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Abstract. A general model of equations of the two-temperature theory of generalized thermoelasticity is 

applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of 

the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a 

homogeneous isotropic elastic half-space. The exact expression of the displacement components, force 

stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode 

analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. 

Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as 

well as a two-temperature parameter. A comparison is also made between the results of the two theories in 

the absence and presence of reinforcement. 
 

Keywords: fiber-reinforced; Green-Naghdi theory; three-phase-lag model; magnetic field 

 
 
1. Introduction 
 

Fiber-reinforced composites are widely used in engineering structures, due to their superiority 

over the structural materials in applications requiring high strength and stiffness in lightweight 

components. A continuum model is used to explain the mechanical properties of such materials. A 

reinforced concrete member should be designed for all conditions of stresses that may occur and in 

accordance with the principles of mechanics. The characteristic property of a reinforced concrete 

member is that its components, namely concrete and steel, act together as a single unit as long as 

they remain in the elastic condition, i.e., the two components are bound together so that there can 

be no relative displacement between them. In the case of an elastic solid reinforced by a series of 

parallel fibers, it is usual to assume transverse isotropy. In the linear case, the associated 

constitutive relations, relating infinitesimal stress and strain components have five material 

constants. In the last three decades, the analysis of stress and deformation of fiber-reinforced 

composite materials has been an important research area of solid mechanics. The wave 

propagation in a reinforced medium plays a very interesting role in civil engineering and 

geophysics. The studies of propagation, reflection, and transmission of waves are of great interest 
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to seismologists. Such studies help them to obtain knowledge about the rock structures as well as 
their elastic properties and at the same time information regarding minerals and fluids present 
inside the earth. Belfield et al. (1983) introduced the idea of a continuous self-reinforcement at 
every point of an elastic solid. One can find some studies on transversely isotropic elasticity in the 
literature by, Singh and Singh (2004), Singh (2006), Abbas et al. (2011, 2012, 2014), Othman et 
al. (2012a, b, 2013, 2015), Abd-Alla et al. (2015). 

A theory of heat conduction in deformable bodies which depends upon two distinct 
temperatures, the conductive temperature and the thermodynamic temperature, has been 
established by Chen and Gurtin (1968), Chen et al. (1968, 1969). In time-independent problems, 
the difference between these two distinct temperatures is proportional to the heat supply and in the 
absence of any heat supply; these two temperatures are identical as Chen et al. (1968). In time-
dependent situations and of the wave propagation problems, in particular, the two-temperatures are 
in general different, regardless of the presence of a heat supply. Warren and Chen (1973) have 
studied the wave propagation in the two-temperature theory of thermoelasticity. Youssef (2005) 
has proposed a theory in the context of the generalized theory of thermoelasticity with two-
temperature. The propagation of harmonic plane waves in the media described by the two-
temperature theory of thermoelasticity is investigated by Puri and Jordan (2005). Several problems 
have been solved by Kumar and Mukhopadhyay (2010), Das and Kanoria (2012), Othman et al. 
(2014), Zenkour and Abouelregal (2015) applying the two-temperature theory of thermoelasticity. 

It is well known that the usual theory of heat conduction based on Fourier’s law predicts an 
infinite heat propagation speed. It is also known that heat transmission at low temperature 
propagates by means of waves. These aspects have caused intense activity in the field of heat 
propagation. Extensive reviews on the second sound theories (hyperbolic heat conduction) are 
given in Hetnarski and Ignaczak (1999, 2000). A two-phase-lag to both the heat flux vector and 
the temperature gradient was introduced by Tzou (1995). According to this model, classical 
Fourier’s law q=−KT has been replaced by q (P, t+τq)=−KT(P, t+τT), where the temperature 
gradient T at a point P of the material at time t+τT corresponds to the heat flux vector q at the 
same point at time t+τq. Here K is the thermal conductivity of the material. The delay time τT is 
interpreted as that caused by the micro-structural interactions and is called the phase-lag of the 
temperature gradient. The other delay time τq is interpreted as the relaxation time due to the fast 
transient effects of thermal inertia and is called the phase-lag of the heat flux. Recently, Roy 
Choudhuri (2007) has proposed a theory with three-phase lag (3PHL) which is able to contain all 
the previous theories at the same time. In this case Fourier’s law q=−KT has been replaced by q 
(P, t+τq)=−[KT(P, t+τT)+K*v(P, t+τv)], where v( v =T) is the thermal displacement gradient, K* 
is the additional material constant and τv is the phase-lag for the thermal displacement gradient. 
The purpose of the work of Roy Choudhuri (2007) was to establish a mathematical model that 
includes (3PHL) in the heat flux vector, the temperature gradient and in the thermal displacement 
gradient. For this model, we can consider several kinds of Taylor approximations to recover the 
previously cited theories. In particular the thermoelasticity without energy dissipation (TEWOED) 
and thermoelasticity with energy dissipation (TEWED) introduced by Green and Naghdi (1991, 
1992, 1993) are recovered. A three-phase-lag model is very useful in the problems of nuclear 
boiling, exothermic catalytic reactions, phonon-electron interactions, phonon-scattering etc. 
Quintanilla and Racke (2008), Quintanilla (2009), Kumar et al. (2012), Abbas (2014), Kumar and 
Kumar (2015) have solved different problems applying the (3PHL) model. 

