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Abstract.  The paper studies the natural oscillation of the three-layered solid sphere with a middle layer 

made of Functionally Graded Material (FGM). It is assumed that the materials of the core and outer layer of 

the sphere are homogeneous and isotropic elastic. The three-dimensional exact equations and relations of 

linear elastodynamics are employed for the investigations. The discrete-analytical method proposed by the 

first author in his earlier works is applied for solution of the corresponding eigenvalue problem. It is 

assumed that the modulus of elasticity, Poisson’s ratio and density of the middle-layer material vary 

continuously through the inward radial direction according to power law distribution. Numerical results on 

the natural frequencies related to the torsional and spheroidal oscillation modes are presented and discussed. 

In particular, it is established that the increase of the modulus of elasticity (mass density) in the inward radial 

direction causes an increase (a decrease) in the values of the natural frequencies. 
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1. Introduction 
 

Study of the vibration of the hollow and especially solid spheres is required not only to answer 

the fundamental questions of elastodynamics and the dynamics of structural elements, but also for 

explanation and understanding of some natural phenomena, such as oscillations of the Earth 

caused by an earthquake. Furthermore, from the historical aspect these investigations were 

associated originally with interest in the oscillations of the earth (see, Love 1944). The first 

attempt in this field was made by Lamb (1882), in which the natural vibration of the solid sphere 
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made of homogeneous and isotropic elastic material was investigated by the use of Cartesian 
coordinates. Note that Lamb (1882) found the automodel-similarity solution of the governing field 
equations, so that all sought quantities are presented as a function of the distance of the point 
considered from the origin of the Cartesian coordinate system. Therefore the solution by Lamb 
gives the possibility of finding the values of the natural frequencies but this solution does not 
allow for finding of the modes of the natural vibrations from the standpoint of modern ideas. 
Chree (1889) further developed the mathematical treatment by Lamb (1882) with the use of 
spherical coordinates. Nevertheless, the results obtained in the paper by Lamb (1882) can be 
estimated as fundamental in the dynamics of the spherical elastic body and these results have a 
great significance not only in the theoretical, but also in the practical sense. Moreover, in the paper 
by Lamb (1882) it was established that the solid sphere has two types of uncoupled free vibrations, 
the first of which are torsional vibrations with rotatory motions of the sphere for which there is no 
radial displacement and no volumetric change. The second type of free vibration of the sphere is 
called spheroidal vibration which is characterized by the volumetric change of the sphere caused 
by the non-zero radial displacement. Lamb’s results were used with subsequent investigations and 
attempts were made to apply them to describe the vibration of the Earth generated by earthquakes. 
Of note among these subsequent investigations are those carried out by Sato and Usami (1962a, 
1962b), Sato et al. (1962) in which a detailed analysis of the natural frequencies and vibration 
modes of the homogeneous isotropic solid sphere was performed and tabulated. The results by 
Sato and Usami (1962a, 1962b), Sato et al. (1962) were also presented and discussed in the 
monograph by Eringen and Suhubi (1975).  

Much later, Guz (1985a, 1985b) studied the natural vibration of the solid sphere with initially 
uniform volumetric loading by utilizing the three-dimensional linearized theory of elastic waves in 
initially stressed bodies for incompressible and compressible bodies. In these works, it was 
established that Lamb’s result on the types of natural vibration of the sphere occurs also for the 
cases which have initial static stresses caused by uniformly-cubic loading. 

Shah et al. (1969a, 1969b) investigated natural vibration of the hollow sphere (or spherical 
shell) made of homogeneous and isotropic elastic material by utilizing the three-dimensional exact 
equations of the linear theory of elastodynamics and numerical results for a wide range of 
thickness-to-radius ratios are given in graphical form. A detailed analysis of these and other related 
results which are associated with the free oscillations of the earth, are also given and discussed in 
the book by Lapwood and Usami (1981).  

Note that recent investigations related to the free vibration of the solid and hollow spheres 
consider the more complicated problems connected with the geometries (see, for instance, the 
paper by Hasheminejad and Mirzaei (2011) and others listed therein) and properties of the material 
of the spheres (see, for instance, the paper by Sharma et al. (2012) and others listed therein). 
Moreover, note that in present time the study of dynamics of the structural elements made of non-
homogeneous traditional and advanced materials such as FGM, piezoelectric materials and etc. are 
developed intensively. As an example for such investigations it can be taken papers by Asemi et al. 
(2014), Ipek (2015), Yun et al. (2010), Asgari and Akhlaghi (2011), Nihat and Koç (2015) and 
other ones listed therein.   

 By developing the theory on the bowels of the earth and by employing layered composite 
spherical constructions in various branches of modern industries, the necessity to investigate the 
corresponding dynamic problems related to oscillations of the layered hollow and solid spheres, 
appears. These investigations are made both within the scope of the various approximate shell 
theories and within the scope of the three-dimensional exact equations of elastodynamics. The 
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accuracy of the approximate theories is examined in the paper by Grigorenko and Kilina (1989). 
The results are given in graphical form and it is established that the accuracy of the approximate 
shell theories decreases with increasing of the ratio h/R, where h is the thickness and R is the 
radius of the middle surface of the sphere. 

Further, in the paper by Jiang et al. (1996), the natural vibration of layered hollow spheres is 
studied by using the three-dimensional exact equations of elastodynamics. Concrete numerical 
results are presented for the three-layered hollow sphere for various ratios of the densities and 
modulus of elasticities. These results are given in table form and, in particular cases, are compared 
with the known ones. 

Note that in the foregoing investigations related to the vibration of the layered hollow sphere it 
was assumed that the layers’ materials are homogeneous and isotropic. In the paper by Chen and 
Ding (2001) these investigations were developed for the cases where the materials of the layers of 
the layered hollow sphere are spherically isotropic (a special case of transversal isotropic 
materials) and homogeneous. Numerical results are presented and discussed for the three-layered 
case and the influence of the type of anisotropy of the layers’ materials on the natural frequencies 
and vibration modes is established. 

The modern level of studies on the bowels of the earth detailed for instance in the book by 
Anderson (2007), show that the mechanical properties, such as the modulus of elasticity and 
density of the mantle material increase continuously from the crust to the core. Moreover, in 
modern layered hollow spheres, the layers are made of Functionally Graded Materials (FGM) 
which give some advantages to these constructions in the application sense. These and many other 
reasons require study of the dynamics of the layered hollow spheres, the layers of which are made 
of FGM. Certain attempts in this field were recently made in the paper by Ye et al. (2014) in which 
the three-dimensional vibration analysis of a spherical shell which is obtained by cutting the 
complete hollow sphere by two parallel planes with arbitrary end conditions, was studied. It is 
assumed that the shell is a single-layered one with effective mechanical properties, the values of 
which change continuously in the thickness direction of the shell. These effective mechanical 
properties are determined through the mechanical properties of the ceramic and metal layers and 
their volumetric fraction in the shell, which also vary continuously through the thickness direction 
according to power law distribution. The exact three-dimensional relations between the strains and 
displacements, as well as between the stresses and strains are used in constructing the functional 
for employing the Rayleigh-Ritz method. The sought values are presented through the modified 
Fourier series for all coordinates. Numerical results on the natural frequencies and the influence of 
the FGM properties on these results are discussed. 

This completes the review of the related investigations from which it follows that up to now 
there has not been any investigation related layered solid sphere. Accordingly, in the present paper 
an attempt is made for investigation of the natural vibration of the three-layered solid sphere, the 
middle layer of which is made of FGM by utilizing of the three-dimensional exact equations of 
elastodynamics. Also, it is assumed that the outer layer and core of the sphere are made of 
homogeneous isotropic material. The corresponding eigenvalue problem is solved by employing 
the discrete analytical method proposed by Akbarov (2006, 2015).  
 
