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Abstract.  This study attempts to address the buckling and free vibration characteristics of an isotropic 

cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element 

analysis has been used in the present study. The approach involves three parts, in the first part non-uniform 

temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed 

under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis 

are carried out to compute critical buckling temperature as well as natural frequencies and associated mode 

shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane 

boundary constraints are considered. The relation between buckling temperature under uniform and non-

uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature 

variation field influences the fundamental buckling mode shape significantly. Further, it is observed that 

natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is 

significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, 

nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the 

intensity of the heat source is high and structural stiffness is low. 
 

Keywords:  cylindrical panel; buckling strength; free vibration frequencies; free vibration mode shapes; 

finite element method 

 
 
1. Introduction 
 

Cylindrical panel is a mainstay in many engineering structures such as nuclear reactor 

components, supersonic and hypersonic aircraft components and, special storage tanks, due to its 

high load-carrying capacity, high stiffness and containment of space (Al-Khaleefi 2004). Thermal 

buckling is a commonly observed failure mode in such panels when exposed to heat. The dynamic 

behavior of these heated panels is substantially different from the dynamic characteristics under 

free stress condition.  

Many literatures (e.g., Chen and Chen 1987, Jeng-Shian and Wei-Chong 1991, Averill and 
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Reddy 1993) reports on thermal buckling of the curved shells under uniform thermal load with 

external boundary constraints. However, the thin cylindrical shell panels exposed to non-uniform 

temperature distributions are prone to thermal buckling. In certain cases, the non-uniform thermal 

load plays a significant role in deciding and controlling the part design. The free vibration 

behavior of the heated panel members are significantly influenced by the thermal stress developed 

due to the thermal load. Chen and Chen (1987) have studied buckling characteristics of laminated 

cylindrical panels exposed to a uniform change in temperature rise using Galerkin’s method. They 

observed that the buckling strength is affected by fiber alignment, plate curvature, aspect ratio and 

boundary conditions. Jeng-Shian and Wei-Chong (1991) used higher order displacement functions 

based a finite element method, to analyze the buckling behavior of anti-symmetric angle-ply 

laminated cylindrical shells exposed to a uniform temperature rise. Response of laminated 

cylindrical panels exposed to uniform temperature distribution was investigated by Averill and 

Reddy (1993) using higher-order shear deformation theory. The buckling behavior of the thin 

circular cylindrical shell with clamped edge under uniform thermal load was studied by Ross et al. 

(1966) using experiments. Shear deformation theory of higher order was developed for laminated 

shells with orthotropic layers and Navier-type exact results for free vibration was presented by 

Reddy and Liu (1985) for spherical and cylindrical shell with simply supported boundary 

conditions. Baruta et al. (2000) studied the influence of non-uniform thermal load on the stability 

of flat and curved laminates using nonlinear finite element analysis. Thermal load assumed was 

varying both through the thickness and over the surface of the panels. The buckling behavior of 

laminated plate subjected to uniform and non-uniform temperature rise was studied by Chen et al. 

(1991) using finite element method. The free vibration analysis of laminated cylindrical shell was 

carried out by Narita et al. (1993) using finite element approach wherein the influence of cross ply 

stacking sequences and the composite material constants on the vibration behavior was 

investigated. The influence of natural frequencies of spherical shells was studied by Buchanan and 

Rich (2002) using a nine-node Lagrange finite element with three different boundary conditions 

namely free, simply supported and fixed. SK & Sinha (2005) have developed a finite element 

method of doubly multilayered curved composite shells using Koiters shell theory and Mindlin’s 

hypotheses. Zhao et al. (2004) has examined cylindrical panels under different boundary 

conditions to analyze the frequency behavior. Mesh free kp-Ritz method was used to analyze the 

effects of curved-edge boundary conditions on the frequency behavior of cylindrical panels. The 

vibration behavior of laminated composite shells was studied by Kurpa et al. (2010) using R-

function theory and variational methods based on shear deformation theory of first order.  

A few literatures listed below reports on the free vibration behavior of metallic structures 

subjected to thermal load. Buckling and free vibration of cylindrical shells with functionally 

graded material was studied by Kadoli and Ganesan (2006) when they are exposed to a 

temperature-definite boundary condition using finite element method, based on shear deformation 

theory of first order. Ganapathi et al. (2002) investigated the dynamic behavior of laminated cross-

ply composite non-circular thick cylindrical shells exposed to thermal/mechanical load based on 

the higher-order shear deformation theory. Finite element method in conjunction with the direct 

time integration technique has been used to obtain shell responses. Jeon and Lee (2010) studied the 

free vibration behavior of cylindrical shell subjected to thermal load. The study was done using 

finite element software (ABAQUS) and modal analysis was carried out by experimentally. 

Buckling and vibration characteristics of circular cylindrical shells carrying hot liquid were 

analyzed by Ganesan and Pradeep (2005) using semi analytical finite element method. Wherein 

free vibration study was done by inculcating mass effect and initial stress effect because of hot 
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liquid.  

Based on the literature, in the present study, detailed investigation on combined buckling and 

free vibration behavior of non-uniformly heated cylindrical panel is not investigated by researchers 

which is very important in the practical point of view. A few literature reports on heated cylindrical 

panels were limited to uniform and temperature variation along with either one-dimension or 

through the thickness direction. In practice, most of the panels are subjected to arbitrarily varying 

non-uniform temperature fields due to both the un-symmetric geometric variation and nature of 

heat source.  

 

 

2. Analysis approach 
 

In the present study, thermal buckling and free vibration behavior of the cylindrical panel 

exposed to non-uniform temperature fields is investigated numerically. Initially, heat transfer 

analysis was carried out to compute temperature field associated with a particular temperature 

boundary condition. Then, a static structural analysis was carried out to account for thermal load as 

pre-stress state. Finally, first four natural frequencies associated with mode shapes were obtained 

at critical buckling temperature under pre-stress state. A commercially available finite element tool 

(ANSYS) has been used. The scheme of numerical analysis is as shown in Fig. 1. 

 

2.1 Finite element formulation 
 
2.1.1 Heat transfer analysis 
Heat transfer analysis is used to obtain the temperature distribution across the surface of the 

cylindrical panel for various heat distribution. A two dimensional eight noded rectangular element 

is used to obtain the temperature distribution on the panel. The two dimensional steady state heat 

conduction equation without heat generation is 
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where K is thermal conductivity and T is the temperature. The variational form of the above 

governing equation is 
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Fig. 1 A scheme of numerical analysis 
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Fig. 2 Geometry of Cylindrical panel 

 

 

where    is temperature gradient vector. S1 is convection heat transfer boundary. S2 is the heat 

flux specified boundary, h is the convection heat transfer coefficient.    is the ambient 

temperature and q is the heat flux. Considering there is no internal heat generation and heat flow is 

mainly due to conduction mode. Following the finite element procedure and minimizing the above 

variational expression with respect to nodal temperature   , one can obtain. 

    0ec TK                                 (3) 

where conduction matrix is obtained by using Eq. (4). 

      21dxdxBBKK t

T

tc                             (4) 

[  ] is the temperature gradient matrix, [  ] is the conduction matrix. 

