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Abstract.  One of the objectives of this study is to implement the direct calculation of the torsional moment 

of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite 

element method. Recently the proposed method provides a unique calculation of the torsional rigidity of 

simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-

cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element 

based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural 

frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial 

finite element program SAP2000. 
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1. Introduction 
 

Numerous theoretical and numerical studies for the static and the dynamic analysis of the 

cylindrical and non-cylindrical helices with the circular and the rectangular cross-sections are 

available in the literature. The governing differential equations developed by Michell (1890) go 

back to the 19th century and they were improved by Love (1899) and modified by Yoshimura and 

Murata (1952). The rotary inertia and the shear influence were included by Wittrick (1966) as a set 

of 12 linear coupled partial equations. An extensive historical review exists in Jiang et al. (1991), 

which provides a theoretical investigation of a coupled extensional-torsional vibration of helical 

springs. Lin and Pisano (1987) derived the general dynamic equations of helical springs. 

Analytical studies of Yu et al. (2010), Yu and Hao (2011) considered the warping deformations of 

the cross-section in a dynamic analysis of helicoidal springs and bars. Zhu et al. (2013) 

investigated the natural frequencies of a cylindrical helical spring using the Frobenius’ scheme and 

the dynamic stiffness method. Since the natural frequencies of non-cylindrical helical springs 

depend on various parameters, such as the helix pitch angle, the helix geometry (hyperboloidal, 
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barrel, and conical), the ratio of the maximum helix radius to the minimum helix radius, the 

geometry of the cross-section, the number of active turns, and the boundary conditions, obtaining 

analytical solutions in such an extensive range is challenging. To address these problems, various 

numerical methods were employed. Wittrick’s equations were extended to numerical methods, 

e.g., applied to the finite element method (FEM) by Mottershead (1980) and the transfer matrix 

method by Pearson (1982). Nagaya et al. (1986) experimentally and theoretically determined the 

natural frequencies for non-cylindrical helical springs with circular cross-sections using the 

transfer matrix method. The transfer matrix method (TMM) is intensively applied to dynamic 

analysis of cylindrical/non-cylindrical helical springs besides FEM with circular and rectangular 

cross-sections by Yıldırım (1996), Yıldırım and İnce (1997), Yıldırım (1997), Yıldırım (1998) and 

Yıldırım (2002). Yıldırım (2012) derived linearized disturbance dynamic equations for buckling 

and the free vibration of cylindrical helical coil springs under combined compression and torsion. 

Based on Eisenberger (1990), Busool and Eisenberger (2002) employed the exact element method 

for the free vibration analysis of non-cylindrical helicoidal beams with circular and rectangular 

variable cross-sections. Omurtag and Aköz (1992) suggested a simple but effective formulation for 

solving non-cylindrical helix geometry, which considers the nodal curvature values of the nodes of 

the curved element; it was also verified by Girgin (2006). Lee (2007a, b) applied the 

pseudospectral method to investigate the free vibration analysis of cylindrical and non-cylindrical 

helical springs with circular cross-sections. Improved Riccati transfer matrix method is applied to 

non-cylindrical and composite non-cylindrical springs for analyzing the warping effect on the free 

vibration analysis by Yu and Hao (2012), Yu and Hao (2013a, b). Using the initial value method, 

free vibration analysis of circular beams, considering transverse shear deformation and rotary 

inertia, were investigated by Tufekci and Yigit (2012). Rajasekaran (2013) applied the differential 

quadrature element of lowest order or Lagrangian interpolation technique to solve the free 

vibration of functionally graded circular, parabolic, catenary, elliptic and sinusoidal arches. Fard 

(2014) investigated the eigenvalue governing equations based on Hamilton's principle using 

Fourier series solution method and by an adequate modeling of warping, shear correction factor 

was not required. A parametric study on the free vibration analysis of cylindrical and non-

cylindrical helicoidal bars with thin-walled circular tube cross-section is performed by Eratlı et al. 

(2015).  

Torsional rigidity of an arbitrary cross-section, with the exception of a circular cross-section, 

requires special care. Some analytical equations (e.g., Wang 1953, Timoshenko and Goodier 1969, 

Murray 1986) and approximated analytical formulas in tabulated form exist in Arutunan and 

Abraman (1963). The torsional stiffness of thin walled multi-celled structures, which are 

calculated using a membrane analogy and an arithmetic process of successive approximations, 

were tabulated by Roark (1954). Generally, analytical solutions for complicated arbitrary cross-

sections are difficult to obtain. To overcome this problem, some numerical studies were 

developed. The boundary conditions of the well-known Poisson's equation and the St. Venant 

torsion formulation are deeply investigated in conjunction with the divergence theorem. The St. 

Venant torsion problem was solved by the finite difference method for a non-homogeneous and 

compound bar by Ely and Zienkiewicz (1960); the same theory was employed by Krahula and 

Lauterbach (1969) and solved the torsional stiffness and the shear stress for a hollow square 

section using the FEM. A boundary element solution was adapted to the St. Venant semi-inverse 

method to solve coupled torsion and flexure problems of arbitrary cross-sections and isotropic 

material by Friedman and Kosmatka (2000). The boundary element method was developed for the 

non-uniform torsion of arbitrary constant cross-sections of multi-material composite bars by 
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Sapountzakis (2001) and arbitrary variable cross-sections of simply or multiply connected bars by 

Sapountzakis and Mokos (2004). The most powerful approach was proposed by Prandtl, in which 

the torsion problem was reduced to the solution of Poisson's equation with a homogenous 

boundary condition (Timoshenko and Goodier 1969). Thus, the torsion problem yields to a 

standard two dimensional potential problem, which is suitable for a finite difference (Wang 1953) 

or FE solution (Hermann 1965, Darılmaz et al. 2007, Li et al. 2000). Lamancusa and Saravanos 

(1989) applied two dimensional thermal analogy and FEM for solving hollow square tubes. 