The investigation of interaction between a magnetic field, stress, and strain in a thermoelastic 
solid is very important due to its many applications in diverse field such as geophysics (for 
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understanding the effect of the Earth’s magnetic field on seismic waves), damping of acoustic 
waves in a magnetic field, designing machine elements like heat exchangers, boiler tubes (where 
the temperature induced elastic deformation occurs), biomedical engineering (problems involving 
thermal stress), emissions of the electromagnetic radiations from nuclear devices, development of 
a highly sensitive super conducting magnetometer, electrical power engineering, plasma physics, 
etc. Many studies in a generalized magneto-thermoelasticity can be found in the literatures by 
Abbas and Youssef (2009), Othman et al. (2008, 2009, 2011, 2015). 

Our main object in writing this paper is to present a two-temperature fiber-reinforced magneto-
thermoelastic medium due to the thermal shock in the context of the three-phase-lag (3PHL) 
model and the thermoelasticity without energy dissipation (G-N II) theory. The governing 
equations of the problem are solved by using normal mode analysis. The effect of a magnetic field, 
a two-temperature parameter and reinforcement on the physical quantities is also studied. 

 
 

2. Formulation of the problem and basic equations 
 

 We consider the problem of a thermoelastic half-space (x≥0). A magnetic field with a constant 
intensity H=(0,0,H0), is acting parallel to the boundary plane (taken as the direction of the z-axis). 
The surface of a half-space is subjected to a thermal shock which is a function of y and t. We are 
interested in a plane strain in the xy-plane with displacement vector u=(u,v,0). We begin our 
consideration with linearized electromagnetism equations as Othman and Said (2015) 

       
0 t

 
   


E

J h  (1)

       
0 t

 
   


h

E  
(2)

       
0 ( )  E u H  (3)

       . 0 h  (4)

where μ0 is the magnetic permeability, ε0 is the electric permeability, J is the current density 
vector, u is the particle velocity of the medium, and the small effect of the temperature gradient 
on J is also ignored. These equations, supplemented by the field equations and constitutive 
relations for a fiber-reinforced linearly thermoelastic isotropic medium with respect to the 
reinforcement direction a in the (3PHL) model without body forces, body couples and heat sources 

(i) The stress-strain relation may be written as Belfield et al. (1983) 

   ,ˆ))((2)(2 ijjikmmkkikjkjkiTLkkjiijkmmkijTijkkij δTγaaeaaβeaaeaaμμeaaδeaaαeμδeλσ   (5)

where σij
′s are the components of stress, eij

′s  are the components of strain, ekk is the dilatation, λ, 
μT

′s are the elastic constants, α, β, γ, (μL−μT) are reinforcement parameters, δij is the Kronecker 

delta, T̂ =T−T0 where T is the temperature above the reference temperature T0, and a≡(a1, a2, a3), 
2 2 2

1 2 3+ + 1.a a a =  We choose the fiber direction as a≡(1, 0, 0). The strains can be expressed in 

terms of the displacement ui as 

),(
2

1
ij,ji,ij uue   ,

y

v

x

u
eekk 







  , , .i j x y  (6)
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Eq. (5) then yields 

     TvAuA yxxx
ˆγ,12,11   (7)