By solving Eq. (3), temperature variation across the cylindrical panel surface will be obtained 

according to the temperature boundary conditions specified along the edge of the panel.  

 

2.1.2 Structural analysis 
A cylindrical panel of width S, length L, thickness h and radius R measured from the mid depth 

of thickness is shown in Fig. 2. An orthogonal curvilinear coordinate system (x1, x2, x3) is placed at 

h/2 and S and L are measured along the x1 and x2 axes, respectively. The surface generated by x1- 

x2 is the reference surface (x3=0) and x3 is normal to the x1-x2 surface. The following is the strain-

displacement relations for cylindrical panels (Al-Khaleefi 2004) 
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where   
  and   

  represent strain components at mid-plane (x3=0),    
  represent the in-plane 

shear strain.          represents displacement of reference surface along x1, x2 and x3 
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respectively. Strain at any point along the thickness is as given below 
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where { }, { } are the in-plane linear strain vector and the curvature strain vector, respectively. 

The constitutive relations for an isotropic cylindrical panel considering thermal effects are as given 

below. 
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where E,  ,           are Young’s modulus, coefficient of thermal expansion and temperature 

difference function (temperature variation along the panel surface), respectively. Force and 

moment resultant vector due to change in temperature are given by 
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By following the usual finite element procedure, structural stiffness matrix, geometric stiffness 

matrix and mass matrix can be obtained. Cylindrical shell panel is exposed to membrane 

compressive load due to the non-uniform temperature and structural boundary constraints which is 

calculated by using static analysis. Static analysis is carried out using structural stiffness matrix 
[ ], load vector due to change in temperature {F} and nodal displacement vector { }. 

    FUK                                                       (9) 

The structural stiffness matrix is given by 

       21dxdxBEBK
T

                                            (10) 

where [B] is the linear strain displacement matrix, which relates nodal displacement to the strain in 

the element. [E] is the constitutive matrix which defines stress strain relation of the material. 

Similarly, the geometric stiffness matrix [Kσ] is calculated from the work done by the membrane 

forces developed due to thermal load.  

       21dxdxGSGK
T


                          (11) 

[G] obtained from shape function by appropriate differentiations. [S] contains the initial stress 

terms obtained from static analysis.  
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The membrane forces Sx, Sy and Sxy are specified in terms of membrane stresses σx, σy and shear 

stress σxy developed due to thermal load and are calculated from a static analysis. 

Buckling analysis is carried out using the structural stiffness matrix [K] and geometric stiffness 

matrices [Kσ] based on the relation given in Eq. (13)                                     

      0 ii KK  
                                             (13) 

where, λi is the i
th
 Eigen value and {ψi} is the corresponding Eigen vector. The product of the 

temperature rise ΔT (above ambient temperature) and the lowest Eigen value λi gives the critical 

buckling temperature Tcr that is Tcr=λ1ΔT. In the case of non-uniform temperature variation, ΔT is 

maximum temperature of a particular temperature profile. Since the panel is pre-stressed due to the 

thermal field, structural stiffness of the panel will change in turn it will change the natural 

frequencies of the panel. In order to find the effect of thermal stress on the natural frequencies and 

their corresponding mode shapes, pre-stressed modal analysis is carried out using Eq. (14).  

         0
2

 kk MKK 
                                  (14) 

To calculate the natural frequency and mode shape at a particular temperature above ambient 

temperature geometric stiffness matrix will be obtained at that temperature and will be given as 

input to Eq. (14). where, [M] is the structural mass matrix, ωk is the natural frequency of the pre-

stressed structure, {Φk} the corresponding mode shape, while [N] shape function matrix and [ρ] 

inertia matrix is used to obtain the structural mass matrix given by Eq. (15) 

       21dxdxNNM
T
                                        (15) 

Temperature distribution on the cylindrical panel subjected to non-uniform temperature field is 

determined using FEA tool. The panel is modelled using an eight node isoparametric thermal shell 

element (SHELL131). While performing heat transfer analysis, it is assumed that there is no 

temperature variation across the thickness of the panel i.e., x3-direction. Nodal temperatures 

obtained from the heat transfer analysis are then imported in static analysis to compute thermal 

stress wherein an eight node isoparametric structural shell element (SHELL281) is used, followed 

by an eigenvalue buckling analysis to predict critical buckling temperature. Finally, pre-stressed 

modal analysis as a function of critical buckling temperature is carried out to analyze the influence 

on free vibration characteristics, such as natural frequencies and associated mode shapes. 

 
 
3. Validation studies 
 

3.1 Thermal buckling 
 

The thermal buckling behavior of a fully clamped cylindrical panel examined by Al-Khaleefi 

(2004) has been considered for the validation. The dimensions of the panel are h=1 mm, S/h=40, 

R/S=10 and L/S=1 with following properties; Young’s modulus (E)=40 GPa, Poisson’s ratio 

(µ)=0.25, coefficient of thermal expansion (α)=79×10
−6

/
o
C. Wherein Al-Khaleefi (2004) has used 

an analytical approach, based on the first-order shear deformation shell theory. Based on the 

present study the critical buckling temperature matches with that of Al-Khaleefi (2004). 
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Table 1 Comparison of natural frequencies (Hz) with Au and Cheung (1996) 

Mode 
Natural frequencies 

Au and Cheung (1996) Present study 

1 869 869 

2 957 957 

3 1287 1287 

4 1363 1363 

 
 
3.2 Free vibration 
 

The free vibration behavior of a fully clamped cylindrical panel investigated by Au and Cheung 

(1996) has been considered for the validation. Au and Cheung (1996) obtained natural frequencies 

of the cylindrical panel using isoparametric spline finite strip method, while the present method 

uses FEA tool. The panel is made of aluminum with the following mechanical properties; Young’s 

modulus (E)=68.9 GPa, Poisson’s ratio (µ)=0.33 and density (ρ)=2657 kg/m
3
. The dimensions of 

the panel are θ=0.133 rad, h=0.33 mm, S=76.2 mm, L/S=1 and R=762 mm. The results obtained 

using present study matches well with that of results reported in Au and Cheung (1996). Table 1 

presents the natural frequencies of the panel. 

 

 

4. Results and discussion 
 

Fig. 2 depicts the schematic diagram of cylindrical panel analyzed in the present study with a 

thickness (h), angle of curvature (θ), mean radius of curvature (R), length of the panel (L) and 

width of the panel (S). An orthogonal curvilinear coordinate system (x1, x2, x3) is positioned at h/2. 

In-plane displacements denoted by u0, v0 and w0 are considered in x1, x2 and x3-directions, 

respectively. Similarly, θx and θy are the rotations in x1 and x2 directions, respectively. 

