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Abstract.  To analyze laminated composite and sandwich beams under temperature loads, a C

0
-type 

Reddy’s beam theory considering transverse normal strain is proposed in this paper. Although transverse 

normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives 

of transverse displacement have been taken out from the in-plane displacement fields, so that the C
0
 

interpolation functions are only required for the finite element implementation. Based on the proposed 

model, a three-node beam element is presented for analysis of thermal responses. Numerical results show 

that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated 

composites. 
 

Keywords:  C
0
-type Reddy’s beam theory; thermal responses; laminated composite and sandwich beams; 

three-node beam element; thermal stresses 

 
 
1. Introduction 
 

Laminated composite and sandwich structures have been found extensive applications in 

aerospace, aeronautic, automotive, naval and building structures due to their high strength and 

specific stiffness as well as low-density. However, composite laminated structures are usually 

applied in high temperature situations. Rising temperature will induce significant thermal stresses 

because of different thermal properties of adjacent layers (Shokrieh et al. 2013), which can cause 

the failure of laminated composite and sandwich beams. Consequently, the thermal deformation 

and stresses become significant parameters for predicting the thermal responses of the laminated 

composite and sandwich beams. 

Available approaches (Rolfs et al. 1998, Khdeir and Reddy 1991, Matsunaga 2004, Wu et al. 

2010) have been used to analyze the thermal responses of composite laminates. A natural choice of 

model for the analysis of such structures is the three-dimensional models (Savoia and Reddy 

1995), which require huge computational cost. In order to overcome the above problem, Wu and 

Tauchert (1980a, b) studied the thermal deformation and stress results in symmetric and 

antisymmetric laminates using the classical laminated plate theory (CLPT) based on the Kirchhoff 

hypothesis. However, the classical theory is inadequate for accurate prediction of thermal 

                                                        

Corresponding author, Professor, E-mail: wuzhenhk@163.com 



 
 
 
 
 
 

Xiaoyan Fan and Zhen Wu 

responses for multilayered plates owing to neglecting the effects of transverse shear and normal 
strains (Naganarayana et al. 1997). To consider the effects of transverse shear strains, the 
first-order shear deformation theory (FSDT) has been developed to analyze the thermal behaviors 
of laminated structures (Reddy and Hsu 1980). However, transverse shear strains in FSDT are 
assumed to be constant across the thickness direction and the shear correction factors have to be 
used to adjust the transverse shear stiffness for laminated composites. As a result, the accuracy of 
solutions of FSDT depends on the shear correction factor. To overcome the drawbacks of the 
first-order shear deformation theory, Reddy (1984) developed the third-order theory (Reddy’s 
theory) which can satisfy the free conditions of the transverse shear stresses on the upper and 
lower surfaces. Reddy’s theory accounts not only for transverse shear strains, but also for a 
parabolic distribution of the transverse shear strains along the thickness direction. Thus, there is no 
need to use shear correction factors. Subsequently, Reddy’s theory is widely used in the study of 
composite laminates because of its efficiency and simplicity (Aydogdu 2006, Li and Zhu 2009, 
Xiang et al. 2011). For example, finite element models (Nayak et al. 2002, Sheikh and 
Chakrabarty 2003) based on Reddy’s theory have been proposed for bending, vibration and 
thermal expansion analysis of composite laminates. Nayak et al. (2002) used a finite element 
model based on Reddy’s theory to calculate the natural frequencies and loss factors of laminated 
composite and sandwich plates. He and Yang (2014) built a finite element model to analyze 
buckling response of two-layer composite beams using Reddy’s theory. Based on Reddy’s theory, 
Kadoli et al. (2008) studied the static behavior of functionally graded metal-ceramic (FGM) beams 
under ambient temperature. Simsek (2010) analyzed fundamental frequency of functionally graded 
beams by using different higher-order beam theories which include Reddy’s theory. 

