
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By Setting μ=0, Eq. (36) leads to an equation from which buckling temperature change of the 

perfect symmetric S-FG plates may be obtained as 
2

1eTb  . 

 

3.4 Thermo-mechanical post-buckling analysis 
 

The symmetric S-FG plate resting on elastic foundation is uniformly compressed by Fx on two 

movable edges x=0, a and simultaneously exposed to elevated temperature environments or 

subjected to nonlinear temperature distribution. The two edges y=0, b are assumed to be 

immovable. In this case, Nx0=−Fxh and fictitious compressive load on immovable edges is obtained 

by setting the second of Eq. (32) in the second of Eq. (31) as 
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Then, Nx0 and Ny0 are placed in Eq. (26) to give 
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where the coefficients 
3

1e ; 
3

2e ; 
3

3e  are defined as follows 
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Eqs. (28), (36) and (40) are explicit expressions of load-deflection curves for thick symmetric  
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Fig. 2 Effects of the power law index N on the post-buckling of symmetrical S-FG plates under 

in-plane compressive load (all FM edges) 
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Fig. 3 Effects of the power law index N on the post-buckling of symmetrical S-FG plates under 

uniform temperature rise (all IM edges) 

 

 

S-FG plates supported by Pasternak elastic foundations and subjected to axial compressive, 

thermal and thermo-mechanical loads, respectively. 
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4. Results and discussion 
 

In this part of the work, numerical results are analyzed for checking the accuracy of the present 

formulation in predicting the buckling and post-buckling responses of thick symmetric S-FG plates 

supported by elastic foundations. A square ceramic-metal plate with the following properties is 

considered: 

• 70mE GPa,  3.0m , 61023 m °C
-1

 

• 380cE GPa, 3.0c , 6104.7 c °C
-1

 

In this case, the buckling of perfect plates will be initiated for m=n=1, and these values of half 

waves are also utilized to present graphically load-deflection equilibrium paths for both perfect 

and imperfect plates. In figures, W/h indicates the dimensionless maximum deflection and the S-

FG plate-foundation interaction is ignored, unless otherwise stated. 

Influences of the power law index N on the post-buckling of S-FG plates subjected to in-plane 

compressive load and uniform temperature rise are demonstrated in Figs. 2 and 3. It is shown that 

the mechanical load and the thermal resistance become considerably important if the volume N 

increases or the percentage of ceramic increases. Decreasing the power law index N leads to a 

strong drop of both critical buckling loads and post-buckling carrying capacity. 

Figs. 4 and 5 show a comparison between the mechanical and thermal post-buckling load-

deflection curves determined by the present formulation and the third order shear deformation 

theory presented by Duc and Cong (2013) with various volume fractions of the S-FG plate. The 

results demonstrate an excellent agreement between the present formulation and the third order 

shear deformation theory used by Duc and Cong (2013). The results also show us that the 

imperfect plate has a better mechanical and thermal loading capacity than those of the perfect 

plate. The obtained results in Fig. 4 are presented numerically in Table 1. It is noted that these  
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Fig. 4 Comparisons of mechanical post-buckling load-deflection curves for S-FG plates with 

various of volume fractions N 
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Fig. 5 Comparisons of thermal post-buckling load-deflection curves for S-FG plates with 

various of volume fractions N 

 
Table 1 Comparisons of mechanical post-buckling loads for S-FG plates with various of volume fractions N 

h

W
 Theory 

N=0 N=3 

μ=0 μ=0,1 μ=0 μ=0,1 

0 
Present 0,62411 0 3,23613 0 

Duc and Cong (2013)
(*) 

0,62387 0 3,22944 0 

0.1 
Present 0,62627 0,31853 3,24546 1,64605 

Duc and Cong (2013)
(*)

 0,62603 0,31841 3,23876 1,64271 

0.2 
Present 0,63274 0,43334 3,27345 2,23206 

Duc and Cong (2013)
(*)

 0,63251 0,43319 3,26675 2,2276 

0.3 
Present 0,64354 0,50047 3,32009 2,56704 

Duc and Cong (2013)
(*)

 0,6433 0,50047 3,3134 2,56202 

0.4 
Present 0,65865 0,5511 3,3854 2,81282 

Duc and Cong (2013)
(*)

 0,65842 0,55091 3,37871 2,80746 

0.5 
Present 0,67808 0,59565 3,46937 3,02332 

Duc and Cong (2013)
(*)

 0,67785 0,59546 3,46268 3,01774 

1 
Present 0,84001 0,82645 4,16911 4,06152 

Duc and Cong (2013)
(*)

 0,83977 0,82623 4,16242 4,05543 

1.5 
Present 1,10988 1,13564 5,33534 5,41298 

Duc and Cong (2013)
(*)

 1,10964 1,13542 5,32865 5,40671 

2 
Present 1,4877 1,54434 6,96807 7,18716 

Duc and Cong (2013)
(*)

 1,48746 1,54411 6,96138 7,18079 
(*) 

Values computed by authors 
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Fig. 6 Comparisons of mechanical post-buckling load-deflection curves for S-FG plates with 

different temperature ΔT 
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Fig. 7 Comparisons of mechanical post-buckling load-deflection curves for S-FG plates with 

different mechanical loads Fx 

 

 

results are computed by both the present theory and the method proposed by Duc and Cong 

(2013). One can conclude that an excellent agreement between two methods is confirmed.   