       TvAuA yxyy
ˆγ,22,12   (8)

         )( x,y,Lxy vuσ   , ,0 yzxz σσ  (9)

where A11=λ+2(α+μT)+4(μL−μT)+β, A12=λ+α, A22=λ+2μT. 
(ii) The equation of motion, taking into consideration the Lorentz force, is given by 

     0 ( ) , , 1 2 3.i ij, j iρ u σ μ i j , ,    J H  (10)

The dynamic displacement vector is actually measured from a steady-state deformed position 
and the deformations are assumed to be small. Due to the application of the initial magnetic field 
H, there are an induced magnetic field h=(0,0,h) and an induced electric field E, as well as the 
simplified equations of electrodynamics of a slowly moving medium for a homogeneous, thermal 
and electrically conducting, elastic solid. Expressing the components of the vector J=(J1, J2, J3) in 
terms of displacement by eliminating the quantities h and E, from Eq. (1), thus yields 

     )( 0001 v
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 , 03 J  (11)

where h=−H0e. 
By substituting from Eqs. (7)-( 9) and (11) in Eq. (10) and using the summation convection: we 

note that the third equation of motion in Eq. (10) is identically satisfied and the first two equations 
become 
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where B1=μL, B2=A12+μL. 
(iii) The generalized heat conduction equation in the context of the (3PHL) model with two-

temperature is given by Youssef (2005), Roy Choudhuri (2007) 

     
2

* 2 2 2 2
02

1
(1 ) ( ).

2
*
ν T q q EK Φ τ Φ K τ Φ ρ C T γ T e

t t
  

        
 

     (14)

The relation between the conductive temperature and the thermodynamic temperature is 

     ,,iiΦTΦ   (15)

where K* is the additional material constant, K is the coefficient of thermal conductivity, ρ is the 
mass density, CE is the specific heat at constant strain, Φ is the conductive temperature, δ>0 a 
constant called two-temperature parameter, τT and τq are the phase-lag of temperature gradient and 
the phase-lag of heat flux respectively. Also ,** KK     where τv is the phase-lag of thermal 

displacement gradient. Eqs. (12)-(14), when K=τT=τq=τv=0, reduce to the equations of the (GN-II) 
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theory. In the above equations a dot denotes partial derivative with respect to time, and a comma 
followed by a suffix denotes partial derivative with respect to the corresponding coordinates. 
Introducing the following non-dimensions quantities 

),,,,(),,,( 1 vuyxcvuyx   ),,,,(),,,( 2
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 
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
  (16)

Using the above non-dimension variables defined in Eq. (16) then employing h′=−H0e, the 
above governing equations takes the following form (dropping the primes for convenience) 
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3. Normal mode analysis 
 

The solution of the considered physical variable can be decomposed in terms of normal mode 
as the following form 

     *[ , , , , ]( , , ) [ , , , , ]( ) exp( i ),* * * *
ij iju v θ Φ σ x y t  u v θ Φ  σ  x ω t m y   (21)

where ω is a complex constant, i 1,   m is the wave number in the y-direction, and u*(x), v*(x), 
θ *(x), Ф*(x), )( xσ*

ij  are the amplitudes of the field quantities.  
Introducing from Eq. (21) in Eqs. (17)-( 20), we get 

     ,DDi]D[ 21
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where, 2 2
1 0 1 ,N ω h m   2 2

2 0 22 ,N ω L m   2 2 2
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Introducing Eq. (25) in Eqs. (22)-(24), thus we have 
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Eliminating v*(x) and Ф*(x) between Eqs. (26)-(28), we obtain the sixth order-ordinary 
differential equation satisfied with u*(x) 
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Eq. (29) can be factored as 
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where 2 ( 1, 2, 3)nk n   are the roots of the characteristic equation of Eq. (29).  

The solution of Eq. (29), which is bound as x→∞, is given by 
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Introducing Eq. (33) in Eq. (25), we have 
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where, .)( 2
2

083 nnn RkNR   

Using Eqs. (16) and (21) in Eqs. (7) and (9), we obtain 
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Introducing Eqs. (31), (32) and (34) in Eqs. (35) and (36), this yields 
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4. Boundary conditions 
 

We consider the problem of a two-temperature fiber-reinforced thermoelastic medium under 
the effect of a magnetic field which fills the region Ω defined as follows:  

  zyxzyxΩ ,,0:),,( . 