 
2. Formulation of the problem 
 

Consider the three-layered solid sphere and with the center of the sphere we associate the  
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(a) Selected coordinate systems (b) The cross section of the sphere at x3=0 

Fig. 1 Selected coordinate systems and cross section of the sphere 
 
 

Cartesian coordinate system Ox1x2x3 and spherical coordinate system Orθφ (Fig. 1(a)). The cross 
section of the sphere at x3=0 and the parameters characterizing the structural geometry of this 
sphere are shown in Fig. 1(b). The outer radius of the sphere (the outer and inner radius of the 
middle layer) will be denoted through a (r1 and r2, respectively). The values related to the outer, 
middle layers and core will be indicated by the upper indices (1), (2) and (3), respectively.  

Consider the field equations written in the spherical coordinate system shown in Fig. 1(a). 

Equation of motion: 
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Constitutive equations: 
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Strain-displacement relations: 
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In (1)-(3) conventional notation is used and it is assumed that k=1, 2 and 3.  
We assume that the materials of the core and outer layer are homogeneous isotropic, but the 

material of the middle layer is FG and isotropic, i.e., we assume that 

 (1)(1)
  const , (1) (1)const  , (1) (1)const  , (3)(3) const  , 

(3) (3)const  , (3) (3)const  , 

(2) (2) ( )  r , (2) (2) ( )r  , (2) (2) ( )r  .                  (4) 
Specializations of the functions λ(2)(r), μ(2)(r) and ρ(2)(r) in (4) will be given below under 

consideration of the numerical results. 
This completes the consideration of the field equation and relations which are used in the 

present investigations. Now we consider formulation of the boundary and contact conditions. 
According to the nature of the problem under consideration, we assume that on the outer free 
surface of the sphere, i.e., at r=a (Fig. 1(b)), the following boundary conditions are satisfied 
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Moreover, we assume that on the interface surfaces, i.e., at r=r1 and r=r2 (Fig. 1(b)), of the 
constituents, the following perfect contact conditions are satisfied 
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Also we assume that all quantities related to the core satisfy the boundedness condition at the 
centre of the core, i.e., at r=0. 

This completes formulation of the problem on the natural vibration of the three-layered hollow 
sphere with middle layer made of FGM. 
 
 
3. Method of solution 
 

Solution to the system of Eqs. (1)-(3) for the core and outer layer of the sphere can be found in 
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the classical works such as those described in the monographs by Eringen and Suhubi (1975), 
using the following classical Lame (or Helmholtz) decomposition 
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The functions ϕ(k), χ(k) and ψ(k) are solutions to the following equations 
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where 
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Solutions of the Eqs. (8) and (9) for the case under consideration are found as follows 
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In (10), jn(cr) and yn(cr) are spherical Bessel functions of the first and second kind and 
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where Jn+1/2(cr) and Yn+1/2(cr) are the Bessel functions of the first and the second kind with non-
integer order, respectively. Moreover, (cos )m

nP   in the expression (10) denotes the associated 
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Legendre functions with m-th order and with n-th harmonic.  
Thus, using the relations (11), (10) and (7) we obtain expressions for the displacements and, 

after substituting these expressions into the Eqs. (3) and (2), we obtain expressions for the 
components of the stress tensor. For simplification of writing the obtained expressions, we 
introduce two sets of complete orthogonal functions in [0, π] determined as follows 
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Thus, using the notation (12) we can write the following expressions for the sought values 
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
(1)

(1) (1) (1) (1) (1)(1) (1) (1) (1)
411 412 431 4322

2
( )nmr A T B T E T F T Y

r


         

(1) (1)(1) (1)
421 422 ( ) cos

sin
i t

nm
m

C T D T X m e  


     
, 


(3)

(3) (3) (3)(3) (3)
411 4312

2
( )nmr A T E T Y

r


    
(3)(3)
421 ( ) cos

sin
i t

nm
m

C T X m e  


 


, 
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(1)
(1) (1) (1) (1)(1) (1) (1) (1) (1)

411 412 431 4322

2
( )

sinr nm
m

A T B T E T F T X
r


 


      

 

(1) (1)(1) (1)
421 422 ( ) cos i t

nmC T D T Y m e     
, 

(3)
(3) (3)(3) (3) (3)
411 4312

2
( )

sinr nm
m

A T E T X
r


 


   

(1)(3)
421 ( ) cos i t

nmC T Y m e   ,   (13) 

where 

(1) (1) (1) (1)
111 ( ) ( )n nu nj r rj r    , (1) (1) (1) (1)

112 ( ) ( )n nu ny r ry r    , 

(1) (1)
31 ( 1) ( )nu n n j r  , (1) (1)

32 ( 1) y ( )nu n n r  , 

(1) (1)
11 ( )nv j r , (1) (1)

12 ( )nv y r , (1) (1)
21 ( )nv j r , (1) (1)

22 ( )nv y r , 

(1) (1) (1) (1)
131 ( 1) ( ) ( )n nv n j r rj r     , 

(1) 2 (1) 2 2 (1) (1) (1)
1111

1
( ( ) ) ( ) 2 ( )

2 n nT n n r j r rj r       , 

(1) 2 (1) 2 2 (1) (1) (1)
1112

1
( ( ) ) ( ) 2 ( )

2 n nT n n r y r ry r        

(1) (1) (1) (1)
1131 ( 1) ( 1) ( ) ( )n nT n n n j r rj r        , 

(1) (1) (1) (1)
1132 ( 1) ( 1) ( ) ( )n nT n n n y r ry r         

(1) (1) (1) (1)
1411 ( 1) ( ) ( )n nT n j r rj r     , (1) (1) (1) (1)

1412 ( 1) ( ) ( )n nT n y r ry r     , 

(1) (1) (1) (1)
1421

1
( 1) ( ) ( )

2 n nT r n j r rj r       , 

(1) (1) (1) (1)
1422

1
( 1) ( ) ( )

2 n nT r n y r ry r       , 

(1) 2 (1) 2 2 (1) (1) (1)
1431

1
( 1 ( ) ) ( ) ( )

2 n nT n r j r rj r       , 

(1) 2 (1) 2 2 (1) (1) (1)
1432

1
( 1 ( ) ) ( ) ( )

2 n nT n r y r ry r       , 

(3) (3) (3) (3)
111 ( ) ( )n nu nj r rj r    , (3) (3)

31 ( 1) ( )nu n n j r  , , 

(3) (3)
21 ( )nv j r , (3) (3) (3) (3)

131 ( 1) ( ) ( )n nv n j r rj r     , 

(3) 2 (3) 2 2 (3) (3) (3)
1111

1
( ( ) ) ( ) 2 ( )

2 n nT n n r j r rj r       , 
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(3) (3) (3) (3)
1131 ( 1) ( 1) ( ) ( )n nT n n n j r rj r        , 

(3) (3) (3) (3)
1411 ( 1) ( ) ( )n nT n j r rj r     , (3) (3) (3) (3)

1421
1

( 1) ( ) ( )
2 n nT r n j r rj r       , 

(3) 2 (3) 2 2 (3) (3) (3)
1431

1
( 1 ( ) ) ( ) ( )

2 n nT n r j r rj r       .             (14) 

In (14) ( )( )
1

kk c  , ( )( )
2
kk c  , ( ) ( ) ( ) ( )

1 ( 2 )k k k kc     , (2) (2) (2)
2  c  (k=1,3). 

Note that in (13) the expressions for the stresses which enter the boundary and contact conditions 
have been written. 

