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Abstract.  A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed 

for optimum design of reinforced concrete retaining walls. The objective function is to minimize total 

material cost including concrete and steel per unit length of the retaining walls. The requirements of the 

American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are 

considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design 

constraints composed from stability, flexural moment capacity, shear strength capacity and RC design 

requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are 

checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters 

entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining 

wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal 

friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. 

As a conclusion, TLBO based methods are feasible. 
 

Keywords:  cantilever retaining wall; reinforced concrete structures; Teaching-Learning Based 

Optimization (TLBO); optimum design 

 
 
1. Introduction 
 

Engineering design can be defined as an optimization process considering certain objectives 

such as stability, strength capacities, displacements, weight, etc., by designer. Additionally, 

designers also try to find design with minimum cost. In engineering computations, numerical and 

analytical methods have been used for finding the extreme value. Although being suitable in many 

cases, these methods can be inadequate for complex or nonlinear problems. For example, 

reinforced concrete design contains the mechanical behavior of two different materials. The 

concrete section dimensions and the amount of steel reinforcements are both optimized. For that 

reason, the design of RC members is a nonlinear problem and existing of design constraints leads 

us to use iterative methods like metaheuristics.  

Metaheuristic algorithms, such as Genetic algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), Big Bang-Big Crunch (BBBC), Harmony Search (HS), 

Firefly Algorithm (FA), Bat Algorithm (BA), etc., are developed from the inspiration of natural 
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phenomena. GA inspired from evolutionary concepts of natural selection of Darwin’s theory 

(Holland 1975, Goldberg 1989), PSO imitates the social behavior of animals, i.e. flocking of birds, 

schooling of fish inter alia (Kennedy and Eberhart 1995), ACO uses the behavior of ants in 

seeking the most suitable route between their nest and food source (Dorigo et al. 1996), BBBC 

relies on the well-known theory of evolution of the universe (Erol and Eksin 2006), HS 

implements the musical process searching a perfect state of harmony that admire the audience 

(Geem et al. 2001), FA conceptualizes the flashing characteristic of fireflies during the search of 

prey and mates (Yang 2009), BA mimics the impressive echolocation characteristic of micro bats 

used for hunting and distinguishing types of insect (Yang 2010).  

Recently, Rao et al. (2011) has been proposed an innovative metaheuristic algorithm 

conceptualized teaching-learning process in a classroom and considering the inspiration, called 

Teaching Learning-Based Optimization (TLBO) algorithm. TLBO algorithm considers both 

teacher’s influences on learners and interaction between learners by employing an iterative process 

to improve the knowledge of the learners as well as the whole class. Thus, TLBO can be divided 

into two main components; teacher and learner phase. The knowledge and teaching ability of a 

teacher is consisted the “teacher phase” and sharing information, cooperation and interaction each 

other is consisted the “learner phase”.  

Although being relatively new, TLBO algorithm has been successfully applied to many 

engineering optimization problems. TLBO algorithm is firstly performed on some mechanical 

design optimization problems by Rao et al. (2013). Then, TLBO is employed for optimization of 

planar steel frames and in order to prove the effectiveness of algorithm, the result are also 

compared with GA, ACO, HS and improved ACO (Toğan 2012). TLBO algorithm has been 

employed in electric power generators under different objectives such as energy cost, emission, 

electrical energy losses, voltage deviations, etc. (Azizipanah-Abarghooee et al. 2012, Niknam et 

al. 2012a, 2012b, 2012c). Cooling capacity and coefficient of performance cooler is taken as 

objectives to optimize thermo-electric cooler by Rao and Patel (2013). Optimum design of some 

structural engineering problems, i.e., truss systems, I-beams, grillage structures are done under 

weight, stress and deflection objectives (Toğan 2013, Dede and Ayaz 2013, Degertekin and 

Hayalioglu 2013, Zou et al. 2013, Yildiz 2013, Dede 2013, Camp and Farshchin 2014). Some 

other applications of TLBO are the optimal setting of power flow (Ghasemi et al. 2014, 

Bouchekara et al. 2014), design of X-bar control chart (Ganguly and Patel 2014), flow shop 

rescheduling problem (Li et al. 2015), optimal design of heat pipe (Rao and More 2015), optimum 

design of robot gripper (Rao and Waghmare 2015), minimizing carbon emission of machining 

systems (Lin et al. 2015), etc.  