In this study, the torsional moments of inertia for non-circular cross-sections are calculated by 

an alternative elegant FE solution of Poisson's equation, in contrast to the classical procedure. This 

program is embedded in a mixed FE program, which was developed based on the Timoshenko 

beam theory (Omurtag and Aköz 1992). First the torsional moment of inertia of simply and 

multiply connected cross-sections (hollow and composite) are calculated, and the results are 

verified with analytical and/or empirical formulas existing in the literature. Since multiply 

connected sections technically can be handled as a composite section, the proposed solution 

technique can be used to easily solve these sections. As a numerical investigation, a free vibration 

analysis of cylindrical, conical, barrel and hyperboloidal helices is performed via the mixed FEM. 

The first five natural frequencies of a cylindrical helix with an equilateral triangle cross-section are 

verified with the analytical study (Yu and Hao 2011). The results for the conical, barrel and 

hyperboloidal helices are compared with the results from the commercial computer program 

SAP2000. Barrel and hyperboloidal helices with thin/thick square box, open and cruciform cross-

sections are solved, and all are benchmark examples for the literature.  

 

 

2. Torsional rigidity of arbitrary cross-sections 
 

2.1 Classical theory of torsion 
 

In the range of classical theory of torsion of beams for isotropic materials, one can select the 

displacement field of a non-circular cross-section, which is depicted in Fig. 1, as u(u1, u2, u3) 

where 1 2 3 2 1 3 3 1 2, , ( , )u x x u x x u x x        where ui represents the section displacement 

vector components, β is the angle of twist per unit length, and ϕ(x1, x2) is the warping displacement 

function (Fung 1965). The state of stress in the cross-sectional domain Ω must satisfy the 

equations of equilibrium divσ=0 and the following condition on the boundary Γ, σn=0 where σ is 

the stress tensor, n is the unit normal vector and t is the corresponding tangent vector of the 

boundary (see Fig. 1). For a linear-elastic isotropic material, the stress tensor is expressed in 

ϕ,2=∂ϕ/∂x2 terms of the Lamé constants λ and μ and the small strain tensor E as 

tr( ) 2  σ E I E      and         T
1

2
   E u u                                       (1) 

where μ=G is the shear modulus. By inserting the displacement field u(u1, u2, u3) into Eq. (1), the 

only non-zero stresses are determined to be 

   31 ,1 2 32 ,2 1,x x                                                     (2) 

where the partial differentiation notation is ϕ,1=∂ϕ/∂x1 and. By introducing scalar field function Φ 

as 
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Fig. 1 Non-circular cross-section Fig. 2 Multiply connected region 

 

 

31 ,2 32 ,1,                                                        (3) 

the equilibrium equations in divσ=0 are identically satisfied (Smith 1996). Using the compatibility 

condition for the warping displacement field yields  

,11 ,22 2                                                                  (4) 

which is the governing equation for the torsion problem (Poisson’s equation). Recalling the 

boundary condition in σn=0, the following expression must hold at every point on Γ 

   31 1 32 2 ,2 1 ,1 2 0n n n n  
 

                                             (5) 

where n1 and n2 are the direction cosines of the boundary vector n. Eq. (5) is valid for uncoupled 

torsion and denotes the tangential derivative of the scalar field. Thus, Φ is constant on the 

boundary Γ. The torsional constant I3 of the cross-section, in terms of the scalar field, is expressed 

as 

 3 ,1 1 ,2 2 dI x x


                                                            (6) 

Defining a vector field Θ on Ω as Θ={Φx1, Φx2}
T  and using the divergence theorem yields 

    
 d)(d2d)( 221122,11, nxnxxx                               (7) 

For the constant Φ, the boundary integral in Eq. (7) becomes 

  Anxnx 2d)( 2211                                                     (8) 

where AΩ is the area of the domain Ω. Setting Φ=0 on Γ, the boundary term can be eliminated 

without loss of generality and the torsional constant; for simply connected regions, it can be 

calculated as 

3 2 dI


                                                                  (9) 

Eq. (9) does not directly hold for multiply connected regions (Fig. 2), as can be concluded from 

Eq. (7), since the boundary term of Eq. (7) is not the one given with Eq. (5) and must be taken into 

account for the interior sub-domains. In this study, Eq. (6) is considered directly in order to 

calculate the torsional constant, which holds for both simply and multiply connected regions in the 
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same way as it does not include any boundary integral term. For the finite element analysis, the 

multiply connected region given in Fig. 2 must be completely meshed, including the internal sub-

domains and only Φ=0 on Γ0 should be enforced for the boundary condition. The torsional 

stiffness of the entire section can be calculated by the contributions of the each individual region 

Ωi as 

 3 ,1 1 ,2 20
ds

i

N
i ii

I x x 
 

                                                   (10) 

where Ns is the number of sub-domains. 