Thus, substituting the expressions (13) into the boundary (5) and contact conditions (6), 
according to (12), we obtain two uncoupled systems of algebraic equations. The first of these 
systems contains the unknown constants A(1), B(1), E(1), F(1), A(3) and E(3), and the second contains 
the unknown constants C(1), D(1) and C(3). According to the expressions obtained for the stresses  

( )k
r  and ( )k

r  and which are given in (13), the aforementioned equations obtained from the  
boundary and contact conditions with respect to these stresses coincide with each other.  
Additionally, according to the expressions in (13) obtained for the displacements ( )ku  and ( )ku ,  
the equations obtained from the contact conditions with respect to these displacements also 
coincide with each other. Consequently, for determination of the foregoing unknown constants, 
i.e., for obtaining the two sets of systems of algebraic equations it is enough to use only the contact  
and boundary conditions written with respect to the stresses ( )k

rr  and ( )k
r  (or ( )k

r ), and 
displacements ( )k

ru  and ( )ku  (or ( )ku ).  
Now we consider the solution of the Eqs. (1), (2) and (3) for the middle layer, the material of 

which is FG. It is evident that the solution procedure considered above does not apply directly for 
solution to these equations and therefore, according to Akbarov (2006, 2015), we act as follows. 
First, the middle layer with thickness hm=r1−r2 is divided into M number of sublayers with 
thickness h′m=r1−r2/M and it is assumed that within the scope of each p-th (1≤p≤M) sublayer, the 
material is homogeneous and the Lame constants and density of this material are determined as 
follows 

1

(2) (2)

( 1/2) '
( ) 

  


m

p

r r p h
r , 

1

(2) (2)

( 1/2) '
( )

m

p

r r p h
r 

  
 , 

1

(2) (2)

( 1/2) '
( ) 

  


m

p

r r p h
r .                      (15) 

In this way, the Eqs. (1), (2) and (3) for the middle layer of the sphere, which are equations 
with variable coefficients, are reduced to the series of the same equations with constant 
coefficients determined according to the relations in (15). Then the foregoing solution procedure is 
applied for determination of the solution to these equations as a result of which we obtain the 
expressions given in (13) and (14) with the obvious corresponding changes. Moreover we assume 
that between the sublayers, i.e., on the interface surfaces of the layers, perfect contact conditions 
are satisfied. We rewrite the contact conditions in (6) taking into consideration the aforementioned 
sublayers. 
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2 2

(3) (2)1
rr rr

r r r r
 

 
 , 

2 2

(3) (2)1
r rr r r r  

 
 , 

2 2

(3) (2)1
r r

r r r r
  

 
 , 

2 2

(3) (2)1
r r

r r r r
u u

 
 , 

2 2

(3) (2)1

r r r r
u u  

 , 
2 2

(3) (2)1

r r r r
u u  

 , 

2 2

(2)1 (2)2

' 'm m
rr rr

r r h r r h
 

   
 , 

2 2

(2)1 (2)1

' 'm m
r rr r h r r h  

   
 , 

2 2

(2)1 (2)2

' 'm
r r

r r h r r h
  

   
 , 

2 2

(2)1 (2)2

' 'm m
r r

r r h r r h
u u

   
 , 

2 2

(2)1 (2)2

' 'm mr r h r r h
u u    

 , 
2 2

(2)1 (2)2

' 'm mr r h r r h
u u    

 , 

………………………………………………………………………………………………. 

2 2

(2) 1 (2)

' 'm m

p p
rr rr

r r ph r r ph
 

   
 , 

2 2

(2) -1 (2)

' 'm m

p p
r rr r ph r r ph  

   
 , 

2 2

(2) 1 (2)

' 'm

p p
r r

r r ph r r ph
  

   
 , 

2 2

(2) 1 (2)

' 'm m

p p
r r

r r ph r r ph
u u

   
 , 

2 2

(2) 1 (2)

' 'm m

p p

r r ph r r ph
u u 



   
 , 

2 2

(2) 1 (2)

' 'm m

p p

r r ph r r ph
u u 


   

 , 

………………………………………………………………………………………………. 

1 1

(2) (1)M
rr rr

r r r r
 

 
 , 

1 1

(2) (1)M
r rr r r r  

 
 , 

1 1

(2) (1)M
r r

r r r r
  

 
 , 

1 1

(2) (1)M
r r

r r r r
u u

 
 , 

1 1

(2) (1)M

r r r r
u u  

 , 
1 1

(2) (1)M

r r r r
u u  

 ,       (16) 

where 

 (2) (2) (2) (2)(2) (2) (2) (2) (2)
11 12 31 32

1
( )cosp p pp p p p i t

r nmu A u B u E u F u X m e
r

     , 

(2) (2) (2) (2) (2)(2) (2) (2) (2)
11 12 31 32

1
( )p p p p pp p p p

nmu A v B v E v F v Y
r         

(2) (2)(2) (2)
21 22( ) ( ) cos

sin
p pp p i t

nm
m

C v D v X m e  


 


, 

 (2) (2) (2) (2)(2) (2) (2) (2) (2)
11 12 31 32

1
( )

sin
p p p pp p p p p

nm
m

u A v B v E v F v X
r 


        

(2) (2)(2) (2)
21 22( ) ( ) sinp pp p i t

nmC v D v Y m e    , 

(2)
(2) (2) (2) (2)(2) (2) (2) (2) (2)

111 112 131 1322

2
( )cos

p
p p p pp p p p p i t

rr nmA T B T E T F T X m e
r

       


(2)

(2) (2) (2) (2) (2)(2) (2) (2) (2)
411 412 431 4322

2
( )

p
p p p p pp p p p

nmr A T B T E T F T Y
r


         
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(2) (2)(2) (2)
421 422 ( ) cos

sin
p pp p i t

nm
m

C T D T X m e  


     
, 

(2)
(2) (2) (2) (2)(2) (2) (2) (2) (2)
411 412 431 4322

2
( )

sin

p
p p p pp p p p p

r nm
m

A T B T E T F T X
r


 


      

 

                   (2) (2)(2) (2)
421 422 ( ) cosp pp p i t

nmC T D T Y m e     
.                 (17) 

In (17) the following notation is used. 

(2) (2) (2) (2)
111 ( ) ( )p p p

n nu nj r rj r    , (2) (2) (2) (2)
112 ( ) ( )p p p p

n nu ny r ry r    , 

(2) (2)
31 ( 1) ( )p p

nu n n j r  , (2) (2)
32 ( 1) y ( )p p

nu n n r  , 

(2) (2)
11 ( )p

nv j r , (2) (2)
12 ( )p

nv y r , (2) (2)
21 ( )p p

nv j r , (2) (2)
22 ( )p p

nv y r , 

(2) (2) (2) (2)
131 ( 1) ( ) ( )p p p

n nv n j r rj r     , 

(2) (2) (2) (2)
132 ( 1) ( ) ( )p p p p

n nv n y r ry r     , 

(2) 2 (2) 2 2 (2) (2) (2)
1111

1
( ( ) ) ( ) 2 ( )

2
p p p p p

n nT n n r j r rj r       , 

(2) 2 (2) 2 2 (2) (2) (2)
1112

1
( ( ) ) ( ) 2 ( )

2
p p p p p

n nT n n r y r ry r        

(2) (2) (2) (2)
1131 ( 1) ( 1) ( ) ( )p p p p

n nT n n n j r rj r        , 

(2) (2) (2) (2)
1132 ( 1) ( 1) ( ) ( )p p p p

n nT n n n y r ry r         

(2) (2) (2) (2)
1411 ( 1) ( ) ( )p p p p

n nT n j r rj r     , 

(2) (2) (2) (2)
1412 ( 1) ( ) ( )p p p p

n nT n y r ry r     , 

(2) (2) (2) (2)
1421

1
( 1) ( ) ( )

2
p p p p

n nT r n j r rj r       , 

(2) (2) (2) (2)
1422

1
( 1) ( ) ( )