A cylindrical panel of thickness (h)=1 mm, thickness ratio (S/h)=150, curvature ratio (R/S)=2 

and angle of curvature (θ)=45
o
 is considered in the investigation. Cylindrical panel is assumed to 

be made of mild steel with following properties; Young’s modulus (E)=210 GPa, Poisson’s ratio 

(µ)=0.3, coefficient of thermal expansion (α)=12.6×10
−6

/
o
C and density (ρ)=7850 kg/m

3
. The 

investigation is carried out for two aspect ratios of the panel and three different structural boundary 

conditions. The first aspect ratio is L/S=1 denoted by panel-1 and the second aspect ratio is 1.5 

denoted by panel-2. Whereas, the boundary conditions of type CCCC, CCFC and SSSS (where C- 

clamped, S-simply supported and F-free). The first letter in these boundary conditions is associated 

with forefront curved edge at x2=0 in order as presented in Table 2. CCCC boundary conditions are 

utilized to simulate the panel constrained from all sides. Whereas, CCFC boundary conditions are 

used to investigate the effect of free edge on the buckling and the free vibration behavior of the 

panel. SSSS boundary conditions are utilized to study the effect of non-uniform temperature 

distribution on the buckling strength when free expansion is allowed along the in-plane direction. 

Material properties are assumed to be temperature independent. However, it is ensured that the 

temperature range analysed does not change the material properties significantly with temperature 

rise. 
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Table 2 Structural boundary constraints used for the analysis 

Structural boundary constraints 

CCCC CCFC SSSS 

   
x1= 0, S  u0 = v0 = w0 = 0 

θx = θy = 0 

x1= 0, S  u0 = v0 = w0 = 0 

θx = θy = 0 

x1= 0  u0 = w0 = 0 

x1= S  w0 = 0 

x2 = 0, L  u0 = v0 = w0 = 0 

θx = θy = 0 

x2 = 0  u0 = v0 = w0 = 0 

θx = θy = 0 

x2= 0  v0 = w0 = 0 

x2= L  w0 = 0 

 
Table 3 Different temperature distribution field analyzed 

Position of 

heat source 

Temperature distribution cases 

Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

Uniform 

    

Thermal 

distribution 
     

Boundary 

constraints 

T=1°C at 

x1 = 0; x1 = S 

T=0°C at 

x1 = 0; x1 = S 

T=0°C at 

x1 = 0; x1 = S 

T=0°C at 

x1 = 0; x1 = S 

x2 = 0; x2 = L 
T (x1, x2) = 

sin (π x1/S) sin (π x2/L) 
T=1°C at 

x2 = 0; x2 = L 

T=1°C at x2 = 0 

T=0°C at x2 = L 

T=1°C at 

x2 = 0; x2 = L 
T=1°C at x2 =L/2 

*Blue: ambient temperature; Red: 1°C above ambient temperature and others in-between 

 

 

4.1 Non-uniform temperature distributions  
 

Present study employs four different non-uniformly varying in-plane temperature distribution 

according to the nature of the assumed temperature source of a cylindrical panel and since the 

thickness of the cylindrical shell analyzed is very small, it is assumed that the temperature 

variation in the thickness direction is constant. Further, same non-uniform temperature 

distributions have been considered to investigate their effect on thermal buckling and free 

vibration characteristics of the cylindrical panel. Columns of heating furnace, electronic circuit 

board, nuclear vessels, and automobile panels located above engine, structures used in aerospace 

vehicles such as high-speed aircrafts and components of rockets and missiles are typical examples 

of structures exposed to non-uniform heating during their service. The uniform temperature field 

has also been considered for investigation, so that the change in buckling and free vibration 

behaviour of cylindrical panel with change in temperature field from uniform to non-uniform can 

be observed. The five cases of temperature variations are considered in the study; case (i)-uniform 

temperature field; case (ii)- decreasing trend in temperature field; case (iii)-decreasing and 

increasing trend in temperature field; case (iv)-increasing and decreasing trend in temperature field 

and case (v)-Camel hump trend in temperature field. Table 3 shows a cylindrical panel with the 
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position of the heat source, associated temperature fields and thermal boundary constraints. 

Initially highest temperature of a particular temperature variation is assumed 1°C above ambient 

temperature (other temperature values in between) in order to get the critical buckling temperature 

directly from the result of eigenvalue buckling analysis. However, the variation of natural 

frequencies and associated mode shapes are analyzed at different temperature level as a function 

critical buckling temperature. 

 

4.2 Studies on cylindrical panel-1  
 

4.2.1 Thermal buckling studies 
The cylindrical panel is examined for two different dimension parameter ratio, namely the 

thickness ratio and curvature ratio along with five different temperature fields and three different 

structural boundary conditions in order to investigate buckling and free vibration characteristics of 

non-uniformly heated cylindrical panel. The relation between buckling temperature under uniform 

and non-uniform temperature field variation known as “Magnification factor of the first kind, η” 

proposed by Ko (2004) is evoked in the present study. 

 
 

crc

cro

T

T
                                 (16) 

where [To]cr 
is the critical buckling temperature under non-uniform temperature field and [To]cr is 

critical buckling temperature under uniform temperature field. In this study peak temperature (To) 

of 1°C above ambient temperature is used and the heat sink temperature (Ts) is allowed to vary in 

the range of (Ts /To=0 to 1) and the relation is then established for different temperature cases. 

From this relation it is easy to get the critical buckling temperature of the panel under non-uniform 

temperature field, knowing the buckling temperature of the uniform temperature field. Table 4 

shows the magnification factor of the first kind for different non-uniform temperature fields under 

CCCC boundary conditions. In Table 4, Ts /To=0 indicates that, the heat sink is at ambient 

temperature with a peak temperature of 1°C above ambient temperature in other words panel is 

subjected to non-uniform temperature field with higher temperature difference while Ts /To=1 

indicates both heat-sink and peak temperature are at 1°C above ambient temperature which 

indicates that the panel is subjected to uniform temperature distribution field. From Table 4, it is 

clear that thermal buckling strength is significantly influenced by the nature of temperature 

variation as indicated by the values of the magnification factor of the first kind. It can be observed 

from Table 4 that the critical buckling temperature under case (i) temperature field has to be  

 

 
Table 4 Magnification factor of the first kind for CCCC cylindrical panel-1 

Ts /To Case (ii) η Case (iii) η Case (iv) η Case (v) η 

0.0 431 2.60 247 1.49 383 2.31 279 1.68 

0.2 333 2.01 226 1.36 304 1.83 248 1.49 

0.4 268 1.61 208 1.25 252 1.52 221 1.33 

0.6 224 1.35 192 1.16 215 1.30 200 1.20 

0.8 191 1.15 178 1.07 189 1.14 182 1.10 

1.0∗ 166 1.00 166 1.00 166 1.00 166 1.00 

*Case (i) temperature field 
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Table 5 Magnification factor of the first kind for CCFC cylindrical panel-1 

Ts /To Case (ii) η Case (iii) η Case (iv) η Case (v) η 

0 514 2.12 411 1.69 560 2.30 482 1.98 

0.2 426 1.75 368 1.51 460 1.89 421 1.73 

0.4 361 1.49 330 1.36 384 1.58 366 1.51 

0.6 312 1.28 296 1.22 325 1.34 318 1.31 

0.8 273 1.12 268 1.10 279 1.15 277 1.14 

1.0∗ 243 1.00 243 1.00 243 1.00 243 1.00 

 

 

magnified by 2.6 to get the critical buckling temperature under case (ii) temperature field. 