 
2.2 Finite element formulation of the torsion problem 

 

To solve Eq. (4), we apply Galerkin’s method. For any element domain Ωe, the following 

equations must hold for a set of trial functions ψi 

 ,11 ,22 d 2 de e

e e e e
i i 
                                                     (11) 

Defining a vector field Ξ  on e  as  
T

,1 ,2,e e
i i   Ξ  and using the divergence theorem, the 

weak form of Eq. (11) is obtained as 

    


e e e

eee
i

e
i

ee
i

e
i dd2d)( 2,2,1,1, n                            (12) 

 The boundary terms in Eq. (12) cancel out during the assemblage of the FE equations for 

adjacent element edges in the cross-section domain Ω and they are also zero on the free edges 

(edges without an adjacent element) to satisfy the boundary condition of the torsion problem given 

by Φ=0 on Γ0. For the FE analysis the nine-node quadratic quadrilateral element was selected, as 

depicted in Fig. 3. The coordinate space interpolation is expressed as 

  

1

11 12 19 2

21 22 29 2 9

9 9 1

x x x

x x x










 
 

   
    

   
  

x X ψ                                        (13) 

where the first and the second indices of x represents the Cartesian coordinate component and the 

node number, respectively. The trial function space Ξ, in terms of the dimensionless local 

coordinate system η1, η2 depicted in Fig. 3, are selected as 

2 2 2 2 2 2
1 2 0 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 2( , ) C C C C C C C C C                            (14) 

where Ci are constants. The Jacobian matrix of the coordinate mapping is expressed as 

[J]=[X][∂ψ] where the matrix [∂ψ] is defined as follows 

 

1 1 1 2

2 1 2 2

9 1 9 2

/ /

/ /

/ /

   

   

   

    
 
   
  
 
 
    

                                                           (15) 
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Fig. 3 Nine-nodded quadrilateral element 

 

 
Cylindrical        Conical              Barrel          Hyperboloidal 

Fig. 4 Cylindrical and non-cylindrical helix geometries 

 

 

In terms of the definitions, Eq. (12) can be written in matrix form as 

          
1 T T

det d 2 det de e

e e
 

 
     J J Φ J ψ J

 
                              (16) 

where Φ is the vector with the scalar field values at the element nodes as its components. 

Integrations are performed with the 3×3=9 point Gauss quadrature rule. By assembling Eq. (16) 

and solving the linear system of global equations, the values of the scalar field for the torsion 

problem can be obtained. The torsional constant in Eq. (6) can be calculated by considering the 

following contribution for each finite element as 

      
1

T
3 1

det de

N e e

e
I



 
     Φ J X ψ J


                                    (17) 

where N is the total number of elements. 

 

 

3. The helix geometry and the functional 
 

3.1 Helix geometry  
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The geometrical properties of the helices in Fig. 4 are x=R(υ)cosυ, y=R(υ)sinυ, z=p(υ)υ, 

p(υ)=R(υ)tanα, where α denotes the pitch angle, R(υ) and p(υ) signify the centerline radius and the 

step for unit angle, respectively, of the helix as a function of the horizontal angle υ. With 
2 2( ) ( ) ( )c R p    , the infinitesimal arc length becomes ds=c(υ)dυ. In the cylindrical helix 

(see Fig. 4(a)), since R=R(υ)=constant and it is clear that 2 2c R p  , χ=R/c2, τ=p/c2, p=Rtanα  

are all constant. χ and τ are the curvature and torsion of the helix axis, respectively. The Frenet unit 

vectors are as follows: t is the tangent unit vector, n is the normal unit vector, b=t×n is the 

binormal unit vector, and the differential relations between these unit vectors are expressed as 

dt/ds=χn, dn/ds=−χt+τb and db/ds=−τn. In the case of a conical helix, the radius at any point on 

the helix geometry is R(υ)=R1+(R2−R1)(υ/2nπ) where n is the number of active turns, R1 and R2 are 

the bottom radius and top radius, respectively, of the conical helix geometry (see Fig. 4(b)), and in 

the case of a barrel or hyperboloidal helix, the radius is R(υ)=R2+(R1−R2)(1−υ/nπ)2 where R1 and 

R2 are the bottom radius and the central radius, respectively, of the barrel or hyperboloidal helix 

geometry (see Figs. 4(c)-(d)). 

 

3.2 The functional 
 

The field equations for the elastic helicoidal bar, which are based on the Timoshenko beam 

theory and refer to the Frenet coordinate system, are discussed in Omurtag and Aköz (1992) and 

Girgin (2006). Thus, the field equations can be written in the form 

,

,

s

s

A    


      

T q u 0

M t T m IΩ 0





                                                

(18) 

,

,

s

s

    


  

u t Ω C T 0

Ω C M 0





                                                   (19) 

where, u(ut, un, ub) is the displacement vector, Ω (Ωt, Ωn, Ωb) is the rotational vector, 2 2/ t u = u  

and 2 2/ t =   are the accelerations of the equation of motion, T(Tt, Tn, Tb) is the force vector,  

M(Mt, Mn, Mb) is the moment vector, C is the compliance matrix, ρ is the density of material, A is 

the area of the cross-section, I is the moment of inertia tensor, and q and m are the distributed 

external force vector and moment vector, respectively (Omurtag and Aköz 1992). Referring to the 

notation used for the moment of inertias given in Section 2 and the Frenet frame, note that It=I3, 

In=I1 and Ib=I2. Eqs. (18)-(19) are written in operator form as Q=Ly−f, after proving the operator 

to be potential and considering the harmonic motion of the helix in the free vibration analysis (and 

also q=m=0), the functional yields to the following form (Oden and Reddy 1976, Omurtag and 

Aköz 1992) 

],[
2

1
],[

2

1
],[

2

1
],[],[],[)( 2

,, uuTTCMMCΩMTΩtTuyI  Ass 

 
 ],ˆ[,ˆ[]),ˆ[(]),ˆ[(],[

2

1 2
MΩT]uΩMMuTTΩIΩ                     (20) 

where ω is the natural circular frequency and the square parentheses indicate the inner product. 