However, the displacement fields of Reddy’s theory involve the first derivative of transverse 
displacement, so the C1 interpolation functions are required during finite element implementation. 
Therefore, it is difficult to construct higher-order elements. To avoid using C1 interpolation 
functions, Bhar and Satsangi (2011) developed a C0-type Reddy’s theory and analyzed the bending 
problem of the laminated composite and sandwich structures. The first derivatives of transverse 
displacement in the displacement field have been removed, so that the C0 interpolation functions 
are only required. In order to extend C0-type Reddy’s theory for the analysis of thermoelastic 
problems, a C0-type Reddy’s beam theory considering the transverse normal thermal strain has 
been proposed in this paper. Subsequently, to verify the accuracy and efficiency of the present 
model, a three-node beam element based on the proposed model is presented for thermal 
expansion and bending analysis of laminated composite and sandwich beams. In the finite element 
implementation, it is found that although transverse normal strain is considered, the displacement 
variables are not increased since thermal loads could be included in the generalized force vector. 
Moreover, if temperature field does not vary (T=0), the proposed theory can automatically return 
to the C0-type Reddy’s beam theory (Bhar and Satsangi 2011). However, the accuracy of the 
present approach for analysis of the thermal expansion and bending problems has been verified in 
comparison with the models which neglect transverse normal strains. 

 
 

2. Theoretical formulations 
 

In order to consider the transverse normal strain without increasing additional displacement 
variables, the transverse normal thermal strain induced by the temperature variation is introduced 
in transverse displacement field. The transverse normal thermal strain caused by temperature is 
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given by Wu et al. (2013) 

 3 ,k k
zT T x z                                 (1) 

where k
zT  represents transverse normal thermal strain due to thermal loading in which z denotes  

transverse coordinate through the thickness and the superscript k represents the layer number of  
the laminated beam; 3

k  is the transverse thermal expansion coefficient at the kth layer; ΔT is the  
rise in temperature with respect to the reference temperature. 

The temperature field is distributed through the thickness of laminates as follows 

     , ( ) ( )T x z f z T x                              (2) 

in which f (z) describes the temperature profiles through the thickness direction, T(x) is the 
in-plane temperature field. 

Integrating k
zT  across the thickness direction, the transverse normal thermal deformation at  

kth ply can be obtained as follows 

     ( , )k k
Tw x z T x                              (3)   

where  3( )k kz f z dz   . 

 
2.1 The third-order theory (TOT) 
 
The in-plane displacement components using Taylor’s expansions are expanded as cubic 

functions of the thickness coordinate z, whereas transverse displacement is assumed constant 
through thickness (Kant and Swaminathan 2002). Displacement field of the third-order theory 
(TOT) can be expressed as 

    
2 3

0 1 2 3

0

u zu u u uz z
w w

   


                           (4) 

 
2.2 Reddy’s Theory (RT) 
 
Based on the third-order theory (TOT), Reddy’s theory (Reddy 1980) is proposed by using the 

free conditions of the transverse shear stresses on the upper and the lower surfaces. Reddy’s theory 
can be written as 

    
0

0 1 1 2

0

w
u u u

x
w w


  




                           (5) 

where 
3

1 2

4

3

z
z

h
   ,

3

2 2

4

3

z

h
   , h is thickness of beam. 
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Fig. 1 Schematic figure of laminated beam segment and three-node beam element 
 
 
2.3 C0-type Reddy’s beam theory (RT-C0)  

 
By satisfying the free conditions of the transverse shear stresses on the upper and the lower 

surfaces and removing the first derivatives of transverse displacement, C0-type Reddy’s beam 
theory (Bhar and Satsangi 2011) can be given by 

    
0 1 1 2 3

0

u u u u

w w

   


                             (6) 

where ψ1=z, ψ2=z3. 
 