In the physical problem, we should suppress the positive exponentials that are unbounded at 
infinity. In order to determine the parameters Gn (n=1,2,3), we need to consider the boundary 
conditions at x=0 as follows: 

(i) A thermal boundary condition that the surface of the half-space is subjected to an isothermal 
boundary 

     ,0),,0( ty  (39)

(ii) A mechanical boundary condition that the surface of the half-space is subjected to 
mechanical force 

     *(0, , ) exp( i ),xx f y t f ω t my      (40)

(iii) A mechanical boundary condition that the surface of the half-space is traction free 

     (0 , , ) 0 ,x y y t   (41)

f(y,t) is an arbitrary function of y, t and f * is a constant. Substituting the expressions of the 
variables considered into the above boundary conditions Eqs. (39)-(41), we can obtain the 
following equations satisfied by the parameters 
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Solving the above system of Eq. (42), we obtain a system of three equations. After applying the 
inverse of matrix method, we have the values of the three constants Gn (n=1,2,3). Hence, we obtain 
the expressions of displacements, the thermodynamic temperature, the conductive temperature and 
the stress components. 
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5. Numerical calculation and discussion 
 

In order to illustrate the theoretical results obtained in the preceding section and to compare 
these in the context of the (3PHL) model and the (GN-II) theory, we now present some numerical 
results for the physical constants as 

,1.0,2.1,m.kg7800,m.N10x452,m.N10x891,m.N10x599 *3292928   fmρ.μ.μ.λ LT  

,s009.0,s007.0,K..kgJ1383,m.N10x320,m.N10x281 112929  
qTE .C.β.α   

,2.0,,K.W.m800,s.m.k10x86.1,.sK.W.m386 00
11218-111*    iKgK  

9.0;9.1,3.0,100,K293,s006.0,K10x783,12 0000
13     HT.αt . 

The computations were carried out for a value of time t=0.03. The variations of the 
thermodynamic temperature θ, the conductive temperature Φ, the displacement components u,v 
and the stress components σxx and σxy with distance x in the plane y=−0.9 for the problem under 
consideration based on the (3PHL) model and the (G-N II) theory were considered. The results are 
shown in Figs. 1-18. The graphs show four curves predicted by the two different theories of 
thermoelasticity. In these figures, the solid lines represent the solution in the (3PHL) model and 
the dashed lines represent the solution derived using the (G-N II) theory. Here all the variables are 
taken in non-dimensional forms and we consider the five cases 

(i) The corresponding equations for a two-temperature fiber-reinforced generalized 
thermoelastic medium in the absence of the magnetic field from the above mentioned cases by 
taking H0=0. 

(ii) The corresponding equations for one-temperature fiber-reinforced generalized magneto 
thermoelastic medium from the above mentioned cases by taking δ to vanish. 

(iii) The corresponding equations for a two-temperature generalized thermoelastic medium by 
taking α, β, (μL−μT) to vanish. 

(iv) Equations of the (3PHL) model when, K, τT, τq, τv>0 and the solutions are always 

(exponentially) stable if q
q

T K
K 




**2

 as in Quintanilla and Racke (2008). 

(v) Equations of the (GN-II) theory when, K=τT=τq=τv=0 
Figs. 1-6 show comparisons between the displacement components u,v the thermodynamic 

temperature θ the conductive temperature Φ, and the stress components σxx, σxy in the absence 
(α0=1) and presence (α0=2.4) of a magnetic field with a two-temperature parameter δ=12. 
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Fig. 1 Horizontal displacement distribution u in the absence and presence of a magnetic field 

 

Fig. 2 Vertical displacement distribution v in the absence and presence of a magnetic field 
 
 
Fig. 1 depicts that the distribution of the horizontal displacement u begins from positive values. 