The terms with hats in Eq. (20) are known values on the boundary and the subscripts ε and σ 

represent the geometric and the dynamic boundary conditions, respectively.  
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4. The mixed finite element formulation 
 

Using the subscripts i,j to represent the node numbers of the bar element, the linear shape 

functions ϕi=(υj−υ)/Δυ and ϕj=(υ−υi)/Δυ are employed in the FE formulation as stated by Omurtag 

and Aköz (1992), where Δυ=(υj−υi). The non-cylindrical helix geometry is interpolated from the 

cylindrical geometry, using the ce=ciϕi+cjϕj, s
e=(ciϕi+cjϕj)Δυ, χe=χiϕi+χjϕj, τ

e=τiϕi+τjϕj  where ci, cj 

are the exact nodal values of ce, se=ceΔυ is the interpolated helix arc length for the element, χi, χj 

are the exact nodal curvatures and τi, τj are the exact nodal torsions of the helix geometry at nodes 

i, j, respectively. The curvatures are satisfied exactly at the nodal points and linearly interpolated 

through the element (Eratlı et al. 2014). The explicit form of the mixed FE matrices and sub-

matrices exist in (Omurtag and Aköz 1992, Girgin 2006). 

The problem of determining the natural frequencies of a structural system reduces to the 

solution of a standard eigenvalue problem ([K]−ω2[M]){u}={0} where [K] is the system matrix, 

[M] is the mass matrix for the entire domain, u is the eigenvector (mode shape) and ω is the 

natural angular frequency of the system. Hence the explicit form of standard eigenvalue problem 

in the mixed formulation is 

















































}{

}{

}{

}{

][][

][][][
2

2221

1211

0

0

U

F

M0

00

KK

KK
                                    (21) 

where {F} denotes the nodal force and the moment vectors and {U}={u Ω}T signifies the nodal 

displacement and rotation vectors. To attain consistency between Eq. (21) and 

([K]−ω2[M]){u}={0}, the {F} vector is eliminated in Eq. (21), which yields to the condensed 

system matrix [K*]=[K22]−[K12]
T[K11]

-1[K12]. Finally, the eigenvalue problem in the mixed 

formulation becomes ([K*]−ω2[M]){U}={0}. 

 

 

5. Numerical examples 
 

5.1 Isotropic arbitrary cross-sections 
 

The FE solutions of the torsional moment of inertia of the cross-sections given in Figs. 5(a)-(e) 

are verified with the literature (see Tables 1-6). A non-dimensional torsional inertia parameter  
4

t tI I a  is employed for the sections. The convergence test for the square cross-section (see Fig.  

5(a)) and the comparison with the literature (Wang 1953, Timoshenko and Goodier 1969, Krahula 

and Lauterbach 1969) exist in Table 1. For 225 numbers of unknowns, the percent difference with 

respect to the exact result (Timoshenko and Goodier 1969) is 0.04%. The results for the equilateral 

triangle cross-section (see Fig. 5(b)) are compared with Timoshenko and Goodier (1969), 

Friedman and Kosmatka (2000) in Table 2 and mesh refinement corresponding to 25 and 121 

number of unknowns are given in Fig. 6. The distributions of element-wise contributions of Eqs. 

(9) and (10) of the equilateral triangular area are given in Fig. 7. For homogeneous medium both 

equations produce the same result with different distributions. As a multiply connected section 

example, a square box section (see Fig. 5(c)) with four different thickness-to-side ratios ξ=t/a 

(0.040, 0.125, 0.250, 0.375) is employed and the convergence ability of the existing FE 

formulation is evident in Table 3. These results are compared with the formulas given by Murray 

(1986), Arutunan and Abraman (1963), Roark (1954), Krahula and Lauterbach (1969), Lamancusa  
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(a) (b) (c) (d) (e) (f) (t=0.04a) 

square equilateral triangle square box 
open square 

box 
cruciform composite square 

Fig. 5 The cross-sections used in Examples 5.1 and 5.2 

 

Table 1 tI  for the square cross-section 

nu This study Diff. % ne 

FEM 

Krahula and Lauterbach 

(1969) 

ne 
FD 

Wang (1953) 

Exact 

Timoshenko and 

Goodier (1969) 

1 0.13889 1.24 

1024 0.14066 64 0.13859 0.14063 

9 0.13960 0.73 

49 0.14047 0.11 

225 0.14057 0.04 

961 0.14058 0.04 

FEM: finite element method, FD: finite difference, nu: number of unknowns, ne:number of elements, 

Diff. % = (Timoshenko and Goodier (1969)-This study)×100/Timoshenko and Goodier (1969). 