Similarly, it has to be magnified by 1.49, 2.31 and 1.68 to get the critical buckling temperature of 

case (iii), case (iv) and case (v) respectively. Thermal buckling strength is found to be minimum 

when a major portion of the panel-1 is exposed to maximum temperature of the variation. From 

the study it has been found that, case (iii) and case (v) temperature field has the lowest 

magnification factor compared to others. Which indicates that more the panel surface is exposed to 

relatively higher temperatures in the variation, more the thermal stress will be developed and this 

will induce more membrane force in the panel, which inturn reduces the critical buckling 

temperature.               

Panels with free edge, which allows in-plane free expansion when exposed to thermal load will 

behave differently from the panels without free edge, so CCFC cylindrical panel-1 is analyzed to 

investigate the effect of free edge on buckling behavior. Table 5 shows the magnification factor of 

the first kind of CCFC cylindrical panel-1. From Table 5, it is observed that, critical buckling 

strength of CCFC panel is also influenced by the nature of temperature variation. However, the 

variation of the buckling strength of the CCFC cylindrical panel-1 with the nature of temperature 

variation is not similar to the CCCC panel-1. Unlike the CCCC panel, buckling strength of CCFC 

panel is influenced by the level of temperature at the free edge for a particular temperature field. 

When the free edge is exposed to highest temperature of the variation, the panel-1 experiences 

lowest buckling strength as observed in the case (iv) in Table 5. It can be observed from Table 5 

that buckling temperature under case (i) has to be magnified by 2.12, 1.69, 2.3 and 1.98 to get the 

buckling temperature under case (ii), case (iii), case (iv) and case (v) temperature field 

respectively. It can be clearly seen from Table 4 and Table 5 that CCCC cylindrical panel-1 has a 

lower critical buckling temperature compared to CCFC panel-1. This can be attributed to the free 

expansion due to heating associated with the CCFC panel-1 which allows some stress to relieve 

from the panel and thus produces less membrane force compared to CCCC panel-1.  

In most of the real cases, the panel under thermal load tries to expand under heating, but its free 

expansion is prevented by the cooler boundary (heat sinks). This constraint due to non-uniform 

temperature will produce membrane compressive forces in the panel which results in thermal 

buckling. As the boundaries are heated up, constraints due to cooler boundaries will gradually 

relax, resulting in higher buckling temperature. In order to find out the influence of non-uniform 

temperature distribution field and heat sink temperature on the panel buckling temperature with 

free in-plane motion, a study has been carried out on a cylindrical panel-1 with simply supported 

boundary conditions with in-plane motions. The study will establish the “Magnification factor of 

the second kind, ξ” as proposed by Ko (2004) to relate the critical buckling temperature of a non-

uniform temperature field obtained for an unheated boundary heat sink and for a boundary heat 

sink when heated up. 
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Table 6 Magnification factor of the second kind for SSSS cylindrical panel-1 

Ts/To Case (v) ξ Case (iv) ξ 

0 144 1.00 264 1.00 

0.2 180 1.25 331 1.25 

0.4 240 1.67 441 1.67 

0.6 361 2.51 661 2.50 

0.8 721 5.01 1323 5.01 

1.0∗ ∞ ∞ ∞ ∞ 

*Case (i) temperature field; **Exceeded melting range 
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where [(To)cr](Ts≠0) indicates the critical buckling temperature when heat sink temperature is not 

equal to zero whereas [(To)cr](Ts=0) indicates the critical buckling temperature when heat sink 

temperature is zero. Simply supported cylindrical panel-1 with free in-plane motion is considered 

for the analysis along with two temperature distribution cases (case (iv) and case (v)), as in both 

the cases heat source is fully surrounded by cooler boundaries, hence the buckling behavior due to 

non-uniform temperature can be studied. Table 6 shows the magnification factor of second kind for 

SSSS cylindrical panel-1. It can be clearly observed from Table 6 that, case (v) has a lower 

buckling strength compared to the case (iv) due to the fact that, in the former the heat is applied in 

the region where the panel is less stiff. Results from the analysis mentioned in Table 6 indicates 

that buckling temperature increases with heat sink temperature and becomes infinity when 

temperature distribution is uniform throughout the panel. The panel experiences uniform 

temperature rise above ambient temperature when Ts equals to To. SSSS panel-1 analyzed allows 

free in-plane expansion and for the uniform temperature rise, the panel-1 does not experience any 

membrane compressive forces required for buckling. When the temperature distribution becomes 

non uniform, thermal stresses will be generated which will set up the required membrane force in 

the panel. 
To analyze the effect of different dimensional parameter on the critical buckling temperature, a 

cylindrical panel-1 with four different thickness ratio and curvature ratio has been considered. Fig. 

3 indicates the influence of thickness ratio and nature of temperature field on the buckling strength 

of the panel-1 under CCCC and CCFC boundary conditions. Whereas Fig. 4 indicates the effect of 

curvature ratio and nature of temperature field on the thermal buckling strength of the cylindrical 

panel-1 under CCCC and CCFC boundary conditions. From Figs. 3-4 it can be noticed that both 

thickness ratio and curvature ratio is inversely proportional to the buckling temperature. As the 

thickness ratio and curvature ratio increases, the stiffness of the panel-1 decreases, which 

decreases the buckling strength of the panel-1. Similarly, it can also be observed from the results 

that the resistance to the thermal buckling decreases with the increases in curvature ratio and it 

attains the minimum value when the curvature ratio tends to infinity. This is due to the fact that 

moment of inertia decreases with increase in curvature ratio which reduces the bending stiffness of 

the panel and hence the buckling strength of the panel. Similar behavior can be noticed for all 

types of temperature variation field. One can observe that under CCCC boundary condition, case 

(ii) has the highest buckling temperature while for CCFC boundary conditions, case (iv) has  
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(a) CCCC panel (b) CCFC panel 

Fig. 3 Influence of thickness ratio and temperature variation on buckling strength of cylindrical panel-1 

 

  
(a) CCCC panel (b) CCFC panel 

Fig. 4 Influence of curvature ratio and temperature variation on buckling strength of cylindrical panel-1 

 

 

the highest buckling temperature. Whereas case (i) has a lowest buckling strength under both 

CCCC and CCFC boundary condition. Data obtained from Figs. 3-4 shows that, under CCCC 

boundary condition, case (ii) has the highest buckling temperature due to the fact that the heat 

source is found to be very close to clamped supports and the membrane compressive forces 

generated due to heat is balanced by support reaction forces, hence more heat is required to 

produce sufficient membrane compressive forces in-order to overcome the reaction forces and to 

cause buckling. Similarly, for the CCCC panel-1 exposed to case (iv) has a lower buckling strength 

than case (ii) mainly because the heat source is located away from the supports where the reaction 

forces are less and the panel is less stiff. Furthermore, the CCCC panel-1 under case (v) 

temperature variation field has a lower buckling strength compared to case (iv) due to the location 

of the heat source. Compared to other temperature variation fields discussed above case (iii) has 

lower buckling strength as it gets heat from two sides which produces more membrane 

compressive forces. Whereas the case (i) has a lowest buckling temperature compared to all cases, 

as the entire cylindrical panel is exposed to heat. Under CCFC boundary conditions, all the 

temperature field was found to have higher buckling strength compared to respective temperature 

field with CCCC boundary conditions. There is a small variation in the buckling strength order has 

been observed in CCFC boundary conditions compared to CCCC boundary conditions. In case of 

CCFC boundary conditions case (iv) has highest buckling temperature compared to other 

temperature fields due to the fact that the heat source is located close to free edge, thus some of the 
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Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel 

thermal stress will be relieved from free edge which will produce a less membrane force. 