Reinforced concrete retaining walls are structures constructed for resisting soils between two 

different elevations. In the analyses and design of RC retaining walls, due to soil-structure 

interaction, the designer gets into many difficulties such as stability of overturning and sliding, 

stress limitation for soil to provide settlement of the foundation and also in design flexural moment 

capacity, shear capacity, minimum and maximum reinforcement area, steel bar spacing, 

development length for reinforcement inter alia.  

In the structural design process, cost minimization and safety are two main goals that must be 

satisfied simultaneously. Although researches has conducted researches on the subject for many 

decades, because of consisting from two materials with very different mechanical properties and 

costs in global markets, the cost minimization of RC structures is still an active area. The 

optimization of the RC retaining wall, one of the major application areas, dates back to 1980s. In 

these studies, cost optimization has been done for investigation of optimal shape, structural  
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Fig. 1 Loads acting on a cantilever retaining wall 

 

 

stability, bending moment minimization, optimum location (Rhomberg and Street 1981, Alshawi 

et al. 1988 Keskar and Adidam 1989, Dembicki and Chi 1989, Pochtman et al. 1988, Saribaş and 

Erbatur 1996, Chau and Albermani 2003, Sivakumar and Basha 2008). In addition to these studies, 

metaheuristic algorithms, including simulated annealing (Ceranic et al. 2001, Yepes et al. 2008), 

PSO (Ahmadi-Nedushan and Varaee 2009), HS (Kaveh and Abadi 2010), BBBC (Camp and Akin 

2011), GA (Kaveh et al. 2013), FA (Sheikholeslami et al. 2014), charged system search 

(Talatahari and Sheikholeslami 2014) are also applied for optimum design of RC retaining walls. 

Being a challenging area due to various constraints involves from soil-structure interaction and RC 

design, in recent years, researches on retaining wall optimization using evolutionary algorithm are 

increasingly continues. 

 

 

2. Design of retaining walls 
 

A typical geometry and external loads used in the design of cantilever retaining walls can be 

seen in Fig. 1, where Ww, WR and WP respectively represent the weight of retaining wall, backfill 

on the heel and soil on toe; q is surcharge loads; PA, PP and PB represent active earth pressure, 

passive earth pressure  and bearing stress forces, respectively.  

Common failure modes of retaining walls are overturning, sliding and bearing capacity. The 

safety factor for overturning SFO can be defined as 
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In Eq. (1), ∑MR is the sum of the moments that resist for overturning: moments resulting from 

surcharge loads, self-weight of the wall and the weight of backfill soil; ∑MO is the sum of the 

moments that overturn the system: moments resulting from active earth pressure. Generally, the 

effects of passive forces are not taken into consideration due to the possibility of removing of the 

soil. The active and passive loads are calculated by using active  
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and passive coefficient 
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given in Rankine theory. In Eqs. (2) and (3), β and θ are slope and internal friction angle of 

backfill. The safety factor of a failure mode for sliding is the ratio between the sum of resisting 

(∑FR) and sliding (∑FD) forces (Eq. (4)).    

 R

S

D

F
SF

F




 (4) 

Resisting forces consist of the total weight of the wall, friction of the base soil and passive 

loads can be formulated as 
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and sliding forces which are the component of active forces can be written as 

 cosD AF P    (6) 

In Eq. (5) and (6), ∑Ww is total weight of the wall, ϕB is internal friction of the base soil, B is 

length of the base slab; cbase is adhesion of the soil below the base slab, Pa is active loads and 
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where γB and D1 are unit weight and depth of the soil, respectively. The ratio between ultimate 

bearing capacity (qu) and maximum intensity of soil pressure (qmax) under the toe determines the 

safety factor of retaining wall for bearing failure (Eq. (8)). 
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By considering shallow foundation, the maximum (qmax) and minimum (qmin) intensity of soil 

stresses can be expressed as  
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where e is the eccentricity between moment (difference between the sum of resisting and 

overturning moments) and sum of vertical loads (∑V) written as 
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2.1 Design variables 
 

In the optimization problem, total eleven design variables were considered. These variables are 

related to cross-sectional dimension (X1-X5) (Fig. 2) and reinforcement design (X6-X11) of the 

retaining wall. In Table 1, description of variables can be seen. 

 

2.2 Design constraints  
 

Design process of retaining walls can be divided into two main stages; analysis and design. 