 

  
(a) nu=25 (b) nu=121 

Fig. 6 Finite element mesh refinement of the equilateral triangular area by nine nodded elements 

nu: unmber of unknowns 

 

  
(a) (b) 

Fig. 7 Distribution of element-wise contributions of Eqs. (9) and (10) depicted in contour plots (a) and 

(b) respectively. Section coordinate system is chosen as centroidal axes 
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Table 2 tI  for the equilateral triangle cross-section. Mesh refinement is given in Fig. 6 

nu This study Diff. % ne 
BEM 

Friedman and Kosmatka (2000) 

Exact 

Timoshenko and Goodier (1969) 

25 0.021620 0.14 

36 0.02165 0.02165 121 0.021648 0.00 

529 0.021650 0.00 

BEM: boundary element method, nu: number of unknowns, ne:number of elements, 

Diff. % = (Timoshenko and Goodier (1969)-This study)×100/Timoshenko and Goodier (1969). 

 

Table 3 tI  for the thin-thick close square box section 

ξ=0.04 ξ=0.125 ξ=0.25 ξ=0.375 

nu This study nu This study nu This study nu This study 

17 0.036517 17 0.091982 17 0.130137 17 0.138526 

73 0.036559 73 0.092114 73 0.130436 73 0.139758 

305 0.036603 305 0.092235 305 0.130530 305 0.139912 

1249 0.036618 1249 0.092251 1249 0.130540 1249 0.139929 

(ξ=t/a, nu: number of unknowns) 

 

Table 4 tI  for the thin-thick square box section and the comparison with different approaches 

 tI  
ξ=t/a 

0.04 0.125 0.25 0.375 0.5 

Murray (1986)  t

ds
/4  0.0417 0.1429 0.3333 0.6000 1.0000 

Roark (1954) 3(1 ) -  0.0354 0.0837 0.1055 0.0916 0.0625 

Arutunan and 

Abraman (1963) 

2 3 42.5408 2.644 0.8344   - + -  

where ξ≤1/3 
0.0361 0.0903 0.1293 - - 

Krahula and 

Lauterbach (1969) 
FEM ( 200en = ) - - 0.1293 - - 

Lamancusa and 

Saravanos (1989) 

FEM 0.0373 0.0899 0.1287 - 0.1402 
20.008 0.724 0.936 + -  0.0355 0.0839 0.1305 0.1479 0.1360 

2 30.978 2.309 1.826  - +  0.0355 0.0897 0.1287 0.1383 0.1400 

2 3 42.550 2.670 0.894   - + -  0.0361 0.0902 0.1289 0.1395 0.1404 

This study FEM 0.0366 0.0923 0.1305 0.1399 0.1406 

 

 

and Saravanos (1989) in Table 4. The formulas given by Murray (1986) and Roark (1954) are  

appropriate for thin sections and Arutunan and Abraman (1963) is appropriate for 1/ 3 0.333   .  

Note that the results for ξ =0.5 in Table 4 correspond to a solid square. As a simple section 

example, an open box section (see Fig. 5(d)) is solved using the following thickness-to-side ratios: 

ξ=t/a (0.040, 0.125, 0.250, 0.375). Convergence of the FE solution and the comparison of the final 

results for the ξ=t/a=0.040, 0.125 ratios with Arutunan and Abraman (1963) are displayed in Table  

5. The formula given by Arutunan and Abraman (1963) is valid for 1/ 6 0.1667   . For  
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Table 5 tI  for the thin-thick open square box type cross-section 

ξ=0.04 ξ=0.125 ξ=0.25 ξ=0.375 

nu 
This 

study ×10-5 

Arutunan and 

Abraman (1963) 

×10-5 

nu 
This study 

×10-5 

Arutunan and 

Abraman (1963) 

×10-5 

nu 
This study 

×10-5 
nu 

This Study 

×10-5 

171 8.153 

8.192 

113 226.442 

227.865 

85 1556.457 123 4420.374 

965 8.199 313 228.994 149 1579.319 213 4432.007 

4425 8.207 1457 229.506 735 1585.108 765 4448.146 

- - - 3619 229.595 2645 1589.225 3817 4455.549 

(ξ=t/a, nu: number of unknowns) 

 

Table 6 tI  of the cruciform cross-section 

ξ=t/a=1/5 ξ=t/a=1/3 

nu This study 

Arutunan and 

Abraman 

(1963) 

Sapountzakis 

and Mokos 

(2004) 

nu This study 

Arutunan and 

Abraman 

(1963) 

Sapountzakis 

and Mokos 

(2004) 

9 0.004852 

0.00509 0.00520 

9 0.022152 

0.02279 0.02316 

57 0.005096 57 0.022670 

273 0.005161 273 0.022957 

1185 0.005182 1185 0.023067 

4929 0.005189 4929 0.023110 

20097 0.005192 20097 0.023127 

(nu: number of unknowns) 

 

Table 7 Convergence of tI G/G1=1 1 2 3/ ( 2 5 )tI G G I I I= + +  results for the composite square cross-section given in 

Fig. 5(f) 

nu This study Diff. % SSD ANSYS 

33 0.465517 -0.78 0.45280 0.46913 

137 0.466205 -0.63   

561 0.467013 -0.45   

2273 0.467044 -0.45   

(SSD: SAP2000 Section Designer, ANSYS: 3D Elasticity Brick Element (SOLID-186),  

Diff. % = (This study-ANSYS)×100/This study) 

 

 

cruciform cross-sections with ξ=1/5 and 1/3 ratios (see Fig. 5(e)), the torsional moment of inertia 

results are compared with Arutunan and Abraman (1963), Sapountzakis and Mokos (2004) in 

Table 6. 