Bending amplitude of the fundamental buckling mode associated with the center line of the 

cylindrical panel-1 along the longitudinal direction (x2 - axis) is obtained to analyze the influence 

of temperature variation on the buckling mode shape. Fig. 5(a) shows influence of nature of 

temperature variation on buckling mode shape of CCCC panel-1. A panel with a thickness ratio of 

150 and a curvature ratio of 2 with a thickness of 1mm has been considered for the investigation. 

From Fig. 5(a), one can observe that, the influence of temperature field on the buckling mode 

shape and its amplitude is significant. For the CCCC panel-1 exposed to case (ii) temperature field 

bending amplitude of the buckling mode has peak towards the heat source location and its 

response decreases for the peaks away from the heat source. Similarly, the CCCC panel-1 under 

case (i), bending amplitude of the buckling mode remains constant for all peaks due to the fact that 

the total area is exposed to constant thermal load. When the CCCC panel-1 exposed to temperature 

variation, the maximum amplitude of the buckling mode under case (iii) and case (v) is found to be 

at the center of the panel where the area is less stiff and for case (iv) there is not much variation in 

the amplitude of the peaks. It has also been noticed that for all temperature fields except case (ii) 

the behavior of peaks is symmetric about the central line of the panel. This can be attributed to the 

un-symmetric temperature variation associated with the case (ii) temperature field. Fig. 5(b) shows 

the non-dimensional bending amplitude associated with the buckling mode shape of CCFC panel-

1. Compared to the CCCC panel-1, influence of nature of temperature variation on buckling mode 

shape of CCFC panel-1 is significant as seen in Fig. 5(b). In CCFC boundary conditions all 

temperature fields (case (i) to case (v)) have their highest amplitude peak away from the free edge. 

It is also observed that the amplitude of the peaks is dying out in the region close to free edge as it 

allows thermal stress to relieve from the free edge. Under CCFC boundary conditions case (iii) has 

the highest bending amplitude compared to others. The buckling mode shape pattern observed in 

CCFC panel-1 with case (ii) field follows the same trend as observed in CCCC boundary 

conditions with slight variation in amplitude due to the fact that the effect of free edge on panel 

with case (ii) temperature field is minimum as the heat source is far away from the free edge. 

Whereas for other cases the trend is changing significantly with modes moving towards the 

clamped edge due to un-symmetric boundary conditions. It can also be noted from Fig. 5(b) that 

maximum amplitude always occurs near edge opposite to the free edge this is due to the fact that at 

free edge there won’t be any reaction forces which opposes the membrane forces, but at clamped 

edge there will be reaction forces which induces stress in the panel and thus making it to buckle. 

 

 

  
(a) CCCC panel (b) CCFC panel 

Fig. 5 Influence of nature of temperature variation on buckling mode shape of cylindrical panel-1 
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Table 7 Effect of thickness ratio on buckling mode shape of CCCC panel-1 

S/h Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

100 
     

200 
     

300 
     

 
Table 8 Effect of thickness ratio on buckling mode shape of CCFC panel-1 

S/h Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

100 
     

200 
     

300 
     

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 

 

Influence of thickness ratio and temperature field on the buckling mode shape of the CCCC and 

CCFC panels are shown in Tables 7-8 respectively. It can be clearly seen from Tables 7-8 that 

thickness ratio has a significant effect on the buckling mode shape as stiffness changes with the 

thickness ratio and similar behavior can be noticed for all the temperature field. From Table 7 one 

can observe that, the CCCC panel-1 under case(ii) temperature variation has buckling mode shapes 

with maximum bending amplitude towards the edge exposed to highest temperature of case (ii) 

field. While the edge opposite to this experience least bending amplitude. When the CCCC panel-1 

is exposed to case (iii), case (iv) and case (v) temperature fields, there is no significant variation in 

buckling mode shapes while modal indices of the buckling mode shapes along the longitudinal (x2) 

direction increases with the thickness ratio. When the CCCC panel-1 exposed to case (i) 

temperature field, modal indices along the longitudinal (x2) direction increases with thickness ratio 

as seen for case (iii), case (iv) and case (v). However, when the thickness ratio is 300, buckling 

mode shape has modal indices of two along circumferential (x1) direction. It can be observed from 

Table 8 that CCFC panel-1 under case (iv) temperature variation field has buckling mode shape 

with maximum bending amplitude at the mid portion which is exposed to highest temperature 

while the free edge experience least bending amplitude. Whereas for other cases, mode shape with 

maximum bending amplitude is found to occur away from free edge. It is important to know that, 

under all temperature variation cases bending amplitude of buckling mode shape is found to be 

minimum at the free edge.  

Effect of curvature ratio and temperature variation on the buckling mode shape of CCCC and 

CCFC cylindrical panel-1 are shown in Table 9-10 respectively. Influence of curvature ratio on the 

buckling mode shape is significant due to change in moment of inertia with the curvature ratio. 

As the curvature ratio increases, the maximum bending amplitude of the buckling mode of the 

CCCC panel-1 is moving towards the center of the panel where the panel is less stiff being case 

(ii) as exceptional. Table 10 depicts that, CCFC panel-1 under all temperature cases except case 

(iv) has maximum bending amplitude of buckling mode shape at the fixed edge opposite to free 

edge. For case (iv) temperature variation, the maximum bending amplitude of buckling mode 

occurs at central portion of the panel-1 which is subjected to maximum heat. It can also be noted  
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Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel 

Table 9 Effect of curvature ratio on buckling mode shape of CCCC panel-1 

R/S Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

1 
     

2 
     

3 
     

 
Table 10 Effect of curvature ratio on buckling mode shape of CCFC panel-1 

R/S Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

1 
     

2 
     

3 
     

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 
Table 11 Effect of non-uniform thermal field on free vibration frequencies (Hz) 

Mode 
Ambient 

temperature 

Ts/To (Case (v)) Ts/To (Case (iv)) 

0 0.2 0.4 0.6 0.8 1* 0 0.2 0.4 0.6 0.8 1* 

1 177 130 146 157 165 171 177 156 161 165 169 173 177 

2 210 192 196 200 204 207 210 196 199 202 205 207 210 

3 303 292 297 299 301 302 303 288 292 295 298 301 303 

4 334 307 313 320 325 330 334 321 324 327 329 331 334 

*Case(i) temperature field 

 

 

that as the curvature ratio increases modal indices of buckling modes along the longitudinal (x2) 

direction decreases. 