2.4 C0-type Reddy’s beam theory considering transverse normal thermal strain (TRTC) 
 
Adding transverse normal thermal deformation wT to transverse displacement field of RT-C0, a 

C0-type Reddy’s beam theory considering transverse normal thermal strain is given by 

2 3
0 1 2 3

0
k k

T

u zu z u z uu

w w w

   

 
                           (7) 

Transverse shear strain can be expressed as 

20
1 2 32 3

k k
k T
xz

wuw w u zu z uγ
x z x x

  
      

   
                 (8) 

Employing the free conditions of the transverse shear stresses on the upper and the lower 
surfaces and eliminating the first derivatives of transverse displacement, the final displacement 
fields in the present model can be given by 

    
0 1 31 2 3

0
k k

T

T
u uu u

x

w w w

  


   


 
                       (9) 

where 1 z  , 3
2 z  , 

2 1
1 1

3

( ) ( )

2

n
nz zz Ω Ω

h
  

  
 

, zi is shown in Fig. 1. 

In Eq. (9), it is found that if temperature field does not vary (T=0), the proposed theory can 
automatically return to C0-type Reddy’s beam theory (Bhar and Satsangi 2011). From linear 
strain-displacement relationship, the strains of C0-type Reddy’s beam theory considering 

x

z

1z 1k 

1k n 
k n

2z

nz
1nz 

kz
1kz 

2

h
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z

1z 1k 

1k n 
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kz
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2

h
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h


1 2 3
z

x


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z
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transverse normal thermal strain can be written as 

    

2
0 31

1 2 3 2

031 2
1 3

x

k
T

xz

u uu T
ε

x x x x
T w wγ u u

z z z x x x

  

 

     
   

    
    
     

                   (10) 

In Eq. (10), it is found that in-plane stresses and transverse shear strains are affected by 
temperature component. As a result, C0-type Reddy’s beam theory considering transverse normal 
thermal strain can produce accurate results for analysis of the thermal expansion and bending 
problems of laminated composites. 

 
 

3. Constitutive equations 
 

In a common structural axis system, the stress-strain relationships accounting for transverse 
shear deformation and thermal effects for the kth layer can be given by 

    11

44

0

0

k kk

x x x

xz xz

TQ

Q

  
 

     
    
    

                     (11) 

in which ΔT is the rise of temperature; αx is the linear thermal expansion coefficients in the 
direction of common structural axes; Qij

k

 
is the transformed material constants for the kth layer.  

 
 
4. Finite element formulation 
 

The first derivatives of transverse displacement have been taken from the in-plane displacement 
field in the proposed theory. Thus, the finite element counterparts only require the C0 interpolation 
functions. According to Eq. (9), a three-node beam element is developed. Each node contains u0, 
u1, u3 and w0, as the nodal degrees of freedom, shown in Fig. 1. 

 
4.1 Three-node beam element 

 
Independent displacement variables involved in the present model are only discretized by using 

the Lagrangian quadratic shape functions of the three-node beam element. Using the nodal 
variables and the shape functions, the displacement variables within one element can be expressed 
as follows 

    
3

0 0
1

i i
i

u N u


 ,
3

1 1
1

i i
i

u N u


 ,
3

3 3
1

i i
i

u N u


 ,
3

0 0
1

i i
i

w N w


              (12) 

where Ni (i=1~3) are the Lagrangian quadratic shape functions defined as: 

 1

1
1

2
N    , 2

2 1N   ,  3

1
1

2
N    ,

3 1

2 cx x

x x
 



, 1 3

2c

x x
x


 . 
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in which ξ is the natural coordinate, which can be found in Fig. 1. 
 

4.2 Strain matrix and stiffness matrix 
 
Using linear strain-displacement relations, the strains can be written as follows 

    
0

x e
T

xz

ux B
w

z x


 



 
                
   

                      (13) 

where the strain matrix B is the same as that of RT-C0 (Bhar and Satsangi 2011), 

 1 2 3B B B B , 

1 2 3

Te e e e       , 

2

3 2

3 ( )
T

T

x
T

z
z x






 
  
        

, 

 0 0 1 3
e
i i i i iu w u u   

1 2

2

0

0

i i i

i
i

i i

L L L

x x xB
L

L L
x z

 



   
     

  
   

, ( 1~ 3i  ) 

The potential energy of the laminated beams under thermal loads can be written as 

    
1

2
TV Q dv                                 (14) 

where Q is the transformed material constant matrix, and ε={εx−αxΔT γxz}
T. 