First, safety factors against failure modes are determined in the analysis and then, the 

reinforcement concrete requirements given in ACI 318-05 regulation are checked in design. The 

requirements of both stages can be expressed with 

   0 ,jg X j 1 m   (11) 

inequalities function that are directly or indirectly related to the design variable (Table 1) vector 

  , ,...,T

1 2 11X X X X  (12) 

 

 

 

Fig. 2 Design variables for cantilever retaining wall 
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Table 1 Design variables 

 Description Design variable 

Variables related to 

Cross-section dimension 

Heel projection X1 

Toe projection X2 

Stem thickness at the top of the wall X3 

Stem thickness at the bottom of the wall X4 

Base slab thickness X5 

Variables related to RC 

design 

Diameter of reinforcing bars of stem, ϕs X6 

Distance between reinforcing bars of stem, Ss X7 

Diameter of reinforcing bars of the toe, ϕt X8 

Distance between reinforcing bars of the toe, St X9 

Diameter of reinforcing bars of the heel, ϕh X10 

Distance between reinforcing bars of the heel, Sh X11 

 

 

In Eq. (11), m represents the number of design constraints given in Table 2. Reinforcement design 

is done only for critical sections (maximum internal forces) of stem, toe, and heel. In Table 2, the 

flexural moment, the shear force, the area of reinforcing bars, spacing between two bars, diameter 

of the bars are Mu, Vu, As and S and db, respectively.  

The ACI 318 code allows using equivalent rectangular compressive stress distribution instead 

of parabolic or other stress distributions. By using this stress distribution, moment capacity of the 

cross-sections can be defined as 
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where ϕ,  is a strength reduction factor (ϕ=0.9). fy is the yield strength of reinforcement. As is the 

area of longitudinal tension reinforcements and the ratio of that reinforcements must be less than 

that given by 
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and must not be greater than 0.75ρb that written as  
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These required reinforcements in sections must also satisfy the rules of minimum development 

length in order to provide the serviceability of RC member design. According to ACI-05 

regulation, for deformed bars, development length (ld) is defined as follows 
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Table 2 Constraints on strength and dimensions of wall 

Description Constraints 

Safety for overturning stability g1(X): SFO,design ≥ SFO 

Safety for sliding stability g2(X): SFS,design ≥ SFS 

Safety for bearing capacity g3(X): SFB,design ≥ SFB 

Minimum bearing stress, qmin g4(X): qmin ≥ 0 

Flexural strength capacities of critical sections, Md g5-7(X): Md ≥ Mu 

Shear strength capacities of critical sections, Vd g8-10(X): Vd ≥ Vu 

Minimum reinforcement areas of critical sections, Asmin g11-13(X): As ≥ Asmin 

Maximum reinforcement areas of critical sections, Asmax g14-16(X): As ≤ Asmax 

Maximum steel bars spacing of critical sections, Smax g17-19(X): S ≤ Smax 

Minimum steel bars spacing of critical sections, Smin g20-22(X): S ≥ Smin 

Minimum concrete cover, cc g23(X): cc ≥ 70 mm 

Sectional limits 
g24(X): (X2 + X3) ≥ X1 

g25(X): (X6 + X7) ≥ X1 

Reinforcement development lengths, ldb 

and hook lengths, ldh 

g26(X): ldb,stem≥(X5-cc) or ldh,stem≥(X5-cc) 

g27(X): ldb,toe≥(X1-X2-cc) or 12db,toe≥(X5-cc) 

g28(X):ldb,heel≥ (X2+X3-cc) or 12db,heel≥(X5-cc) 

g29(X): ldb,key≥(X5-cc) or ldh,key≥(X5-cc) 
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in which db represents the diameter of the bars. ψt, ψe and λ are the coefficients reflect the 

placement of reinforcements, the epoxy-coated or uncoated of reinforcements and lightweight or 

normal weight concrete (in this study, these coefficients is taken 1.0).  If hooked reinforcement is 

used, the minimum hook length (12db) must be also provided.  

In the Eq. (13), a is the depth of equivalent rectangular stress block that defined as β1 times of 

the c; the depth of the neutral axis in compression section. The β1 value, which is deepened on 

compressive strength of concrete (f΄c), can be written as 
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The shear strength of a reinforced section can be written as 

 0 17n cV . f b d      (19) 

in which ϕ is a strength reduction factor (ϕ=0.75) and b is breadth of the section.  
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2.3 Objective function 
 

The total material costs of concrete and reinforcing steel bars including costs of per unit 

volume/weight, transportation, workmanship installation, etc., are defined as objective function. 

Mathematically, this function can be written as 

   c c s smin f X C V C W     (20) 

In Eq. (20), Cc, Cs, Vc, Ws are unit cost of concrete and steel, volume of concrete and weight of 

steel per unit length, respectively.  