 

4.2.2 Free vibration studies 
Pre-stressed modal analyses have been carried out on a cylindrical panel-1, to understand the 

behavior of free vibration and its mode shapes subjected to various temperature fields under 

different boundary conditions. To analyze the effect of heat sink temperature and non-uniform 

temperature field on the behavior of natural frequencies, a cylindrical panel exposed to two 

different temperature variation fields (case (iv) and case (v)) under simply supported boundary 

condition which allows in-plane motion is considered. Table 11 shows the effect of non-uniform 

temperature on free vibration frequencies of the simply supported cylindrical panel-1 with free in-

plane motion. For the analysis, cylindrical panel subjected to a non-uniform temperature field with 

a peak temperature (To) of 100°C above ambient temperature is considered and the heat sink 

temperature (Ts) is allowed to vary over the range of 0°C to 100°C above ambient temperature in 

the steps of 20°C with no external in-plane boundary constraints. From Table 11, it is clear that 

free vibration frequency is minimum when the sink temperature is at 0°C above ambient 

temperature and it increases with increase in sink temperature and becomes maximum when sink  
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Table 12 Effect of thermal load on free vibration frequency (Hz) 

Boundary 

condition 
Mode 

Ambient 

Temp. 

Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 

CCCC 

1 1359 1206 793 1246 738 1234 812 1191 801 1224 789 

2 1479 1331 851 1370 825 1359 922 1298 847 1339 862 

3 2071 1640 916 1713 1117 1681 1107 1695 865 1683 1080 

4 2075 1659 945 1732 1236 1706 1213 1697 979 1719 1182 

CCFC 

1 894 836 749 857 733 837 734 838 654 841 748 

2 1253 1203 754 1223 777 1187 751 1200 713 1199 772 

3 1597 1432 771 1459 823 1429 858 1420 1005 1408 960 

4 1615 1441 1059 1472 1175 1433 986 1421 1092 1413 1083 

 

 

temperature equals to peak temperature in other words, when non-uniform temperature field 

becomes uniform. It is due to the fact that in the absence of external boundary constraints the panel 

under uniform temperature expands freely, hence does not produce any stress in the panel, whereas 

under non-uniform temperature field difference in peak temperature and sink temperature act as 

boundary constraints thus resist free expansion of the panel. Presence of thermal stress in the panel 

due to non-uniform temperature reduces the stiffness of the panel hence reduces the free vibration 

frequency.  

To study the effect of thermal load on natural frequencies, cylindrical panel-1 exposed to the 

different temperature fields under clamped boundary conditions is considered, with critical 

buckling temperature as a one of the parameter. Table 12 shows the effect of thermal load on free 

vibration behavior of cylindrical panel-1 under CCCC boundary conditions. It has been noticed 

that free vibration frequency under ambient temperature reduces with increase in temperature 

under different temperature variation fields. Thermal load plays a major role in reducing the free 

vibration frequency of the heated cylindrical CCCC panel as it induces thermal stress in the panel, 

which inturn decreases the stiffness of the panel and stiffness is directly proportional to the 

frequency. 

To analyze the combined effect of free edge and thermal load on the free vibration frequency, 

CCFC boundary conditions has been considered. There is not much variation can be noticed in the 

free vibration behavior of a CCFC cylindrical panel-1 subjected to different thermal load, as it 

allows some stress to relieve from the free edge. Mode shape also plays an important role while 

designing a thin structure of cylindrical panels as it gives the nodal and anti-nodal position of the 

particular mode through which mode can be excited. Hence it is very important to know the mode 

shape variation under thermal load along with the frequency.  

From Table 13, it is clear that free vibration mode shapes changes very well with increase in 

temperature for all the temperature fields. Moving of nodal and anti-nodal positions and shifting of 

modes are commonly observed for the different temperature fields. For example, mode 1 of CCFC 

panel-1 having modal indices of (1,2) at ambient temperature changes to (1,3) at 95% of the 

critical buckling temperature under case (ii) temperature field as seen in Table 13. A similar trend 

has been observed for other vibration modes also. From Table 13 it can also be observed that for 

CCFC panel anti-nodal position of modes is moving towards the clamped edge with increase in 

temperature. For example, under case (iii) temperature field at ambient temperature, free vibration 

modes under mode 1 and mode 3 is found to occur at free edge, but with the increase in 
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Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel 

Table 13 Effect of thermal load on the free vibration mode shape of panel-1  

Temp. 

Variation 

cases 

Temp. 

CCFC CCCC 

Mode Mode 

1 2 3 4 5 1 2 3 4 5 

Ambient 

Temp.           

Case (i) 

0.5*Tcr 
          

0.95*Tcr 
          

Case (ii) 

0.5*Tcr 
          

0.95*Tcr 
          

Case (iii) 

0.5*Tcr 
          

0.95*Tcr 
          

Case (iv) 

0.5*Tcr 
          

0.95*Tcr 
          

Case (v) 

0.5*Tcr 
          

0.95*Tcr 
          

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 
Table 14 Magnification factor of the first kind for CCCC cylindrical panel-2 

Ts /To Case (ii) η Case (iii) η Case (iv) η Case (v) η 

0 451 2.77 345 2.12 421 2.58 265 1.63 

0.2 344 2.11 283 1.74 321 1.97 238 1.46 

0.4 274 1.68 240 1.47 259 1.59 215 1.32 

0.6 226 1.39 208 1.28 217 1.33 195 1.20 

0.8 191 1.17 183 1.12 186 1.14 178 1.09 

1.0* 163 1.00 163 1.00 163 1.00 163 1.00 

 

 

temperature it is found to occur at fixed edge. This is due to the fact that with the increases in 

temperature, panel-1 becomes soft at the free edge, thus making the vibration modes to shift 

towards the stiffer side of the panel-1. The Influence of nature, of temperature variation on free 

vibration modes of the CCCC cylindrical panel-1 is also shown in Table 13. Compared to CCFC 

panel-1, variation of free vibration mode shapes of CCCC panel-1 with temperature variation is 

less. This can be attributed to the symmetric structural boundary and aspect ratio associated with 

the CCCC cylindrical panel-1. For CCCC panel under case (ii), modal indices changes from (1,2)  
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Table 15 Magnification factor of first the kind for CCFC cylindrical panel-2 

Ts /To Case (ii) η Case (iii) η Case (iv) η Case (v) η 

0 464 2.36 409 2.08 511 2.59 339 1.72 

0.2 369 1.87 339 1.72 397 2.02 305 1.55 

0.4 304 1.54 288 1.46 321 1.63 273 1.39 

0.6 258 1.31 250 1.27 267 1.36 245 1.24 

0.8 2
 3 1.13 220 1.12 227 1.15 219 1.11 

1.0* 197 1.00 197 1.00 197 1.00 197 1.00 

*Case (i) temperature field 

 

to (1,3) whereas for other cases it changes to (4,1) which shows that temperature has a significant 

effect on vibration mode shapes. 
 

4.3 Studies on cylindrical panel-2 
 

To know the effect of aspect ratio on the buckling and the free vibration behavior of a panel 

subjected to different temperature variation, a cylindrical panel-2 is considered for the 

investigation by keeping other dimensions same. 