 

5.2 Composite square cross-section 
  

A composite square cross-section with three different materials, as shown in Fig. 5(f), is 

selected where t=0.04a. The shear modulus of the sub-domains are G2=2G1 and G3=5G1, where G1  
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Table 8 The comparison for the first five natural frequencies (Hz) of cylindrical helix with the equilateral 

triangle cross-section 

Modes This study Diff.(a)% Diff. 
(b)% 

Yu and Hao (2011) 

ANSYS (a) no warping warped(b) 

1 193.4 -0.57 2.53 194.5 218.3 188.5 

2 198.5 -0.10 1.26 198.7 219.9 196.0 

3 204.7 -0.78 -0.29 206.3 260.5 205.3 

4 296.1 0.74 0.78 293.9 294.0 293.8 

5 397.8 -0.93 1.23 401.5 480.9 392.9 

(Diff.(i) % = (This study-( Yu and Hao 2011))(i))×100/This study, i=a,b) 

 
Table 9 The first nine natural frequencies (Hz) of conical helix with the square cross-section 

Modes 
 This study (see Table 1 for It) SAP2000 

ne 30 50 100 200 Diff.% 50 100 200 500 1000 

1  386.10 393.32 393.39 393.40 -0.08 430.57 402.58 395.86 394.02 393.73 

2  403.83 449.29 450.56 450.63 -0.14 467.86 455.29 452.25 451.44 451.28 

3  419.95 501.51 509.94 510.43 -0.06 539.68 517.55 512.30 510.94 510.73 

4  468.59 517.32 524.82 525.24 -0.09 552.46 532.00 527.15 525.89 525.70 

5  714.14 744.24 744.96 744.98 -0.10 811.78 761.76 749.56 746.24 745.71 

6  736.65 815.25 820.86 821.20 -0.23 868.16 833.96 825.75 823.46 823.06 

7  759.99 852.00 860.67 861.15 -0.28 913.40 875.83 866.55 863.99 863.54 

8  842.03 938.11 940.19 940.29 -0.22 983.21 952.25 944.82 942.78 942.38 

9  878.85 1016.38 1018.64 1018.75 -0.13 1101.00 1039.70 1024.80 1020.80 1020.10 

(R2/R1=0.5, Diff. % = (This study-SAP2000)×100/This study, ne:number of elements) 

 

 

is the shear modulus of the outermost layer. Table 7 shows the comparison of the torsional rigidity 

between the existing formulation and the commercial program results of the SAP2000 Section 

Designer and ANSYS. To obtain the correct results from the ANSYS elasticity FE solution, we 

considered the displacement readings from the midsection of a unit length composite bar defined 

by a total of 15249 SOLID-186 elements. Table 7 reveals that the formulation yields satisfying 

results. 

 

5.3 The cylindrical helix with the equilateral triangle cross-section 
 

The cylindrical helix fixed at both ends has an equilateral triangle cross-section (a=0.693 mm, 

see Fig. 5(b)) with the modulus of elasticity E=206 GPa, Poisson’s ratio υ=0.3, the material 

density ρ=79000 kg/m3, the number of active turns n=7.6, the pitch angle α=8.5744°, and the 

radius R=5 mm. The first five natural frequencies are calculated using 200 FEs, and the results are 

compared with Yu and Hao (2011) in Table 8. The warping included analytical result of Yu and 

Hao (2011) is quite in an agreement with the present mixed FE solution. 

 

5.4 The conical helix with a square cross-section 
 

In this section a dynamic analysis of a conical helix with a square cross-section (see Fig. 5(a)) 
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that is fixed at both ends is considered. The material and geometrical properties are as follows: the 

modulus of elasticity E=210 GPa, Poisson’s ratio υ=0.3, the material density ρ=7850 kg/m3, the 

number of active turns n=6.5, the pitch angle α=4.8°, the bottom plane radius R1=13 mm for the 

taper ratio R2/R1=0.5, and the dimension of the square cross-section of the helix a=2.6 mm. In 

Table 9, the mixed FE solutions for the first nine natural frequencies are compared using the 

commercial program SAP2000. The percent difference between these FE models is extremely 

small in the case of 1000 elements by SAP2000 and 200 elements by the present consistent mass 

mixed model. 

 

5.5 Barrel helix with thin-thick and open-closed box cross-sections 
 

The material and geometric properties of the barrel helix (see Fig. 4(c)) are as follows: the 

modulus of elasticity E=210 GPa, Poisson’s ratio υ=0.3, the material density ρ=7850 kg/m3, the 

number of active turns n=6.5, the pitch angle α=4.8° and the helix central-to-bottom radii ratio 

R2/R1=2.0 (assuming R2=13 mm=constant). Two different boundary conditions are utilized, 

namely, fixed-fixed and fixed-free. Closed and open sections (see Figs. 5(c)-(d)) that range from 

thin to thick with four different thickness-to-side ratios ξ=t/a (0.040, 0.125, 0.250, 0.375) where 

a=2 mm=constant are considered. 