 
 
3. Teaching-Learning-Based optimization  
 

Teachers are generally considered as persons who have a high level knowledge about a specific 

subject. The main task of the teachers is to carry the knowledge of the learners at a higher level. 

This is the outcome of learners and it can be evaluated with their grades. Certainly, the 

qualifications of the teacher affect the outcome of the learners and it would not be wrong to think 

that there is a correct proportion between qualification of teacher and grades of learners. 

Consequently, it can be said that teachers with good features provides better mean for learner 

grades.  

In addition to teacher affect, student can also improve their knowledge as well as grades with 

different ways, such as interaction, sharing information, investigation, communication and 

cooperation etc. Rao et al. (2011) is conceptualized from this analogy of the teaching - learning 

process of teacher and learners in a classroom the Teaching Learning-Based Optimization (TLBO) 

algorithm. The TLBO process can be divided in two parts called “teacher phase: simulate the 

effect of teacher on grades of learners” and “learner phase: simulate personal efforts of learners on 

their grades”. 

 

3.1 Optimum design of retaining walls via TLBO 
  

The optimum design of retaining walls can be summarized in five steps: 

Step I: There are only two parameters: the number of learners (population size) in the class and 

the maximum number of iterations (stopping criteria) must be defined, in the TLBO algorithm. In 

that way, the TLBO is the most simply algorithm in usage.   

Step II: In this stage, initial matrix (class; CL) is filled with pn (student or population size) 

number of solution vectors that contains vn number of randomly generated design variables (Xi) 

between the upper (Xi
max

) and lower (Xi
min

) limit of the solution range (Eq. (21)). 

 1min max

i i iX X X i ,vn    (21) 

Thus, initial matrix (CL) can be written as 
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in which each row of the matrix is a candidate retaining wall design that is correspond an objective 

function value.    
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Step III: This step is “teacher phase (tp)” of the TLBO algorithm. Due to teacher has the best 

knowledge, the variables with minimum objective function is assigned as a teacher (Xteacher) of the 

class. In the other word, the best learner in the class is determined as the teacher.  

 
 teacher min f X

X X  (24) 

Then, knowledge of the teacher is used to increase the capacity of the whole class. The main aim is 

to increase of the mean (Xmean) of the class. For that reason the equation of new students is found, 

according to teacher and mean of the class as seen in Eq. (25).   

    0 1tp

new,i old ,i teacher F meanX X rnd , X T X      (25) 

where TF represents teaching factor defined as 

    1 0 1 1 2FT round rnd .       (26) 

and it takes a value 1 or 2 depending on the rnd; uniformly distributed random numbers that are  

within the range [0,1]. If the new solution ( ,

tp

new iX ) is better than the old one in point of the  

objective function, the new solution is accepted. 

Step IV: In the TLBO algorithm, after the teacher phase, the “learner phase (lp)” is proceed. 

As it stated above, students also have an important role in the learning process by communication, 

interaction, investigation, etc. This interaction can be expressed as follows 
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 (27) 

where Xi and Xj are randomly selected learners that are different each other. If the new solution 

( ,

lp

new iX ) is better, it is replaced with old one.  

Step V: In this step, the stopping criteria usually is defined as the maximum iteration number is 

checked. If the stopping is satisfied, the optimization process is terminated, otherwise the iteration 

process continues from the step III. The flowchart of the process can be seen in Fig. 3.  

In order to improve the performance of the algorithm, it is needed to do some modifications. 

Several modifications have been proposed. Rao and Patel (2013) suggest a modification in 

calculation of teaching factor as  
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Fig. 3 Flowchart of the TLBO algorithm 

 

 

and they called it improved TLBO (ITLBO) algorithm. Camp and Farshchin (2014) proposed a 

change in calculation of Xmean.  
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where Fk is the fitness function of kth learner. They called the new approach modified TLBO 

(MTLBO). 
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Table 3 Design constants and ranges of design variables 