   
4.3.1 Thermal buckling studies 
A cylindrical panel-2 is investigated for different parameters similar to the panel-1. Table 14 

shows, magnification factor of the first kind obtained for fully clamped cylindrical panel-2. One 

can observe from Table 14 that magnification factor variation of a CCCC panel-2 is similar to the 

CCCC panel-1. Wherein the critical buckling temperature of CCCC panel-2 under case (i) has to 

be magnified by 2.77, 2.12, 2.58 and 1.63 to get the buckling solution of case (ii), case (iii), case 

(iv) and case (v) respectively. Table 14 also reveals that thermal buckling strength is directly 

proportional to the amount of region that the panel is exposed to maximum temperature under a 

particular temperature field and bending stiffness of that region. So compared to a cylindrical 

panel-1, cylindrical panel-2 has less stiffness, but it requires more heat to develop thermal stresses 

which can be noticed from the behavior of the panel-2 given in Table 14. Magnification factor of 

the first kind for a CCFC panel-2 is shown in Table 15. Data from Table 15 shows that, buckling 

temperature under case (i) temperature field has to be magnified by 2.36, 2.08, 2.59 and 1.72 to get 

the buckling solution of panel-2 under case (ii), case (iii), case (iv) and case (v) respectively. 

Analyses also shows that case (iv) temperature field has highest magnification factor under CCFC 

boundary condition but, not so for CCCC boundary condition. It is due to the fact that incase of 

case (iv) heat source is at the center of the panel, hence closer to the free edge therefore some of 

the stress set up due to thermal load will be relieved from the free edge. 

To analyze the influence of heat sink temperature on the buckling strength in the absence of in-

plane boundary constraints, a cylindrical panel-2 subjected to two different temperature fields 

under simply supported boundary conditions has been considered. Table 16 shows the 

magnification factor of second kind for a cylindrical panel-2 under simply supported boundary 

conditions with free in-plane motion. It is clear from Table 16 that, behavior of panel-2 is similar 

to panel-1 wherein buckling strength decreases with thermal stress set up due to non-uniform 

temperature. The buckling strength of cylindrical panel-2 is more than the cylindrical panel-1 

when subjected to non-uniform temperature. Both cylindrical panel-2 and panel-1 used in the  
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Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel 

Table 16 Magnification factor of the second kind for SSSS cylindrical panel-2 

Ts /To Case (v) ξ Case (iv) ξ 

0 213 1.00 333 1.00 

0.2 266 1.25 416 1.25 

0.4 355 1.67 555 1.67 

0.6 532 2.50 832 2.50 

0.8 1065 5.00 1666** 5.00 

1.0* ∞ ∞ ∞ ∞ 

*Case(i) temperature field; **Exceeded melting range 

 

  
(a) CCCC panel (b) CCFC panel 

Fig. 6 Influence of thickness ratio and temperature variation on buckling strength of cylindrical panel-2 

 

 

analysis has same width, from which the heat is supplied but since the length of the cylindrical 

panel-2 is more than the cylindrical panel-1, cylindrical panel-2 develops less membrane 

compressive force compared to cylindrical panel-1. 

Dimension parameter study has also been carried out on a cylindrical panel-2 to know the effect 

of thickness ratio and curvature ratio on the critical buckling temperature. Fig. 6 shows the effect 

of thickness ratio and temperature variation on the buckling temperature of panel-2 under CCCC 

and CCFC boundary condition. It can be seen from Figs. 3a and 6a that buckling strength of the 

CCCC panel-2 under case (ii), case (iii) and case (iv) temperature variations is higher than the 

CCCC panel-1 under corresponding temperature variation. Whereas for case (i) and case (v) 

temperature field, the panel-2 has lower buckling strength compared to panel-1 as the structural 

stiffness of panel-2 is lesser than the panel-1 and under case (v) heat is supplied to the region 

which is having very less stiffness thus making it to buckle at low temperature. Even for the panel-

2 buckling strength of the panel decreases with the increase in thickness ratio. It can be noted from 

Figs. 3(b) and 6(b) that the buckling strength of a CCFC panel-1 is higher than the CCFC panel-2 

under all temperature fields due to fact that panel-1 has a higher stiffness than panel-2. Variation in 

the buckling strength under different temperature field decreases with the thickness ratio for the 

CCFC cylindrical panel-2 as seen Fig. 6(b).  

Curvature ratio also plays an important role in deciding critical buckling temperature. Effect of 

curvature ratio on the buckling strength of the CCCC and CCFC panel-2 is shown in Fig. 7(a)-7(b) 

respectively. Where it can be seen that, as the curvature ratio increases the critical buckling 

temperature decreases. This behavior has been observed for all temperature field as the moment of  
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(a) CCCC panel (b) CCFC panel 

Fig. 7 Influence of curvature ratio and temperature variation on buckling strength of cylindrical panel-2 

 

  
(a) CCCC panel (b) CCFC panel 

Fig. 8 Influence of nature of temperature variation on buckling mode shape of cylindrical panel-2 

 

 

inertia plays dominating role in deciding the buckling strength of the panel.  

Results obtained from Figs. 6-7 shows that, under CCCC boundary condition panel-2 behaves 

similar to the panel-1 under different temperature field. Wherein panel-2 under case (ii) 

temperature field has the highest buckling temperature and will have the lowest buckling strength 

under case (i). It also shows that case (iv), case (iii) and case (v) has lower buckling temperature 

compared to case (ii). Compare to other non-uniform temperature field case (v) has a significant 

effect on the buckling strength of the panel, as in case (v) the heat is applied in a region where 

there is less stiffness. Hence, one can notice that the buckling strength depends on the location of 

the heat source and amount of heat supplied to the panel. It has also been observed that, panel-2 

under CCCC boundary conditions, was found to have lower buckling strength compared to panel-2 

under CCFC boundary condition when subjected to different temperature fields. In case of CCFC 

boundary conditions case (iv) has highest buckling temperature compared to other temperature 

fields.  

To analyze the influence of temperature variation on the buckling mode shape of panel-2, 

displacement associated with the center line of the cylindrical panel-2 along the longitudinal 

direction of the temperature variation is considered. Fig. 8(a) shows the non-dimensional bending 

amplitude associated with the fundamental buckling mode of the CCCC panel-2. Buckling mode 

shape for a panel-2 follows the same trend as observed for a panel-1. Even in panel-2 bending  
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Table 17 Effect of thickness ratio on buckling mode shape of CCCC panel-2 

S/h Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

100 
     

200 
     

300 
     

 
Table 18 Effect of thickness ratio on buckling mode shape of CCFC panel-2 

S/h Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

100 
     

200 
     

300 
     

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 

 

amplitude for a case (ii) temperature field is high for a peak close to the heat source and its 

response decreases for the peaks away from the heat source. It can be seen from Fig. 8(a) that for 

case (i) and case (iv) temperature field, there is not much variation in the bending amplitude of the 

peaks. Whereas for case (iii) and case (v), peaks with high bending amplitude is found to be at the 

center of the panel. Fig. 8(b) shows the influence of nature, of temperature variation on the 

fundamental buckling modes of CCFC panel. In CCFC boundary conditions peaks with high 

amplitude is found to be located at the clamped edge under all temperature fields (case (i) to case 

(v)).  

 In panel-2 under CCFC boundary conditions, case (ii) has the highest bending amplitude 

compared to others. The buckling mode shape pattern observed in CCFC panel-2 with case (ii) 

follows the same trend as observed in CCCC panel-2 with a slight variation in amplitude. Whereas 

for other cases the buckling mode shape changes drastically with modes moving towards clamped 

edge due to un-symmetric boundary conditions. Tables 17-18 depicts the effect of the thickness 

ratio on the buckling mode shape of a CCCC and CCFC panel-2 respectively. It can be noted from 

Tables 17-18 that thickness ratio has a significant effect on the buckling mode shape and its 

amplitude under all temperature cases. 