A comparison study between the mechanical and thermal post-buckling load-deflection curves 

determined by the present formulation and the third order shear deformation theory presented by 
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Duc and Cong (2013) is carried out by considering various of thermal and mechanical loads and 

the results are shown in Figs. 6 and 7. Obviously, with the same power law index, the critical 

loadings of post-buckling of the S-FG plate are different. Also, similar to above two figures, the 

critical mechanical and thermal loadings for the present theory are identical to those of the third 

order shear deformation. 

The effect of initial imperfections on post-buckling of S-FG plate under uniaxial compressive 

force (all FM edges) and under uniform temperature (all IM edges) is indicated in Figs. 8 and 9. 

Fig. 8 proves us that the critical compressive forces diminish with μ in the region of the small 

bending. By against, it increases with μ in the other region of the large bending, meaning the 

higher bending-load curve (i.e., the better loading ability). Fig. 9 indicates us that an initial 

imperfection has a significant effect on the thermal resistance of S-FG at the threshold value of the 

bending.  
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Fig. 8 The effect of imperfections on the post-buckling of symmetrical S-FG plates under 

uniaxial compressive force (all FM edges) 

 

 

Figs. 10 and 11 illustrate a considerable effect of elastic foundations on the post-buckling of S-

FG plate under uniaxial compressive load (all FM edges) and uniform temperature (all IM edges). 

The influence of Pasternak foundation Kg on the critical compressive forces and the thermal 

resistance of S-FG is important than the Winkler foundation Kw.  

The thermo-mechanical stability investigation has been carried out by using Eq. (40). Figs. 12 

and 13 have been prepared under the supposition of the third boundary conditions (Case 3) for the 

FM edges x=0, a and IM edges y=0, b which are simultaneously under the compressive uniform 

loading on the edge x=0, a. Fig. 12 proves the influence of the temperature gradient of the  
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Fig. 9 The effect of imperfections on the post-buckling of symmetrical S-FG plates under 

uniform temperature rise (all IM edges) 
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Fig. 10 Effects of the elastic foundations on the post-buckling of symmetrical S-FG plates under 

uniaxial compressive load (all FM edges) 

 

 

surrounding environment on the response of uniaxial compressive force. The inclusion of 

temperature reduces the loading capacity (for both perfect and imperfect plates) and the imperfect 

plate obtains a curvature immediately even if there is no mechanical compressive load.   
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Fig. 11 Effects of the elastic foundations on the post-buckling of symmetrical S-FG plates under 

uniform temperature rise (all IM edges) 

 

0,0 0,5 1,0 1,5 2,0

0

1

2

3

4

5

6

7

3

2

1

1:   T = 0 

2:   T = 200 C°

3:   T = 400 C°

b/a = 1.0, b/h = 20

N = 1.0, K
W

 = 0, K
g
 = 0

 µ = 0

 µ = 0.1

W/h

 F
X
 (Gpa)

  

  

Fig. 12 Effect of temperature field and uniaxial compression on the post-buckling of symmetric 

S-FG plate under uniform temperature rise (FM on y=0, b; IM on x=0, a) 

 

 

Fig. 13 shows the buckling and post-buckling response of the S-FG plate under the increased 

uniform temperature gradient field ΔT and the different values of the uniaxial compressive load  
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Fig. 13 Effect of temperature gradient and uniaxial compression on the post-buckling of 

symmetric S-FG. (FM on y=0, b; IM on x=0, a) 

 

 

Fx. The inclusion of the mechanical loading diminishes the thermal loading capacity of the perfect 

and imperfect plates. 

 

 

5. Conclusions 
 

This work presents an analytical formulation to study the postbuckling responses of thick 

symmetric FG plates supported by Pasternak elastic foundations and subjected to in-plane 

compressive, thermal and thermomechanical loads. Both a new hyperbolic shear deformation plate 

theory and stress function are used in the present formulation by taking into consideration Von 

Karman nonlinearity, initial geometrical imperfection, temperature and Pasternak type elastic 

foundation. The effects of power law index and geometrical characteristics, temperature, boundary 

conditions, foundation stiffness and imperfection on the postbuckling loading capacity of the S-FG 

plates are investigated and discussed. It is concluded that the critical mechanical and thermal 

loadings for the proposed hyperbolic shear deformation theory are almost identical to those for the 

third order shear deformation theory and for the postbuclking period of the S-FGM plate, 

comparing with a perfect plate, an imperfect plate has a better mechanical and thermal loading 

capacity. An improvement of present formulation will be considered in the future work to account 

for the thickness stretching effect by employing quasi-3D shear deformation models (Saidi et al. 

2013, Bousahla et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Belabed et al. 2014, Bourada et 

al. 2015, Meradjah et al. 2015, Hamidi et al. 2015, Bourada et al. 2015, Bennai et al. 2015, 

Bennoun et al. 2016), laminated composite plates (Chattibi et al. 2015, Draiche et al. 2014, 

Sadoune et al. 2014, Ozturk 2015, Kirkland and Uy 2015, Kar et al. 2015) and nanostructures 

(Tounsi et al. 2013b, Al-Basyouni et al. 2015, Belkorissat et al. 2015, Ould Youcef et al. 2015, 

Larbi Chaht et al. 2015, Chemi et al. 2015). 
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