Thin-thick square box cross-section: Referring to the four different ξ ratios, the computed non- 

dimensional torsional inertia parameters are 0.0366tI  , 0.0923, 0.1305 and 0.1399 (see Table 4).  

The first six natural frequency results are compared using SAP2000 (via Section Designer) in 

Table 10. In the case of the fixed-fixed boundary condition, with respect to the fundamental  

 

 
Table 10 The natural frequencies (Hz) of barrel type helix with the thin-thick square box sections and 

different boundary conditions 

Modes 

fixed-fixed 

This study (ne=200) SAP2000 (ne=1000) 

ξ=t/a ξ=t/a 

0.04 0.125 0.25 0.375 0.04 Dif.% 0.125 Dif.% 0.25 Dif.% 0.375 Dif.% 

1 335.1 314.9 286.2 265.3 334.4 0.21 313.7 0.38 286.6 -0.14 266.6 -0.49 

2 365.3 336.5 301.5 278.2 366.4 -0.30 337.4 -0.27 302.4 -0.30 279.1 -0.32 

3 446.6 414.5 373.4 345.3 446.8 -0.04 414.4 0.02 374.0 -0.16 346.3 -0.29 

4 446.8 414.6 373.4 345.3 446.8 0.00 414.4 0.05 374.1 -0.19 346.4 -0.32 

5 621.0 584.1 531.3 492.7 619.8 0.19 581.5 0.45 531.9 -0.11 495.2 -0.51 

6 716.8 664.5 598.0 552.8 720.1 -0.46 667.0 -0.38 601.1 -0.52 556.0 -0.58 

fixed-free  

1 101.2 94.3 85.1 78.7 100.9 0.30 93.8 0.53 85.0 0.12 78.8 -0.13 

2 101.7 94.7 85.5 79.0 101.4 0.29 94.3 0.42 85.3 0.23 79.1 -0.13 

3 153.3 144.3 131.3 121.8 152.9 0.26 143.5 0.55 131.3 0.00 122.3 -0.41 

4 199.6 183.7 164.4 151.5 200.4 -0.40 184.4 -0.38 165.0 -0.36 152.1 -0.40 

5 397.6 369.4 333.0 307.9 398.4 -0.20 369.8 -0.11 334.0 -0.30 309.3 -0.45 

6 398.8 370.7 334.2 309.1 399.7 -0.23 371.0 -0.08 335.3 -0.33 310.5 -0.45 

(a=2 mm, R2=13 mm, R2/R1=2.0, Diff. % = (This study-SAP2000)×100/This study) 
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Table 11 The natural frequencies (Hz) of barrel type helix with the thin-thick open square box sections and 

different boundary conditions 

Modes 

fixed-fixed 

This study (ne=200) SAP2000 (ne=1000) 

ξ=t/a ξ=t/a 

0.04 0.125 0.25 0.375 0.04 Dif.% 0.125 Dif.% 0.25 Dif.% 0.375 Dif.% 

1 16.1 50.5 101.4 151.5 16.2 -0.62 50.7 -0.40 101.4 0.00 151.8 -0.20 

2 31.0 93.5 185.7 258.4 31.0 0.00 93.8 -0.32 185.8 -0.05 259.1 -0.27 

3 33.5 103.7 197.2 261.1 33.8 -0.90 104.3 -0.58 196.4 0.41 260.8 0.11 

4 34.0 105.0 197.4 277.2 34.0 0.00 104.8 0.19 197.8 -0.20 278.0 -0.29 

5 42.1 131.9 263.1 283.1 - - - - - - 283.7 -0.21 

6 42.4 132.4 263.8 387.8 42.3 0.24 132.4 0.00 263.9 -0.04 - - 

fixed-free 

1 6.3 19.7 38.1 53.3 6.3 0.00 19.7 0.00 38.0 0.26 53.2 0.19 

2 6.5 20.2 38.9 54.2 6.5 0.00 20.2 0.00 38.8 0.26 54.1 0.18 

3 7.3 23.0 46.1 69.0 7.4 -1.37 23.0 0.00 46.1 0.00 69.0 0.00 

4 20.9 65.6 131.7 151.4 - - - - - - 151.9 -0.33 

5 21.9 68.7 137.7 196.5 22.0 -0.46 69.0 -0.44 137.7 0.00 - - 

6 28.2 87.3 163.9 206.5 28.3 -0.35 87.6 -0.34 164.2 -0.18 206.9 -0.19 

(a=2 mm, R2=13 mm, R2/R1=2.0, Diff. % = (This study-SAP2000)×100/This study) 

 

 

natural frequency for the ξ=0.04 ratio, the reductions for the next three ξ ratios are 6.0%, 14.6% 

and 20.8%. Similarly, in the case of the fixed-free boundary condition, with respect to the 

fundamental natural frequency for the ξ=0.04 ratio, the reductions for the next three ξ ratios are 

6.8%, 15.9% and 22.2%.  

Thin-thick open square box type cross-section: Referring to the four different ξ ratios, the  

computed non-dimensional torsional inertia parameters are 58.2 10tI   , 22.96×10-5, 1589.2×10-5  

and 4455.5×10-5 (see Table 5). The first six natural frequencies are compared using SAP2000 (via 

Section Designer) in Table 11. In the case of the fixed-fixed boundary condition, with respect to 

the fundamental natural frequency for the ξ=0.04 ratio, the increases for the next three ξ ratios are 

211.7%, 525.9% and 841.0%. Similarly, in the case of the fixed-free boundary condition, with 

respect to the fundamental natural frequency for the ξ=0.04 ratio, the increases for the next three ξ 

ratios are 212.7%, 504.8% and 746.0%. 