It can also be noted that the amplitude of the buckling modes decreases with the increase in 

thickness ratio. Tables 19-20 shows the influence of curvature ratio on the buckling mode shape on 

a CCCC and CCFC cylindrical panel-2 respectively. Where it can be seen that the buckling mode 

shape of CCCC and CCFC panel-2 is highly influenced by curvature ratio. As the curvature ratio 

increases buckling modes are moving towards the center of the CCCC panel-2 where the panel is 

less stiff. Similar behavior is observed under all temperature fields. 

 

4.3.2 Free vibration dharacteristics  
A cylindrical panel-2 under non-uniform temperature is analyzed to study the effect of heat sink 

temperature on natural frequencies. Pre-stressed modal analysis has been carried out to determine 

free vibration frequency of a cylindrical panel-2 subjected to two different temperature fields 
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Table 19 Effect of curvature ratio on buckling mode shape of CCCC panel-2 

R/S Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

1 
     

2 
     

3 
     

 
Table 20 Effect of curvature ratio on buckling mode shape of CCFC panel-2 

R/S Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

1 
     

2 
     

3 
     

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 
Table 21 Effect of non-uniform thermal field on free vibration frequencies (Hz) 

Mode 
Ambient 

temperature 

Ts/To (Case (v)) Ts/To (Case (iv)) 

0 0.2 0.4 0.6 0.8 1* 0 0.2 0.4 0.6 0.8 1* 

1 205 168 177 185 192 199 205 186 190 194 198 201 205 

2 315 295 301 305 309 313 315 297 302 306 309 313 315 

3 384 340 349 358 361 376 384 368 371 375 378 381 384 

4 490 463 469 475 480 485 490 485 486 487 488 489 490 

 

 

under simply supported boundary conditions having free in-plane motion. Table 21 depicts the 

effect of non-uniform temperature variation on free vibration frequency in the absence of in-plane 

boundary constraints. A simply supported panel-2 with case (v) temperature field has a 

fundamental frequency of 168 Hz when the heat sink temperature is 0°C above ambient 

temperature, which increases to 205 Hz when the heat sink temperature equals to peak temperature 

i.e., 100°C above ambient temperature. 

Similarly, for case(iv) it increases from 186 Hz to 205 Hz when panel temperature field 

changes from non-uniform to uniform. This is due to the fact that as the thermal stress reduces, the 

stiffness of panel increases and thus increases the frequency. It can also be seen that, case (v) 

temperature field has more influence on natural frequency compared to case (iv). Table 22 shows 

the effect of thermal load on free vibration frequency of CCCC and CCFC panel-2 under different 

temperature field. Results obtained in Table 22 clearly shows the significance of thermal load 

while determining the free vibration frequency. Because at higher temperature, panel becomes 

softer thus the stiffness of the panel decreases. Table 23 shows the variation of first five vibration 

modes of panel-2 under different temperature field. It is clear from the results that; the mode 

shapes are changing with the increase in temperature. The anti-nodal lines of the clamped 

cylindrical panel-2 are moving towards the maximum heat exposed portion of the panel. Behavior 

of free vibration modes of a panel-2 is similar to panel-1 under CCCC boundary conditions. It can 
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Table 22 Effect of thermal load on free vibration frequency (Hz) 

Boundary 

condition 
Mode 

Ambient 

Temp. 

Case (i) Case (ii) Case (iii) Case (iv) Case (v) 

0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 0.5*Tcr 0.95*Tcr 

CCCC 

1 1056 1009 724 986 791 966 782 986 796 968 862 

2 1328 1286 793 1268 877 1234 795 1260 804 1252 878 

3 1580 1445 953 1391 916 1392 844 1401 915 1364 879 

4 1614 1475 1235 1422 959 1431 959 1423 1168 1396 979 

CCFC 

1 788 770 720 756 718 753 678 758 725 750 708 

2 1232 1185 748 1165 749 1141 701 1155 786 1145 747 

3 1249 1221 788 1195 887 1198 931 1203 822 1199 789 

4 1387 1327 1092 1305 1062 1269 961 1287 1036 1289 1004 

 
Table 23 Effect of thermal load on the free vibration mode shape of panel-2  

Temp. 

Variation 

Cases 

Temp. 

CCFC CCCC 

Mode Mode 

1 2 3 4 5 1 2 3 4 5 

Ambient 

Temp.           

Case(i) 

0.5*Tcr           

0.95*Tcr 
          

Case(ii) 
0.5*Tcr           

0.95*Tcr           

Case(iii) 

0.5*Tcr 
          

0.95*Tcr 
          

Case(iv) 
0.5*Tcr           

0.95*Tcr           

Case(v) 

0.5*Tcr           

0.95*Tcr           

Note: Dark-red: max.; dark-blue: min. and others-inbetween 

 

 

be noticed from Table 23 that the buckling mode shape at 50% of buckling load is similar for all 

temperature cases, whereas at 95% of buckling load, it is found that anti-nodal lines are moving 

towards the maximum heat source as panel is found to be softer at maximum heat source. To know 

the effect of boundary conditions on the free vibration modes, a cylindrical panel-2 with CCFC 

boundary condition has also been considered. Result of the analysis shows that; the mode shapes 
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are changing with the increase in temperature. But there is not much significant effect can be 

observed in the panel-2 as compared to panel-1 under CCFC boundary conditions. This is due to 

the fact, as the aspect ratio (L/S) of the panel increases influence of thermal load on the free 

vibration mode shape is not so significant. 

 

 
5. Conclusions 
 

In this paper an investigation has been done on the cylindrical panels subjected to various non-

uniform temperature field in order to study the critical buckling and the free vibration behavior of 

the panel. A numerical approach is used for the same using finite element method based software 

ANSYS. Materials properties consider for the analysis are assumed to be temperature independent. 

The results show that the buckling and free vibration behavior of cylindrical panels under thermal 

load is complex and greatly influenced by the temperature field, elevated temperature, geometric 

parameter and in-plane boundary conditions. Therefore, the following conclusion can be drawn: 

• “Magnification factor of the first kind, (η)” was established to relate critical buckling 

temperature obtained under uniform temperature with non-uniform temperature field.  

• “Magnification factor of the second kind, (ζ)” was established to study the effect of heat sink 

temperature on the buckling behavior of cylindrical panel under simply supported condition 

with free in-plane motion.  

• The buckling strength of the panel under thermal load is significantly influenced by non-

uniform temperature variation field as it has the tendency of producing different kind of 

thermal stress in panel. 

• Fundamental buckling mode and free vibration mode shapes are significantly influenced by 

the nature of temperature variation along with the geometric variation and structural boundary 

conditions. 

• The buckling strength of the panel-2 is higher than the panel-1, whereas the free vibration 

frequency of panel-2 is lesser than the panel-1when subjected to non-uniform temperature 

distribution.  

• Influence of non-uniform temperature variation on fundamental buckling mode shapes and 

free vibration mode shapes are more significant for panel-2 compared to panel-1. 
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