2
p p p p

n nT r n y r ry r       , 

(2) 2 (2) 2 2 (2) (2) (2)
1431

1
( 1 ( ) ) ( ) ( )

2
p p p p p

n nT n r j r rj r       , 

(2) 2 (2) 2 2 (2) (2) (2)
1432

1
( 1 ( ) ) ( ) ( )

2
p p p p p

n nT n r y r ry r       , 

( )( )
1

k pk p c  ,  ( )( )
2
k pk p c  , 
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              ( ) ( ) ( ) ( )
1 ( 2 )k p k p k p k pc     , (2) (2) (2)

2
p p pc   .            (18) 

Thus, using (13) and (18) we obtain two uncoupled systems of algebraic equations from the 
boundary (5) and contact (16) conditions. The first (second) system contains the unknowns A(1), 
B(1), E(1), A(1), A(2)1, B(2)1, E(2)1, F(2)1,..., A(2)M, B(2)M, E(2)M, F(2)M, A(3) and E(3) (C(1), D(1), C(2)1, D(2)1,..., 
C(3)M, D(2)M and C(3)). Equating to zero the determinant of the coefficient matrix of the first 
(second) group of equations, we obtain the following equations for determination of the frequency 
of the natural vibration 

           1 2
det 0q q    1 2; 1,2,...,4 6q q M +  (for the spheroidal vibration),         (19) 

           1 2
det 0p p  , 1 2; 1,2,...,2 3p p M    (for the torsional vibration).         (20) 

Note that the meaning of the spheroidal and torsional vibrations is well-known and can be 
found in many monographs related to elastodynamics (see, for instance, the monograph by 
Eringen and Suhubi (1975)). Therefore, here we do not consider determination of these vibration 
modes, although this determination follows from the foregoing discussions and from the 
expressions of the displacements given in (13) and (17). Moreover, we note that the explicit 
expressions of the components γq1q2 in (19) and of the components δp1p2 in (20) can be easily 
determined from the expressions (13), (14), (17) and (18). The number M in the Eqs. (19) and (20) 
i.e., the number of sublayers, (the summation of which gives the middle layer of the sphere) will 
be determined in the numerical solution procedure of these equations from the convergence 
requirement of the numerical results.  

This completes the consideration of the solution method 
 
 
4. Numerical results and discussions 
 

Results, which will be discussed below, are obtained from the numerical solution to the Eqs. 
(19) and (20) which is made by employing the well-know “bi-section” method. Before the solution 
to the procedure, the functions λ(2)(r), μ(2)(r) and ρ(2)(r) which characterize the functionally graded 
property of the middle-layer material of the sphere are selected. In the present investigations these 
functions are selected as follows 

1 1(2)(2)
1 1 10( ) (1 ( ) )n mE r E a r b    , 2 2(2)(2)

2 2 20( ) (1 ( ) )n mr a r b     , 

3 3(2)(2)
3 3 30( ) (1 ( ) )n mr a r b     , 

(2) (2)
(2)

(2) (2)

( ) ( )
( )

(1 ( ))(1 2 ( ))

E r r
r

r r


 


 

, 

                        
 

(2)
(2)

(2)

( )
( )

2 1 ( )







E r
r

r
.                            (21) 

Here ak, bk, nk, mk and ηk (k=1,2,3) are real numbers, for which the meaning of each notation is 
obvious. 
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Table 1 Natural frequencies (1) (1)/a     of the torsional vibration mode obtained in the present paper 

(upper number) and in the paper by Sato and Usami (1962a) (lower number) 

n  

(1) (1)a     
 

1 2 3 4 5 

0 
4.274 

- 
7.596 

- 
10.812 

- 
13.995 

- 
17.162 

- 

1 
5.763 
5.763 

9.095 
9.095 

12.322 
12.322 

15.514 
15.514 

18.689 
- 

2 
2.501 
2.501 

7.136 
7.136 

10.514 
10.514 

13.771 
13.771 

16.983 
16.983 

3 
3.864 
3.865 

8.444 
8.444 

11.881 
11.881 

15.175 
15.175 

18.412 
18.412 

4 
5.094 
5.095 

9.712 
9.712 

13.210 
13.210 

16.544 
16.544 

19.809 
19.809 

5 
6.265 
6.266 

10.950 
10.950 

14.510 
14.510 

17.885 
17.885 

21.180 
21.180 

 
 

The main aim of the present numerical investigations is to determine how the functionally 
graded properties of the middle-layer material of the three-layered solid sphere acts on the natural 
frequencies of the spheroidal and torsional vibration of this solid sphere. Before consideration of 
the main numerical results, for testing of the used calculation algorithm and PC programs, which 
are composed by the authors and realized in MATLAB, we consider the numerical results obtained 
for the case where the material of the sphere is homogeneous, i.e., we assume that η1=η2=η3=0 in 
(21) and E(2)/E(1)=ρ(2)/ρ(1)=1, E(3)/E(1)=ρ(3)/ρ(1)=1, v(1)=v(2)=v(3)=0.25. Introduce the dimensionless 
frequency 

(1) (1)/a                                (22) 

and consider the results given in Tables 1 and 2 which show the first five values of Ω obtained for 
the first six harmonic numbers (n=0,1,...,5) for the torsional and spheroidal vibration modes, 
respectively. 

Note that in these tables, the corresponding results obtained in the papers by Sato and Usami 
(1962a) (Table 1) and Sato et al. (1962) (Table 2) are also presented (lower numbers). The tables 
show that the results obtained by employing the present algorithm coincide almost completely 
with the corresponding ones obtained in the papers by Sato and Usami (1962a) and Sato et al. 
(1962). Note that in these tables the sign “-” means that the corresponding value of the natural 
frequency Ω is not considered in the corresponding references. Moreover, note that in the Table 2 
for the zeroth harmonic, i.e., under spheroidal vibration mode for n=0 it is obtained three type 
results. This situation is explained with the following consideration.  

By direct verification it is established that in the spheroidal vibration mode under n=0 the 
frequency Eq. (19) for the homogeneous solid sphere becomes as follows 

          (3) (3)
111 431 0

 
 

r a r a
T T ,                          (23) 
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Table 2 Natural frequencies (1) (1)/a     of the spheroidal vibration mode obtained in the present 

paper (upper number) and in the paper by Sato et al. (1962) (lower number) 

n  
(1) (1)a     

 
 

1 2 3 4 5 

0* 
2.458 

- 
4.439 
4.440 

5.959 
- 

9.210 
- 

10.493 
10.494 

0** 4.439 10.493 16.073 21.579 27.058 

0*** 2.458 5.959 9.210 12.406 15.580 

1 
3.424 
3.424 

6.771 
6.771 

7.745 
7.744 

10.695 
10.695 

13.019 
- 

2 
2.639 
2.640 

4.865 
4.865 

8.329 
8.329 

9.780 
9.780 

12.157 
12.157 

3 
3.916 
3.916 

6.454 
6.454 

9.704 
9.705 

11.747 
11.748 

13.638 
13.639 

4 
5.009 
5.009 

8.061 
8.062 

11.039 
11.039 

13.553 
13.553 

15.183 
15.201 

5 
6.032 
6.033 

9.635 
9.636 

12.368 
12.368 

15.179 
15.179 

16.817 
16.818 

 
 

from which follows following two equations  

 (3)
111 0

r a
T


 ,                               (24) 

and 

 (3)
431 0

r a
T


 .                              (25) 

Under direct solution of the Eq. (23) we obtain the roots given Table 2 in the line indicated by 
the 0*. However, by the solution to the Eqs. (24) and (25) we obtain the roots given in the Table 2 
in the lines indicated by the 0** and 0*** respectively. However, in the paper by Sato et al. 
(1962), as well as, in the monograph by Eringen and Shubi (1975), it is given only the roots shown 
in the line 0***  of the Table 2. We believe that this moment was missed in the studies by Sato et 
al. (1962). The other results which are considered in the Tables 1 and 2 almost completely consider 
with the corresponding ones obtained in the papers by Sato and Usami (1962a) and Sato et al. 
(1962). This confirms the validity of the algorithm and programs used in the present investigation.  