In the context of the two theories, u begins with decreasing to a minimum value in the range 
0≤x≤2, then increases, and again decreases for α0=2.4. However, in the context of the two theories, 
u  begins with decreasing to a minimum value in the range 0≤x≤4, and then increases for α0=1. 
The magnetic field decreases the magnitude of u in the range 0≤x≤2.7, then increases it. Fig. 2 
shows that the distribution of the vertical displacement v begins from negative values. In the 
context of the two theories, v begins with increasing to a maximum value in the range 0≤x≤1.8. 
then decreases, again increases, and in the last decreases for α0=2.4. However, in the context of the 
two theories, v begins with increasing to a maximum value in the range 0≤x≤2.2, and then 
decreases for α0=1. The magnetic field increases the magnitude of v in the range 0≤x≤2.2, then 
decreases it. The displacements u and v show different behaviors, because of the elasticity of the 
solid tends to resist a vertical displacement in the problem under the investigation. Fig. 3 exhibits 
the distribution of the conductive temperature Φ and demonstrates that it begins from negative  
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Fig. 3 Conductive temperature distribution Φ in the absence and presence of a magnetic field 
 

Fig. 4 Thermodynamic temperature distribution θ in the absence and presence of a magnetic field 
 

Fig. 5 Distribution of the stress component σxx in the absence and presence of a magnetic field 
 

0 2 4 6 8
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x



 

 

3PHL
G-N II


0
 = 2.4


0
 =1

0 2 4 6 8
-2

0

2

4

6

8

10
x 10

-3

x



 

 

3PHL
G-N II


0
 = 1


0
 = 2.4

0 2 4 6 8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

x

 xx

 

 

3PHL
G-N II


0
 = 2.4


0
 = 1

210



 
 
 
 
 
 

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium... 

 
Fig. 6 Distribution of the stress component σxy in the absence and presence of a magnetic field 

 
 

values except in the context of the (G-N II) theory for α0=1, it begins from a positive value. Φ 
begins with increasing in the range 0≤x≤4, and then becomes nearly constant except in the context 
of the (G-N II) theory for α0=1, Φ begins with decreasing in the range 0≤x≤4, and then becomes 
nearly constant . The magnetic field decreases the magnitude of Φ. Fig. 4 depicts the distribution 
of the thermodynamic temperature θ and demonstrates that it reaches a zero value and satisfies the 
boundary condition at x=0. In the context of the two theories, θ begins with increasing to a 
maximum value, and then decreases for α0=1, 2.4. The magnetic field increases the magnitude of 
θ. Fig. 5 explains that the distribution of the stress component σxx begins from a negative value and 
satisfies the boundary condition at x=0. In the context of the two theories, σxx begins with 
decreasing to a minimum value in the range 0≤x≤1, then increases to a maximum value, and again 
decreases for α0=1. However, in the context of the two theories, σxx decreases to a minimum value 
in the range 0≤x≤0.8, then increases to a maximum value, and also moves in the wave propagation 
for α0=2.4. The magnetic field decreases the magnitude of σxx in the range 0≤x≤1, then increases, 
and again decreases it. Fig. 6 depicts the distribution of the stress component σxy and demonstrates 
that it reaches a zero value and satisfies the boundary condition at x=0. The fluctuations of stress 
component σxy is x=0. In the context of the two theories, σxy begins with increasing to a maximum 
value, then decreases to a minimum value, and also moves in the wave propagation for α0=2.4. 
However, in the context of the two theories, σxy decreases to a minimum, and then increases to a 
maximum value for α0=1. The magnetic field increases the magnitude of σxy in the range 0≤x≤5.7, 
and then decreases it. Figs. 1-6 demonstrate that a magnetic field has a significant role on all the 
physical quantities. The values of all the physical quantities converge to zero by increasing the 
distance x; the behavior of two theories are similar. These trends obey elastic and thermoelastic 
properties of the solid. 

Figs. 7-12 show comparisons between the displacement components u, v, the thermo-dynamic 
temperature θ, the conductive temperature Φ, and the stress components σxx, σxy with (δ=12) and 
without (δ=0) two-temperature parameter in the presence of a magnetic field (α0=2.4). 