 For the fundamental natural frequencies of the fixed-fixed boundary condition, the results of 

the square box section for each ξ ratio are decreased by 95.2%, 84.0%, 64.6%, and 43.0% with 

respect to the open square box type cross-section results. In the case of the fixed-free boundary 

conditions, the results of the closed square box section for each ξ ratio are decreased by 93.8%, 

79.1%, 55.2%, and 32.3% with respect to the open square box cross-section results. 

 

5.6 Hyperboloidal helix with cruciform cross-section 
 

The material and geometrical properties of the hyperboloidal helix (see Fig. 4(d)) are identical 

to the barrel helix, which was solved in Section 5.5. The helix central-to-bottom radii ratio  
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Table 12 The natural frequencies (Hz) of hyperboloidal type helix with the cruciform cross-section and 

different boundary conditions 

Modes 

fixed-fixed fixed-free 

This study (ne=200) SAP2000 (ne=1000) This study (ne=200) SAP2000 (ne=1000) 

ξ ξ ξ ξ 

1/5 1/3 1/5 Dif.% 1/3 Dif.% 1/5 1/3 1/5 Dif.% 1/3 Dif.% 

1 26.3 44.1 26.4 -0.38 44.5 -0.91 11.8 18.5 11.9 -0.85 18.7 -1.08 

2 52.9 78.4 52.9 0.00 78.4 0.00 12.4 19.0 12.4 0.00 19.1 -0.53 

3 58.0 79.6 58.4 -0.69 79.8 -0.25 14.8 24.8 14.9 -0.68 25.0 -0.81 

4 70.3 106.4 70.4 -0.14 107.0 -0.56 41.3 44.9 41.2 0.24 44.7 0.45 

5 83.2 108.2 83.3 -0.12 107.9 0.28 42.1 64.8 - - 65.2 -0.62 

6 96.3 137.9 - - 137.5 0.29 43.3 70.0 43.6 -0.69 70.2 -0.29 

(a=2 mm, R2=13 mm, R2/R1=0.5, Diff. % = (This study-SAP2000)×100/This study) 

 

 

R2/R1=0.5 (assuming R2=13 mm=constant). The fixed-fixed and fixed-free boundary conditions are 

employed. For the cruciform cross-section (see Fig. 5(e)), keeping a=2 mm as constant, two 

different thickness-to-side ratios ξ=1/5, 1/3 are considered, and the computed torsional inertia 

parameters for these ratios are 0.00519tI   and 0.02313 (see Table 6). The first six natural 

frequency results are compared using SAP2000 (via Section Designer) in Table 12. In the case of 

the fixed-fixed boundary condition, with respect to the fundamental natural frequency for the 

ξ=1/5 ratio, the increase for the ξ=1/3 ratio is 67.7%. Similarly, in the case of the fixed-free 

boundary condition, with respect to the fundamental natural frequency for the ξ=1/5 ratio, the 

increase for the ξ=1/3 ratio is 56.8%. 

 

 

6. Conclusions 
 

The literature on torsion employs the divergence theorem and implements Eq. (9) to calculate 

the torsional moment of inertia for non-circular cross-sections. This study demonstrates that this 

type of evaluation is not free from the boundary conditions and requires extra calculations for 

multiply connected cross-section regions. Alternatively, the proposed formulation procedure is 

original for the literature and it implements the direct calculation of the torsional rigidity via Eq. 

(17), which offers a unique method for arbitrarily shaped simply or multiply connected regions. 

Present formulation is verified with a composite cross-section example and is proven to be 

successful for several other types of regions. The formulation is suitable and easy to implement 

with a simple FE. In these analyses, thin-thick closed or open square box and cruciform sections 

are handled which are all original for the literature. The mixed FE formulation of a helicoidal bar 

is based on the Timoshenko beam theory, and the documentation of the corresponding functional 

exists in Omurtag and Aköz (1992). The finite element formulation of the non-cylindrical helix 

geometry is derived using the exact curvatures at the nodal points and their interpolations through 

the element axis. The accuracy and range of the proposed torsional moment of the inertia 

formulation is also verified by the free vibration analysis of cylindrical, conical, barrel and 

hyperboloidal helicoidal bars under fixed-fixed, fixed-free boundary conditions with the mixed 
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FEM. The cylindrical helix with equilateral triangular cross-section is solved analytically by Yu 

and Hao (2011) including the warping of the cross-section and by the results of ANSYS. Although 

warping is not considered in our formulations, our results are in between these results, which is 

quite satisfactory with percent errors in the range of 0.29 and 2.53 for the first five modes. 

Through the analysis, the results are obtained by using 200 curved isoparametric elements of the 

proposed formulation whereas for SAP2000 the number of elements necessary for an asymptotic 

convergence is 1000, since they are straight members. The solution of the non-cylindrical 

helicoidal bars with the noncircular cross-sections (thin-thick close and open square box sections, 

cruciform) are completely original for the literature and they are benchmark examples. Finally, the 

convergence of the proposed finite element formulations is fast and reliable.  
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