Now we attempt to explain the effect of an increase (or a decrease) in the values of the modulus 
of elasticity under fixed values of the materials’ densities, as well as the effect of an increase (or a 
decrease) in the values of the materials’ densities under fixed values of the modulus of elasticity in 
the inward radial direction on the values of the natural frequencies. Consider the case where 
r1/a=0.9, r2/a=0.4 and v(1)=v(2)=v(3)=0.3 where v(k) is Poisson’s ratio of the k-th material. We analyze 
the results given in Tables 3 and 4 which illustrate the influence of the change of the modulus of 
elasticity and the change of the densities in the aforementioned case, respectively, on the values of 
Ω (22) for the torsional and spheroidal vibration modes. These results are obtained for the first six  
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Table 3 The influence of the change of the modulus of elasticity in the inward radial direction on the values 

of the natural frequencies (1) (1)/a     obtained for the three-layered piecewise homogeneous solid 

sphere  

(2)

(1)
E
E

 
(3)

(1)
E
E

 n 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0.5 0.3 

0 2.8835 4.9135 7.0545 1.7025 3.5075 3.9195 
1 3.9535 5.9115 8.0745 2.6785 4.7325 5.6415 
2 2.0075 4.9975 6.9235 1.8215 3.8955 5.8745 
3 3.1405 6.0345 7.9525 2.7865 5.1655 6.9645 
4 4.1785 7.0505 9.0155 3.6425 6.3635 8.1345 
5 5.1785 8.0375 10.108 4.4465 7.4915 9.3515 

0.7 0.5 

0 3.4865 5.9845 8.5895 2.0715 4.1235 4.7405 
1 4.7365 7.2055 9.7945 3.0495 5.7155 6.6945 
2 2.2345 5.9335 8.4165 2.1575 4.3785 6.9605 
3 3.4795 7.1015 9.6285 3.2775 5.8355 8.1215 
4 4.6145 8.2375 10.850 4.2565 7.2665 9.3555 
5 5.7035 9.3385 12.071 5.1705 8.6275 10.678 

0.9 0.7 

0 3.9715 6.8565 9.8205 2.3695 4.6485 5.4345 
1 5.3725 8.2495 11.185 3.3665 6.5215 7.5935 
2 2.4175 6.6995 9.6135 2.4465 4.7725 7.8785 
3 3.7475 7.9845 10.963 3.6985 6.3375 9.1335 
4 4.9505 9.2285 12.308 4.7835 7.9045 10.439 
5 5.7915 9.4215 11.8145 6.0995 10.4345 13.6365 

1 1 

0 4.2745 7.5965 10.812 2.4585 4.9955 5.9595 
1 5.7635 9.0955 12.322 3.5295 7.1015 8.0775 
2 2.5015 7.1365 10.514 2.6465 5.0065 8.5275 
3 3.8645 8.4445 11.881 3.9375 6.6085 9.8825 
4 5.0945 9.7125 13.210 5.0455 8.2145 11.224 
5 6.2655 10.950 14.510 6.0835 9.7775 12.574 

3 5 

0 7.0985 13.440 19.142 3.3595 8.7125 11.044 
1 9.6575 15.712 21.634 5.6615 12.337 13.781 
2 3.4765 11.801 17.820 4.7495 7.6265 14.807 
3 5.2075 13.778 19.780 6.8195 9.4285 16.891 
4 6.6775 15.698 21.665 8.4935 11.257 18.608 
5 8.0085 17.592 23.530 10.024 13.028 20.239 

5 7 

0 8,8645 16,168 22,818 4.9325 10.935 13.171 
1 11,898 18,946 25,817 7.0545 14.986 16.952 
2 4,0085 14,505 21,524 5.9675 9.1185 17.543 
3 5,9055 16,926 23,942 8.6435 10.942 19.987 
4 7,4555 19,258 26,270 10.738 12.721 22.221 
5 8,8155 21,519 28,554 12.560 14.416 24.326 

7 9 

0 10.203 18.180 25.565 6.0755 12.708 14.511 
1 13.586 21.306 28.961 8.1385 16.601 19.265 
2 4.3885 16.512 24.222 6.9515 10.203 19.367 
3 6.3885 19.221 26.973 10.103 11.924 22.241 
4 7.9755 21.796 29.628 12.506 13.585 24.896 
5 9.3395 24.241 32.233 14.395 15.305 27.246 
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Table 4 The influence of the change of the material densities in the inward radial direction on the values of 

the natural frequencies (1) (1)/a     obtained for the three-layered piecewise homogeneous solid 

sphere  

(2)

(1)



 
(3)

(1)



 n 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0.5 0.3 

0 6.4345 11.744 16.016 3.9145 6.2375 8.6875 
1 7.9535 13.798 18.962 4.4715 10.317 10.854 
2 2.7715 9.5855 15.328 3.3375 5.9175 12.060 
3 4.2295 11.295 16.853 4.9045 7.5785 13.533 
4 5.5165 13.027 18.461 6.1825 9.2955 15.050 
5 6.7225 14.752 20.138 7.3295 11.006 16.626 

0.7 0.5 

0 5.4685 9.6205 13.341 3.2245 5.6545 7.3205 
1 6.8985 11.510 15.479 4.0455 8.8525 9.4025 
2 2.6775 8.3305 12.962 3.0095 5.5165 10.365 
3 4.1105 9.7885 14.334 4.4475 7.1705 11.718 
4 5.3875 11.250 15.734 5.6515 8.8635 13.081 
5 6.5915 12.702 17.173 6.7575 10.538 14.479 

0.9 0.7 

0 4.8635 8.4435 11.788 2.8155 5.1995 6.4905 
1 6.2195 10.145 13.528 3.7265 7.8775 8.4915 
2 2.5595 7.5285 11.505 2.7585 5.1825 9.2765 
3 3.9495 8.8385 12.763 4.0915 6.7975 10.554 
4 5.1995 10.141 14.021 5.2285 8.4335 11.835 
5 6.3845 11.430 15.300 6.2885 10.037 13.148 

1 1 

0 4.2745 7.5965 10.812 2.4585 4.9955 5.9595 
1 5.7635 9.0955 12.322 3.5295 7.1015 8.0775 
2 2.5015 7.1365 10.514 2.6465 5.0065 8.5275 
3 3.8645 8.4445 11.881 3.9375 6.6085 9.8825 
4 5.0945 9.7125 13.210 5.0455 8.2145 11.224 
5 6.2655 10.950 14.510 6.0835 9.7775 12.574 

3 5 

0 2.0555 4.2975 5.7945 1.2135 3.1335 3.2605 
1 3.0495 5.0605 6.7775 2.1395 3.9085 4.7735 
2 1.6765 4.0605 5.7595 1.6495 3.2555 4.7725 
3 2.6085 5.0485 6.5155 2.4945 4.3555 5.7425 
4 3.4585 5.9855 7.3625 3.2525 5.3845 6.7695 
5 4.2725 6.8635 8.2955 3.9855 6.3365 7.8025 

5 7 

0 1.7725 3.4905 4.8075 1.0185 2.4875 2.6715 
1 2.5545 4.1175 5.5985 1.7515 3.2245 3.8305 
2 1.3145 3.3245 4.7185 1.3085 2.6395 3.9495 
3 2.0435 4.0605 5.3655 1.9755 3.4995 4.7305 
4 2.7065 4.7555 6.0655 2.5805 4.2885 5.5315 
5 3.3405 5.4165 6.8035 3.1705 5.0125 6.3205 