Fig. 7 explains that the distribution of the horizontal displacement u begins from positive 
values in the context of two theories except in the context of the (3PHL) model for δ=0 it begins 
from a negative value. In the context of the (3PHL) model, u begins with decreasing to a minimum  

0 2 4 6 8
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

x

 xy

 

 

3PHL
G-N II


0
 = 2.4


0
 = 1

211



 
 
 
 
 
 

Samia M. Said and Mohamed I.A. Othman 

Fig. 7 Horizontal displacement distribution u with and without two-temperature 
 

Fig. 8 Vertical displacement distribution v with and without two-temperature 
 
 

value, then increases to a maximum value, and again decreases for δ=0. However, in the context of 
the (G-N II) theory, u begins with decreasing to a minimum value in the range 0≤x≤2, then 
increases, again decreases, and in the last increases for δ=0. Fig. 8 exhibits that the distribution of 
the vertical displacement v begins from negative values in the context of two theories except in the 
context of the (3PHL) model for δ=0 it begins from a positive value. In the context of the (3PHL) 
model, u begins with decreasing to a minimum value, and then increases for δ=0. However, in the 
context of the (G-N II) theory, u begins with increasing to a maximum value, then decreases, again 
increases, and in the last decreases for δ=0. Fig. 9 shows that the distribution of the conductive 
temperature Φ begins from negative values for δ=12, but it begins from a zero value for δ=0. In the 
context of the (3PHL) model, Φ begins with increasing to a maximum value, then decreases to a 
minimum value, and again increases. However, in the context of the (G-N II) theory, Φ is nearly 
constant. Fig. 10 exhibits the distribution of the thermodynamic temperature θ and demonstrates 
that it reaches a zero value and satisfies the boundary condition at x=0. In the context of the 
(3PHL) model for δ=0, θ begins with increasing to a maximum value, then decreases to a  
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Fig. 9 Conductive temperature distribution Φ with and without two-temperature 
 

Fig. 10 Thermodynamic temperature distribution θ with and without two-temperature 
 

Fig. 11 Distribution of the stress component σxx with and without two-temperature 

0 2 4 6 8
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

x



 

 

3PHL

G-N II

  = 12

  = 0

0 2 4 6 8
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

x



 

 

3PHL
G-N II  = 12

  = 0

0 2 4 6 8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

x

 xx

 

 

3PHL
G-N II

  = 12

  = 0

213



 
 
 
 
 
 

Samia M. Said and Mohamed I.A. Othman 

 

Fig. 12 Distribution of the stress component σxy with and without two-temperature 
 

Fig. 13 Horizontal displacement distribution u in the absence and presence of reinforcement 
 
 
minimum value, and again increases. However, in the context of the (G-N II) theory for δ=0, θ 
begins with decreasing, and then becomes nearly constant. Fig. 11 explains that the distribution of 
the stress component σxx begins from a negative value and satisfies the boundary condition at x=0. 
In the context of the (3PHL) model, σxx begins with increases to a maximum value, and then 
decreases. However, in the context of the (G-N II) theory for δ=0, σxx begins with decreasing to a 
minimum value, then increases to a maximum value, and also moves in the wave propagation. Fig. 
12 shows the distribution of the stress component σxy and demonstrates that it reaches a zero value 
and satisfies the boundary condition at x=0. In the context of the two theories for δ=0, σxy begins 
with increasing, then decreases to a minimum value, and also moves in the wave propagation. 
Figs. 7-12 demonstrate that the two-temperature parameter has a significant role on all the physical 
quantities. The values of all the physical quantities converge to zero by increasing the distance x; 
the behavior of the (3PHL) model with one temperature is different. 

Figs. 13-18 show comparisons between the displacement components u,v, the thermo-dynamic 
temperature θ, the conductive temperature Φ, and the stress components σxx, σxy in the absence  
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Fig. 14 Vertical displacement distribution v in the absence and presence of reinforcement 
 

Fig. 15 Conductive temperature distribution Φ in the absence and presence of reinforcement 
 

Fig. 16 Thermodyamic temperature distribution θ in the absence and presence of reinforcement 
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Fig. 17 Distribution of the stress component σxx in the absence and presence of reinforcement 
 

Fig. 18 Distribution of the stress component σxy in the absence and presence of reinforcement 
 

 
Fig. 19 Horizontal component of displacement against both components of distance based on 3PHL model 
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Fig. 20 Conductive temperature distribution Φ against both components of distance based on 3PHL model 

 

 
Fig. 21 Distribution of the stress component σxx against both components of distance based on 3PHL model 

 
 

(WRF) and presence (NRF) of reinforcement for two-temperature parameter δ=12 and in the 
presence of a magnetic field (α0=2.4).  