Substituting Eqs. (11) and (13) into Eq. (14), the potential energy within one element can be 
given by 

    
1

2

Te e
T Te

V B Q B dv                                 (15) 

where T T T    ,  0 .
T

T x T  
 

The equilibrium equation can be obtained by using the minimum potential principle 

      0T e T
Te e

B QBdv B Q dv                           (16) 
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The above equation can be further simplified as follows 

       e eeK P 
 
                              (17) 

in which  e T

e
K B QBdv   

is the element stiffness matrix, and  e T
Te

P B Q dv   
is the nodal 

load. 
From Eq. (17), it is found that in the finite element implementation although transverse normal 

deformation is considered, the displacement variables have not been increased since thermal loads 
could be absorbed in the generalized force vector. 

For the whole structure 

     
    K P   (18)

where    
1

N
e

e

K K


  ,   



N

e

ePP
1

, and N is the total number of elements. 

 
 
5. Numerical results and assessment 
 

In order to assess the performance and validity of the proposed model as well as the three-node 
element, simply-supported laminated composite and sandwich beams subjected to thermal loading 
are analyzed. 

Material (1) laminated beams (Kapuria et al. 2003): 

181GPaLE  , 10.3GPaTE  , 7.17GPaLTG  , 2.87GPaTTG  , 

0.28LT  , 0.33TT  , 60.02 10 / KL
  , 622.5 10 / KT

  . 

Material (2) sandwich beams (Matsunaga 2003): 
Face sheets (h/10×2): 

0 144.8GPaE  , 0LE E , 00.04TE E , 00.008LTG E , 00.02TTG E , 

0.25LT  , 6
0 10 / K  , 60.139 10 / KL

  , 69 10 / KT
  . 

Core material (4h/5): 

0 144.8GPaE  , 00.0016c c
L TE E E  , 00.0024c c

LT TTG G E  , 0.25c
LT  , 

60.139 10 / KL
  , 69 10 / KT

  . 

Material (3) laminated beams (Matsunaga 2003): 

144.8GPaLE  , 9.65GPaTE  , 4.14GPaLTG  , 3.45GPaTTG  , 0.3LT  , 

60.139 10 / KL
  , 69 10 / KT

  . 

Where subscript L is the direction parallel to the fibers and subscript T denotes the transverse 
direction. 
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 / 2,x l z

Fig. 2 Convergence study of in-plane stress (l/h=5) 
 

 
 / 2,x l z

Fig. 3 In-plane stress through thickness of laminated beam (l/h=5) 
 
 

Simply supported boundary conditions based on the proposed model TRTC is given by 
w0=0 at x=0,l. 
Example 1 A three-layer [0°/90°/0°] simply-supported laminated beam subjected to thermal 

loads ΔT=T0sin(πx/l). l is the length of the beam along the x-axis. 
The stresses are normalized as follows:  
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0
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( / 2, ) x
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l z
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E T
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(0, )
(0, ) xz
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z

E T h




 , 0 1T  . 

The mesh convergence study of in-plane stresses for laminated beam is shown in Fig. 2. 
Numerical results show that the present results with 16 elements have converged to the exact 
solution (Matsunaga 2003). In Fig. 3, distributions of in-plane stresses through the thickness of a 
three-layer beam with material (1) are presented. It may be readily seen from Fig. 3 that the results 
obtained from the model TRTC are in good agreement with the exact solution (Matsunaga 2003). 
However, FSDT, RT and RT-C0 are less accurate for predicting the thermal expansion problems of 
laminated beams owing to neglecting transverse normal strain. A comparison of transverse shear 
stresses based on four different theories can be found in Fig. 4, and the similar accuracy is 
obtained. 

Example 2 A simply-supported three-layer [0°/core/0°] sandwich beam subjected to thermal 
loads ΔT=T0sin(πx/l). l is the length of the beam along the x-axis. 