7 9 

0 1.5735 3.0125 4.1935 0.8955 2.1245 2.3175 
1 2.2335 3.5625 4.8615 1.5175 2.8085 3.2855 
2 1.1105 2.8715 4.0975 1.1175 2.2755 3.4415 
3 1.7255 3.4775 4.6635 1.6865 3.0025 4.1075 
4 2.2845 4.0525 5.2625 2.2045 3.6655 4.7825 
5 2.8185 4.6025 5.8765 2.7105 4.2725 5.4395 
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Table 5 Convergence of the numerical results with respect to the number M of the sublayers obtained for the 

natural frequencies (1) (1)/a     obtained for the three-layered solid sphere with middle layer made of 

FGM  

n M 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

4 

1 7.8615 21.2615 29.0515 12.1745 13.4075 24.6505 
3 7.3165 19.8685 28.7605 11.7955 12.4615 23.2405 
5 7.2465 19.7885 28.6555 11.7725 12.3155 23.1385 
7 7.2255 19.7665 28.6255 11.7625 12.2735 23.1065 
9 7.2175 19.7575 28.6135 11.7575 12.2565 23.0925 
11 7.2125 19.7535 28.6075 11.7555 12.2475 23.0845 
13 7.2105 19.7505 28.6035 11.7545 12.2425 23.0805 
15 7.2085 19.7485 28.6015 11.7535 12.2395 23.0775 
17 7.2075 19.7475 28.5995 11.7525 12.2375 23.0765 
19 7.2065 19.7465 28.5985 11.7525 12.2365 23.0745 
21 7.2065 19.7465 28.5985 11.7515 12.2345 23.0735 

5 

1 9.2245 23.6535 31.4925 14.0325 15.0885 26.7905 
3 8.6275 21.8155 30.9485 13.4155 14.0165 25.3325 
5 8.5425 21.7095 30.8325 13.4185 13.8205 25.1575 
7 8.5175 21.6805 30.7985 13.4195 13.7585 25.1115 
9 8.5065 21.6695 30.7845 13.4195 13.7325 25.0915 
11 8.5005 21.6635 30.7765 13.4195 13.7185 25.0815 
13 8.4975 21.6595 30.7725 13.4195 13.7105 25.0765 
15 8.4955 21.6575 30.7705 13.4195 13.7055 25.0725 
17 8.4945 21.6565 30.7685 13.4195 13.7025 25.0705 
19 8.4935 21.6555 30.7675 13.4195 13.7005 25.0685 
21 8.4925 21.6545 30.7665 13.4195 13.6985 25.0675 

 
 

harmonics and the first three roots are presented for each harmonic.  
Thus, it follows from these results that an increase (a decrease) in the values of the modulus of 

elasticity in the inward radial direction causes an increase (a decrease) in the values of the natural 
frequency Ω. Also, these results show that an increase (a decrease) in the values of the densities in 
the inward radial direction causes a decrease (an increase) in the values of Ω. This conclusion 
gives some orientation for estimation and explanation of the numerical results which are obtained 
for the case where the material of the middle layer of the sphere is FG. It should be noted that the 
results obtained in the cases where the modulus of elasticity and densities are changed 
simultaneously can also be explained and estimated according to the foregoing conclusions.  

Thus, we consider the numerical results related to the case where the material of the middle 
layer of the sphere is FG. Assume that, as in the foregoing case, r1/a=0.9, r2/a=0.4 and 
v(1)=v(2)=v(3)=0.3. First, we illustrate some fragments of the results which show convergence with 
respect to the number M of the sublayers into which the middle layer is divided. These fragments 
are given in Table 5 for the torsional and spherical vibration modes in the case where a1=−14/a, 
b1=14.6, η1=1, η2=0, η3=0, E(3)/E(1)=12 and n1=m1=1. Consequently, we assume that the density and 
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Poisson’s ratio of the material of the middle layer are constants, but the modulus of elasticity 
changes linearly through the thickness, so that, the ratio (2)(2)

0( ) /E r E  increases from 
(2)(2)
0 0.9

( ( ) / ) 3
r a

E r E


   until (2)(2)
0 0.4

( ( ) / ) 10
r a

E r E


  in the inward radial direction. Analyses 

of the results given in Table 5 show the high effectiveness of the approach used in the convergence 
sense with respect to the sublayers’ number M. Taking these and many other results, which are not 
given here, into consideration allows us to conclude that it is enough to take M=21 to obtain 
numerical results with very high accuracy. Taking this conclusion into account we assume that 
M=21 under obtaining all numerical results which will be discussed below. 

Now we consider the numerical results related namely to the case where the middle layer 
material is FG and assume that v(1)=v(2)=v(3)=0.3, i.e., assume that η2=0. Moreover, as above, 
assume that r1/a=0.9, r2/a=0.4, E(3)/E(1)=9 and suppose that m1=m3=1. We determine the constants 
a1 and b1 (a3 and b3) from the way that the ratio E(2)(r)/E(1) (the ratio ρ2)(r)/ ρ(1)) increases from 

(1)(2)

0.9
( ( ) / ) 3

r a
E r E


  (from (1)(2)

0.9
( ( ) / ) 3

r a
r 


 ) until (1)(2)

0.4
( ( ) / ) 7

r a
E r E


  (until 

(1)(2)

0.4
( ( ) / ) 7

r a
r 


 ). So that, for determination of the constants ak and bk (k=1,3) we obtain the 

following expressions 

1(2)(2)
1 10( ) (1 ( ) )nE r E a r b   , 3(2)(2)

3 30( ) (1 ( ) )nr a r b    , 

1/ 1/2 (2) (6)k kn n
ka a    , 1/ 1/1.8 (6) 0.8 (2)k kn n

kb a       .         (26) 

 
 
Table 6 The influence of an increase of the modulus of elasticity in the inward radial direction under 
constant material densities on the values of the natural frequencies obtained for the three-layered solid 
sphere with middle layer made of FGM  

n n1 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0 

0 6.7865 14.114 20.759 1.3845 9.0525 11.966 

0.2 9.8645 17.676 24.970 5.8655 12.229 14.067 

0.5 9.4305 17.079 24.237 5.5485 11.672 13.532 

1 8.8975 16.430 23.402 5.0725 11.037 13.001 

1.5 8.5315 16.035 22.872 4.6815 10.627 12.738 

2 8.2685 15.770 22.512 4.3645 10.346 12.600 

3 7.9205 15.433 22.062 3.8895 9.9925 12.473 

1 

0 9.8235 16.330 22.944 5.7165 12.672 14.007 

0.2 13.110 20.726 28.263 8.7835 17.598 20.941 

0.5 12.519 20.027 27.400 8.0695 16.919 19.625 

1 11.835 19.246 26.410 7.3165 16.086 17.979 

1.5 11.395 18.749 25.779 6.8795 15.566 16.902 

2 11.097 18.404 25.349 6.6085 15.217 16.185 

3 10.725 17.949 24.803 6.0715 14.004 14.827 
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Table 6 Continued 

2 

0 3.4895 11.985 18.379 5.0145 7.8885 15.861 
0.2 4.1955 15.884 23.547 6.7285 9.6555 18.794 
0.5 3.9895 15.121 22.725 6.4535 9.1075 18.112 
1 3.7955 14.262 21.785 6.1215 8.6365 17.374 

1.5 3.6945 13.726 21.176 5.8995 8.4155 16.942 
2 3.6375 13.371 20.748 5.7475 8.2965 16.670 
3 3.5775 12.939 20.184 5.5545 8.1755 16.363 