Definition Symbol Unit Value 

Height of stem H m 3.0 

Yield strength of steel fy MPa 400 

Compressive strength of concrete f΄c MPa 25 

Concrete cover cc mm 70 

Max. aggregate diameter Dmax mm 16 

Elasticity modulus of steel Es GPa 200 

Specific gravity of steel γs t/m
3
 7.85 

Specific gravity of concrete γc kN/m
3
 23.5 

Cost of concrete per m
3
 Cc $ 40 

Cost of steel per ton Cs $ 400 

Design load factor  LF 1.7 

Surcharge load q kPa 20 

Backfill slope angle β ° 10 

Internal friction angle of retained soil ϕR ° 30 

Internal friction angle of base soil ϕB ° 0 

Unit weight of retained soil γR kN/m
3
 17.5 

Unit weight of base soil γB kN/m
3
 18.5 

Cohesion of retained soil cR kPa 0 

Cohesion of base soil cB kPa 125 

Depth of the soil in front of wall D m 0.5 

Safety for overturning stability SFO,design - 1.5 

Safety for sliding stability SFS,design - 1.5 

Safety for bearing capacity SFB,design - 3.0 

Range of stem thickness at top hstemt m 0.2-3 

Range of heel projection hbasew m 0.2-10 

Range of toe projection htoepro m 0.2-10 

Range of stem thickness at the bottom of wall hstemb m 0.2-3 

Range of base slab thickness hbaseslab m 0.2-3 

Range of diameter of reinforcing bars of stem ϕs mm 16-50 

Range of diameter of reinforcing bars of toe, ϕt mm 16-50 

Range of diameter of reinforcing bars of heel ϕh mm 16-50 

 

 
4. Numerical examples 
 

The methodology is examined for different examples. In the first example, a cantilever 

retaining wall model which was investigated by Saribaş and Erbatur (1996) is used. For the other 

examples, the optimum design is investigated for different conditions, including backfill slope 

angle, internal friction angle of retaining soil and surcharge load. In these examples, other design 

constant is taken as the same as the first example. Three types of TLBO were investigated in this 
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study. The results of these methods were compared with the other coded methods such as PSO 

(Ahmadi-Nedushan and Varaee 2009), BBBC (Camp and Akin 2011) and IHS (Kaveh and Abadi 

2011). 

 

4.1 Example 1 
 

Design constants and ranges of design variables taken from Saribaş and Erbatur (1996) are 

given in Table 3. But, stem thickness at the top of the wall is also taken as design variables.   

The optimum results of different metaheuristic methods are shown in Table 4. According to the 

results, all algorithm are effective on finding minimum cost value. However, effectiveness of 

TLBO based methods is seen for standard derivative values. In Fig. 4, convergence to optimum 

result can be seen for the different methods. As seen from the plot, the best convergence is shown 

for PSO and MTLBO methods.  

In order to measure sensitivity of the methods, 100 independent designs were generated. The 

optimum cost results for each run can be seen in Fig. 5. As seen from the figures, in some of the 

analyses, cost of the wall is obtained 2.5 times (approximately 130 $/m) bigger than the minimum 

optimum cost, for PSO and BBBC methods. Maximum difference is about 10% more than the 

minimum cost (approximately 58 $/m) of IHS method. However, the same optimum result for all 

analyses were approximately found by using TLBO based approaches.  

 

 
Table 4 Optimization results and comparison for the Example 1 

 PSO BBBC IHS TLBO ITLBO MTLBO 

X1 0.997394 0.997879 0.990126 0.997396 0.997388 0.997394 

X2 0.2 0.2 0.207743 0.2 0.200007 0.2 

X3 0.264208 0.264229 0.264239 0.264208 0.264208 0.264208 

X4 0.2 0.2 0.2 0.2 0.2 0.2 

X5 0.2 0.2 0.2 0.2 0.2 0.2 

Minimum Cost ($/m) 52.68932 52.69523 52.70028 52.68935 52.68935 52.68934 

Standard  Deviation 8.483914 14.00662 1.128207 0.002237 0.001376 0.001329 

 

 

Fig. 4 Plot for convergence to optimum results (Example 1) 
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Fig. 5 Optimum cost distribution plot for 100 independent designs (Example 1); (a) All solutions (b) A 

more detailed graph of the 52-60 cost range (c) A more detailed graph of the 52.706-52.688 cost range 

 

 

4.2 Example 2 
 

For the example 2, the effect of backfill slope angle on the optimum design is investigated. The 

backfill slope angle is changed between 0° and 30° and the other design constraints are taken as 

the same with example 1. Optimum results of different backfill slope angles can be seen in Fig. 6. 

Comparing to example 1, the backfill slope angle has limited impact on the optimum result up to 

20°, but for bigger degrees, it becomes an important parameter because of dramatic increase 

optimum cost value. According to the result of the example 1, the optimum results are 

approximately changed with -1%, 4%, 8% and 37% for angles 0°, 20°, 25°, and 30°, respectively. 