Fig. 13 depicts that the distribution of the horizontal displacement u begins from positive 
values. In the context of the (3PHL) model, u begins with decreasing, then increases to a 
maximum value, and also moves in the wave propagation for (WRF). However, in the context of 
the (G-N II) theory, u begins with decreasing, and then moves in the wave propagation for (WRF). 
Fig. 14 exhibits that the distribution of the vertical displacement v begins from negative values for 
(NRF), but it begins from positive values for (WRF). In the context of the two theories, for (WRF) 
v decreases in the range 0≤x≤8. Fig. 15 shows the distribution of the conductive temperature Φ and 
demonstrates that it begins from negative values in the context of two theories, but it begins from a 
positive value in the context of the (G-N II) theory for (WRF). In the context of the (3PHL) model, 
Φ begins with increasing, and then becomes nearly constant for (WRF). However, in the context of 
the (G-N II) theory, Φ begins with decreasing, and then becomes nearly constant for (WRF). Fig. 
16 exhibits the distribution of the thermodynamic temperature θ and demonstrates that it reaches a 
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zero value and satisfies the boundary condition at x=0. In the context of the two theories, θ begins 
with increasing to a maximum value, then decreases, and also moves in the wave propagation for 
(WRF). Fig. 17 shows that the distribution of the stress component σxx begins from a negative 
value and satisfies the boundary condition at x=0. In the context of the two theories, σxx begins 
with decreasing and then increases for (WRF). Fig. 18 exhibits the distribution of the stress 
component σxy and demonstrates that it reaches a zero value and satisfies the boundary condition at 
x=0. In the context of the two theories, σxy begins with decreasing to a minimum value, then 
increases, and also moves in the wave propagation for (WRF). Figs. 13-18 demonstrate that the 
reinforcement has a significant role on all the physical quantities. All physical quantities begin to 
coincide when the horizontal distance x increases reach the reference temperature of the solid. 
These results obey physical reality of the behavior of fiber as a polycrystalline solid. 

Figs. 19-21 are giving 3D surface curves for the physical quantities, i.e., the horizontal 
displacement, the conductive temperature, and the stress components σxx to study the effect of a 
magnetic field on the wave propagation within a two-temperature fiber-reinforced thermoelastic 
isotropic medium in the context of the (3PHL) model. These figures are very important to study 
the dependence of these physical quantities on the vertical component of distance. The curves 
obtained are highly depending on the vertical distance from origin, all the physical quantities 
satisfy boundary condition and are moving in the wave propagation. 
 
 
5. Conclusions 
 
 In the present study, normal mode analysis is applied to study the effect of a magnetic field on 
the wave propagation in a two-temperature fiber reinforced thermoelastic medium based on the 
(3PHL) model and the (GN-II) theory. We can obtain the following conclusions based on the 
above analysis: 

• Deformation of a body depends on the nature of the applied force as well as the type of 
boundary conditions.  
• Analytical solution based upon normal mode analysis of the thermoelastic problem in solids 
have been developed and utilized. Normal mode analysis is, in fact, to look for the solution in 
Fourier transformed domain, assuming that all the field quantities are sufficiently smooth on 
the real line such that normal mode analysis of these functions exists. 
• The curves in the context of the (3PHL) model and the (GN-II) theory decrease exponentially 
with increasing this indicates that the thermoelastic waves are un-attenuated and non-
dispersive, while purely thermoelastic waves undergo both attenuation and dispersion. 
• There are significant differences in the field quantities under the (GN-II) theory and the 
(3PHL) model due to the phase-lag of temperature gradient and the phase-lag of heat flux. 
• The (3PHL) model is useful in the problems of heat transfer, heat conduction, nuclear boiling, 
exothermic catalytic reactions, phonon-electron interactions, phonon-scattering etc., where the 
delay time captures the thermal wave behavior (a small scale response in time), the phase-lag 
captures the effect of phonon-electron interactions (a micro-scopic response in space), the other 
delay time is effective since, in the (3PHL) model, the thermal displacement gradient is 
considered as a constitutive variable whereas in the conventional thermoelasticity theory 
temperature gradient is considered as a constitutive variable. 
• It is clear that the magnetic field, the reinforcement and the two-temperature parameter play 
significant roles on all the physical quantities. 
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• The vertical distance plays a significant role on all the physical quantities. 
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