3 

0 5.2115 13.893 20.203 6.9755 9.5125 17.786 
0.2 6.1125 18.423 26.187 9.7385 11.327 21.407 
0.5 5.8225 17.472 25.220 9.2735 10.722 20.507 
1 5.5575 16.426 24.102 8.7025 10.221 19.611 

1.5 5.4285 15.789 23.369 8.3275 9.9965 19.124 
2 5.3585 15.374 22.855 8.0725 9.8785 18.838 
3 5.2905 14.881 22.184 7.7555 9.7615 18.536 

4 

0 6.6795 15.758 21.949 8.5645 11.280 19.169 
0.2 7.6515 20.816 28.717 12.009 12.980 23.816 
0.5 7.3135 19.672 27.590 11.390 12.336 22.688 
1 7.0135 18.444 26.276 10.629 11.816 21.623 

1.5 6.8745 17.716 25.417 10.129 11.604 21.066 
2 6.8035 17.251 24.818 9.7925 11.504 20.742 
3 6.7385 16.712 24.046 9.3855 11.417 20.392 

5 

0 8.0095 17.619 23.704 10.051 13.035 20.559 
0.2 8.9905 23.079 31.183 13.816 14.668 26.016 
0.5 8.6275 21.749 29.878 13.090 13.984 24.720 
1 8.3155 20.360 28.359 12.186 13.458 23.512 

1.5 8.1775 19.557 27.374 11.600 13.263 22.882 
2 8.1095 19.056 26.695 11.217 13.179 22.507 
3 8.0515 18.493 25.833 10.773 13.115 22.078 

 
 

Under the foregoing selection of functions which enter into relation (21) the changing (i.e., the 
increasing) character of the modulus of elasticity (or of the material density) depends only on the 
constant nk. For illustration of the dependence of this character on the constant nk, the graphs of the 
function E(2)(r)/E(1) constructed for various values of this constant are given in Fig. 2. Note that, 
according to the foregoing assumptions, the same graphs are also obtained for the function 
ρ(2)(r)/ρ(1). It follows from these graphs that the values of the integrals 

               
0.9

(1)(2)

0.4

( ) /ES E r E dr   and 
0.9

(1)(2)

0.4

( ) /S r dr    .              (27) 

increase with a decrease of the constants n1(≥0) and n3(≥0), respectively. For instance, in the cases 
where n1(n3)=0.2, 0.5, 1.0, 1.5, 2.0 and 3.0, it is obtained that SE(Sρ)=3.1672, 2.8333, 2.4999, 
2.1666 and 1.9999, respectively. Consequently, the influence of the change character of the FGM 
in the inward radial direction can also be estimated through the values SE and Sρ.  
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Fig. 2 Distribution of modulus of elasticity in the radial direction 
 
 
Thus, we consider the results given in Tables 6 and 7 which show the influence of the change of 

the modulus of elasticity and of the material densities, respectively, under various n1 (=n3) on the 
values of the dimensionless natural frequency Ω (22) obtained for the torsional and spheroidal 
vibration modes. These results are presented for the first six harmonics and for the first three roots 
and, under obtaining the results given in Table 6 (in Table 7), it is assumed that η3=0 (η1=0). It 
follows from these tables that an increase in the values of the modulus of elasticity in the inward 
 
 
Table 7 The influence of an increase of the material densities in the inward radial direction under constant 

modulus of elasticity on the values of the natural frequencies (1) (1)/a     obtained for the three-

layered solid sphere with middle layer made of FGM  

n n3 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0 

0 1.4445 3.6285 5.0015 0.9485 2.6995 3.0365 

0.2 1.6055 3.0905 4.2915 0.9085 2.2545 2.3635 

0.5 1.6345 3.1655 4.3955 0.9215 2.4015 2.4115 

1 1.6505 3.2285 4.5015 0.9325 2.4575 2.5645 

1.5 1.6455 3.2595 4.5735 0.9375 2.4845 2.6675 

2 1.6335 3.2835 4.6355 0.9405 2.5045 2.7385 

3 1.6065 3.3245 4.7425 0.9425 2.5315 2.8265 

1 

0 2.2925 4.5445 5.5505 1.8845 3.4075 4.1715 

0.2 2.2795 3.6695 4.9685 1.5905 2.9095 3.4145 

0.5 2.3225 3.7805 5.0775 1.6675 3.0145 3.5625 

1 2.3505 3.8855 5.1865 1.7415 3.1145 3.7285 

1.5 2.3535 3.9485 5.2595 1.7815 3.1705 3.8315 

2 2.3475 4.0005 5.3195 1.8045 3.2065 3.8965 

3 2.3315 4.0905 5.4175 1.8275 3.2525 3.9715 
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Table 7 Continued 

2 

0 1.6725 3.2015 5.2585 1.6015 2.9595 4.1635 

0.2 1.2185 2.9415 4.2205 1.1855 2.4065 3.5695 
0.5 1.3365 3.0095 4.3545 1.2635 2.5445 3.7105 

1 1.4605 3.0635 4.4895 1.3505 2.6775 3.8515 

1.5 1.5325 3.0835 4.5775 1.4055 2.7505 3.9285 
2 1.5755 3.0905 4.6505 1.4435 2.7945 3.9755 

3 1.6205 3.0965 4.7765 1.4905 2.8405 4.0295 

3 

0 2.6055 4.1405 5.8985 2.4625 3.9725 5.0605 

0.2 1.8985 3.5835 4.7955 1.8005 3.1735 4.2755 
0.5 2.0885 3.6895 4.9425 1.9315 3.3475 4.4635 

1 2.2875 3.7815 5.0975 2.0785 3.5175 4.6555 

1.5 2.4025 3.8255 5.2025 2.1715 3.6125 4.7615 
2 2.4705 3.8515 5.2905 2.2355 3.6715 4.8245 

3 2.5395 3.8875 5.4405 2.3115 3.7395 4.8975 

4 

0 3.4565 5.0945 6.5495 3.2365 4.9505 5.9905 

0.2 2.5185 4.2015 5.4035 2.3665 3.8655 4.9855 
0.5 2.7755 4.3555 5.5615 2.5535 4.0695 5.2115 

1 3.0455 4.4975 5.7315 2.7625 4.2725 5.4435 

1.5 3.2015 4.5725 5.8485 2.8935 4.3895 5.5775 
2 3.2935 4.6215 5.9465 2.9795 4.4655 5.6615 

3 3.3835 4.6955 6.1125 3.0785 4.5585 5.7615 

5 

0 4.2725 6.0545 7.2305 3.9785 5.9265 6.8755 

0.2 3.1125 4.7985 6.0345 2.9235 4.5035 5.6715 
0.5 3.4345 5.0065 6.2085 3.1685 4.7425 5.9215 

1 3.7745 5.2065 6.3935 3.4395 4.9865 6.1815 

1.5 3.9715 5.3185 6.5195 3.6055 5.1325 6.3375 
2 4.0855 5.3965 6.6255 3.7115 5.2295 6.4405 

3 4.1945 5.5125 6.8025 3.8295 5.3585 6.5705 

 
 
radial direction causes an increase in the values of the natural frequency Ω. According to Table 7, 
in general, a similar conclusion also occurs for the influence of the increase of the material density 
in the inward direction on the natural frequencies, i.e., the increase of the material density causes a 
decrease in the values of the natural frequency. However, this conclusion is violated in the zeroth 
harmonic for the first roots in the torsional mode.  

As follows from comparison of the results obtained for the various values of the constants n1 
and n3, the foregoing effects of the FGM of the middle layer on the natural frequencies become 
more considerable with the parameters SE and Sρ in (27) (or with decreasing of the constants n1(≥0) 
and n3(≥0)). Note that the parameters SE and Sρ can be used as global characteristics of the FGM 
determined through the relations in (21). 