For all methods, the convergence speed to optimum result is given in the Fig. 7. As seen from  
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Fig. 6 Minimum cost values vs. backfill slope angles plot (Example 2) 

 

 

Fig. 7 History of average cost values (Example 2) 

 

 

Fig. 8 Average cost values vs. backfill slope angles plot (Example 2) 
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Fig. 9 Standard deviation vs. backfill slope angle plot (Example 2) 

 

 

Fig. 10 Minimum cost values vs. internal friction angle of retained soil plot (Example 3) 

 

 

the results, all methods seem good (except the BBBC) in point of convergence speed. However, 

TLBO methods are more effective than PSO and IHS methods, considering the standard deviation 

(Fig. 8) and the average cost (Fig. 9) values. The conclusion is obtained from the results are 

confirmed the determination about the effectiveness of the algorithm that is done in example 1. 

 

4.3 Example 3 
 

In this example, the relationship between the internal friction angle of retained soil and the 

optimum cost is investigated. By taking other design constant as same as example 1, the internal 

friction angle of retained soil is changed from 18° to 35°. This friction angle band covers most 

commonly used retained soil in designs. In the Fig. 10, the optimum cost values depending on the 

internal friction angle is given. According to the results, the optimum cost is varying between 64 

$/m to 49 $/m for 18° and 35°, respectively. Also, a nearly linear relationship between internal 

friction angle and optimum cost is observed.  
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Fig. 11 Average cost value vs. internal friction angle plot (Example 3) 

 

 

Fig. 12 History of average cost values (Example 3) 

 

 

Fig. 13 Standard deviation vs. internal friction angle plot (Example 3) 
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Although being effective on finding optimum cost, there are important differences in 

convergence speed to average cost (Fig. 11), average costs (Fig. 12) and standard deviation (Fig. 

13) values between the methods. As it is obtained from previous results, TLBO methods seem the 

most suitable ones in feasibility. 

 

4.4 Example 4 
 

In the last example, the role of surcharge load on optimum cost is investigated. The varying 

surcharge load is taken from the 0 kN/m
2
 to 50 kN/m

2
, the other design constraints are taken the 

same as the first example. As it is expected, by increasing surcharge loads on the wall, optimum 

cost value is also increased (Fig. 14). Similarly with the example 3 including cases of internal 

friction angle, the relationship between surcharge load and optimum cost seems proportional. The  

 

 

 

Fig. 14 Minimum cost values vs. surcharge load plot (Example 4) 

 

 

Fig. 15 Plot for convergence to average cost value (Example 4) 
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Fig. 16 History of average cost values (Example 4) 

 

 

Fig. 17 Standard deviation vs. surcharge load plot (Example 4) 

 

 

gradient of the line is approximately 0.31 which means optimum wall cost for a specific surcharge 

load is equal to sum of the cost of the wall without surcharge loading and 0.31 times of surcharge 

load intensity.  

In the analyses, the same behavior of the optimization methods is also observed in the 

convergence of optimum values, average costs and standard deviation values (Figs. 15-17). Thus, 

TLBO based methods are also seems effective in these analyses.  

 

 

5. Conclusions 
 

In this paper, the optimum design of RC cantilever retaining walls is investigated. The problem 

is suitable for metaheuristic methods. Thus, a newly developed algorithm called TLBO is 

employed by including the future improvements of the (ITLBO and MTLBO). The proposed 

methodology is compared with the documented methods. The algorithms used in the documented 

780



 

 

 

 

 

 

Teaching learning-based optimization for design of cantilever retaining walls 

methods are also coded for employed problem with 11 design variables and 29 design constraints.  

According to the results of the first example, all algorithms are effective on finding the 

minimum optimum value. The essential difference can be seen in the robustness of the algorithms. 

The final results of the sets of design variables are nearly the same in the TLBO based methods 

and this situation can be clearly seen in the values of standard derivative. In the examples 

investigating the change of design constraints, the other algorithms (especially BBBC and PSO) 

express great differences on the optimum results for 100 independent runs.  

Also, backfill slope angle is not effective on the optimum cost for a specific range (0°-20°) 

while it essentially effects on the optimum cost for the values bigger than 20°. The internal friction 

angle of retained soil and surcharge load has a linear effect on the optimum cost.  

As a conclusion, TLBO based method is effective on finding optimum values for independent 

runs. Since the convergence and robustness performance of TLBO, it is a feasible method with 

effective improvements such as ITLBO and MTLBO. 
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