The displacements and stresses are normalized as follows:   

    2

3
0 0

100 0,
0, ,

u z h
u z

T l
    

0 0 0

/ 2,
/ 2, ,x

x

l z
l z

T E





    

0 0 0

0,
0, .xz

xz

z
z

T E





  

To study the effects of transverse normal strain on thermal stresses, a three-layer sandwich 
beam with material (2) is considered. For the displacement and stresses distributions through the 
thickness of the sandwich beams are shown in Figs. 5, 6 and 7, respectively. It is noted that the 
results of TRTC agree well with the exact solutions (Matsunaga 2003) in comparison with the 
models FSDT, RT and RT-C0. Numerical results show that transverse normal strain can not be 
ignored for analysis of thermal expansion of sandwich beams. 

 
 

 
 zx ,0z

Fig. 4 Transverse shear stress through thickness of laminated beam (l/h=5) 
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 zu ,0

Fig. 5 In-plane displacement through thickness of sandwich beam (l/h=5) 
 

 
 / 2,x l z

Fig. 6 In-plane stress through thickness of sandwich beam (l/h=5) 
 
 
Example 3 A simply-supported 16-layer [0°/90°/.../0°/90°] laminated beam subjected to 

thermal loads ΔT=T0sin(πx/l). l is the length of the beam along the x-axis. 
The material (3) is used, and stresses are normalized as follows: 
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 zx ,0z

Fig. 7 Transverse shear stress through thickness of sandwich beam (l/h=5) 
 

 
 / 2,x l z

Fig. 8 In-plane stress for a 16-layer beam under thermal loads (l/h=5) 
 
 
To evaluate the performance of the proposed model TRTC for multilayered beams, thermal 

expansion problems of unsymmetric 16-layer beams are studied in this example. Distributions of 
in-plane stresses and transverse shear stresses through the thickness of 16-layer beams with 
material (3) are respectively plotted in Figs. 8 and 9. It is observed that results obtained from the 
model TRTC agree well with HSDT-98 obtained by the authors based on the higher-order theory  
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 zx ,0z

Fig. 9 Transverse shear stress for a 16-layer beam under thermal loads (l/h=5) 
 

 
 / 2,x l z

Fig. 10 In-plane stress for a three-layer beam under thermal loads (l/h=5) 
 
 

proposed by Matsunaga (Matsunaga 2003). However, results of RT-C0 seem to be less satisfactory 
owing to neglecting transverse normal strain.  

Example 4 A simply-supported three-layer [0°/90°/0°] laminated beam subjected to thermal 
loads ΔT=(2zT0/h)sin(πx/l) is analyzed. l is the length of the beam along the x-axis. 

The normalized stresses are the same as those of Example 1. To further verify the accuracy of  
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 0,xz z

Fig. 11 Transverse shear stress for a three-layer beam under thermal loads (l/h=5) 
 
 

the present model, thermal bending of a simply supported three-layer [0°/90°/0°] laminated beam 
of Material (1) is considered, and corresponding results are shown in Figs. 10 and 11. Numerical 
results show that present results of stresses are in good agreement with the exact solutions 
(Kapuria et al. 2003), whereas RT-C0 is less accurate because of neglecting transverse normal 
strain. 

 
 

5. Conclusions 
 
Based on the C0-type Reddy’s beam theory considering transverse normal thermal strain, a 

three-node beam element is presented for analysis of thermal expansion and bending problems of 
simply-supported laminated composite and sandwich beams in this paper. On one hand, this paper 
draws the conclusions that the proposed model overcomes the C1 requirement, so that its finite 
element counterparts only require C0 interpolation functions. Owing to its C0 requirement, the 
present model is adequate for implementations in commercial finite element codes to offer the 
more design practices. On the other hand, the proposed model can produce accurate stresses and 
displacements to predict the thermal response in contrast to FSDT, RT and RT-C0, since transverse 
normal thermal deformation is introduced in the in-plane displacement field.  
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