Now we consider the numerical results which are obtained in the case where the modulus of 
elasticity and the density of the FGM of the middle layer increase simultaneously in the inward  
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Table 8 The influence of a simultaneous increase of the material densities and modulus of elasticity in the 

inward radial direction on the values of the natural frequencies (1) (1)/a     obtained for the three-

layered solid sphere with middle layer made of FGM  

n n1(=n3) 
Torsional vibration Spheroidal vibration 

1 2 3 1 2 3 

0 

0 2,4955 9,2515 12,450 0.9885 6.9365 7.1785 
0.2 4,7185 9,3095 12,622 2.7285 6.7635 7.3465 
0.5 4,6295 9,1395 12,470 2.7435 6.9975 7.2335 
1 4,4365 8,9625 12,392 2.7045 7.0515 7.2145 

1.5 4,2435 8,9165 12,396 2.6285 6.9285 7.3095 
2 4,0725 8,9395 12,409 2.5405 6.8585 7.3425 
3 3,8095 9,0485 12,412 2.3725 6.8115 7.3345 

1 

0 5,5325 10,103 14,773 3.8165 7.6885 10.140 
0.2 6,8005 10,721 14,193 4.3335 8.6255 10.298 
0.5 6,6555 10,524 14,136 4.3175 8.6085 10.330 
1 6,4125 10,366 14,169 4.2585 8.5105 10.289 

1.5 6,2185 10,349 14,228 4.1915 8.4305 10.194 
2 6,0785 10,385 14,269 4.1325 8.3785 10.096 
3 5,9035 10,482 14,308 4.0465 8.3095 9.9595 

2 

0 3,0845 8,3415 11,274 3.8015 6.2835 9.2835 
0.2 3,1805 8,7115 12,152 3.6315 6.2995 10.228 
0.5 3,2125 8,5305 11,961 3.7765 6.2895 10.117 
1 3,2245 8,2865 11,839 3.9155 6.2425 9.9465 

1.5 3,2155 8,1435 11,834 3.9815 6.2025 9.8255 
2 3,2015 8,0695 11,856 4.0085 6.1795 9.7365 
3 3,1755 8,0255 11,892 4.0155 6.1685 9.6105 

3 

0 4,6715 10,459 13,079 5.3295 8.1475 11.757 
0.2 4,8625 10,375 13,653 5.3395 8.2755 11.989 
0.5 4,8865 10,166 13,509 5.5475 8.2455 11.829 
1 4,8745 9,9495 13,445 5.7285 8.1765 11.637 

1.5 4,7765 8,3665 13,010 5.7905 8.1335 11.524 
2 4,7555 8,3675 13,074 5.7965 8.1175 11.456 
3 4,7275 8,3735 13,107 5.7485 8.1215 11.392 

4 

0 6,0865 12,008 15,262 6.6155 9.9535 14.065 
0.2 6,1615 9,6635 13,988 6.7795 10.220 13.674 
0.5 6,1135 9,7425 14,186 7.0205 10.156 13.499 
1 6,3165 11,445 15,051 7.2035 10.051 13.333 

1.5 6,2655 11,430 15,083 7.2035 10.051 13.333 
2 6,2245 11,478 15,097 7.2045 9.9785 13.260 
3 6,1725 11,611 15,080 7.0985 9.9795 13.314 

5 

0 7,4145 13,371 17,164 7.8675 11.727 15.712 
0.2 7,7515 13,167 16,417 8.1325 12.098 15.196 
0.5 7,7305 12,957 16,475 8.3905 11.993 15.027 
1 7,6545 12,845 16,571 8.5525 11.853 14.903 

1.5 7,5875 12,884 16,631 8.5435 11.790 14.895 
2 7,5395 12,967 16,657 8.4755 11.771 14.945 
3 7,4845 13,129 16,668 8.3245 11.773 15.105 
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radial direction. Assume that the increase law of the modulus of elasticity remains as indicated 
above, i.e., the ratio E(2)(r)/E(1) increases from (1)(2)

0.9
( ( ) / ) 3

r a
E r E


  until (1)(2)

0.4
( ( ) / ) 7

r a
E r E


 . 

However, with respect to the material density we assume that the ratio ρ(2)(r)/ρ(1) increases from 
(2) (1)

0.9
( ( ) / ) 2

r a
r 


   until (2) (1)

0.4
( ( ) / ) 5

r a
r 


  and ρ(3)/ρ(1)=7. The values of the other 

parameters remain as above. Thus, consider the values of the natural frequencies obtained for this 
case as given in Table 8. As in the foregoing tables, these results are obtained for the first six 
harmonics and for each harmonic the first three roots are found in the torsional and spheroidal 
vibration modes. Analysis of the data given in Table 8 shows that for the case under consideration, 
the natural frequencies increase with simultaneous increases in the parameters SE and Sρ in (24) 
(i.e., with simultaneous decreases in the constants n1(≥0) and n3(≥0)). However, the magnitude of 
the increases is significantly less than that the magnitudes obtained in Table 6. It is obvious that 
this situation can be explained with the foregoing results, according to which, an increase of the 
material density in the inward radial direction causes a decrease, but the corresponding increase of 
the modulus of elasticity causes an increase in the values of the natural frequencies, and the 
simultaneous existence of the noted “decrease” and “increase” determines the character of the 
results given in Table 8.  

This completes the consideration and analysis of the numerical results. 
 

 
5. Conclusions 
 

Thus, in the present paper, the natural vibration of the three-layered solid sphere with middle 
layer made of FGM is investigated by employing the exact three-dimensional equations and 
relations of elastodynamics in spherical coordinates. It is assumed that perfect contact conditions 
take place on the interface surfaces between the constituents of the sphere. The corresponding 
eigenvalue problem is solved by employing the discrete analytical method, according to which, the 
layer made of FGM is divided into a certain number of sublayers and within each sublayer the 
material is taken as homogeneous. Between the sublayers, complete contact conditions are 
satisfied and analytical solutions to the field equations are obtained for each layer separately. It is 
assumed that the material properties of the FGM change in the radial direction according to the 
power law. Numerical results on the dimensionless natural frequency Ω (22) obtained for certain 
concrete cases of this law are presented for the first six harmonics and for the first five or three 
roots of each harmonic for the torsional and spheroidal vibration modes. Analysis of these results 
allows us to make the following main concrete conclusions: 

• An increase (a decrease) of the modulus of elasticity of the FGM in the inward radial direction 
causes an increase (a decrease) in the values of the natural frequency Ω; 
• A decrease (an increase) of the density of the FGM in the inward radial direction, in general, 
causes an increase (a decrease) in the values of the natural frequency Ω; 
• The influence of the character of the aforementioned change (increase or decrease) law on the 
values of Ω can be determined through the parameters SE and Sρ (27); 
• An increase in the values of SE, i.e. a decrease in the values of the constant n1 which enter the 
relation (26), also, causes an increase in the values of Ω; 
• A decrease in the values of Sρ, i.e. an increase in the values of the constant n3 which enter the 
relation (26), also, in general, causes an increase in the values of Ω; 
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• The character of the results obtained in the cases where the modulus of elasticity and the 
material density of the FGM are changed simultaneously, can be explained with the use of the 
foregoing conclusions. 
The foregoing results and conclusions can also be recommended for engineers for increasing or 

decreasing the natural frequencies of inhomogeneous solid spheres. At the same time, the 
foregoing results allow for control of the natural frequencies of many-layered solid spheres 
through selection of the change law of the FGM.  

Taking into consideration the significance of the obtained results for possible application, we 
believe that related investigations must be continued and these will be made in further works by 
the authors. 
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