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Abstract.  A conditional probability based approach known as Particle Filter Method (PFM) is a powerful 

tool for system parameter identification. In this paper, PFM has been applied to identify the vehicle 

parameters based on response statistics of the bridge. The flexibility of vehicle model has been considered in 

the formulation of bridge-vehicle interaction dynamics. The random unevenness of bridge has been idealized 

as non homogeneous random process in space. The simulated response has been contaminated with artificial 

noise to reflect the field condition. The performance of the identification system has been examined for 

various measurement location, vehicle velocity, bridge surface roughness factor, noise level and assumption 

of prior probability density. Identified vehicle parameters are found reasonably accurate and reconstructed 

interactive force time history with identified parameters closely matches with the simulated results. The 

study also reveals that crude assumption of prior probability density function does not end up with an 

incorrect estimate of parameters except requiring longer time for the iterative process to converge. 
 

Keywords:  conditional probability; vehicle flexibility; forward solution; bridge-vehicle interaction 

dynamics; noise level 

 
 
1. Introduction 
 

Moving vehicle imposes dynamic load on bridge pavement causing bridge to undergo 

vibrations. A comprehensive treatment of bridge-vehicle interaction dynamics and their practical 

application has been described by Fryba (1996), Yang et al. (2004). The estimation of dynamic 

load is significant in view of fatigue life estimation of both bridge and vehicle. Although, in 

majority of cases, dynamic load is marginally higher than static load but its action on bridge for 

several years causes continuous degradation of bridge and therefore, regular maintenance is 

necessary. It is difficult to measure interaction force between bridge and moving vehicle at a 

particular instant of time. Moreover, the weigh-in-motion system used by the regulatory body can 

measure only static axle load at slow motion and on smooth pavement. This condition is never 

achieved while vehicle moves on a bridge having various degrees of surface unevenness and speed 

variation. Therefore, it becomes a meaningful effort to find out the moving vehicle parameters 

using measured response of the bridge. Traditionally, instrumented vehicle (Mosses 1979, Clayton 
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and Peter 1990) or theoretical model of bridge-vehicle interaction (Green and Cebon 1997, Yang 
and Yau 1997) has been used to estimate the axle load and its effect on the pavement. Basically, 
the determination of vehicle parameters from bridge response measurement is an inverse problem. 
Research on the solution of such inverse problem has been started in identifying the static wheel 
load from measured bridge displacement or strain. A review paper on the recent status of works in 
this area has been published by Yu and Chan (2007). Connor and Chan (1988) have employed least 
square method to estimate equivalent static load and their dynamic variation with time based on 
bridge response measurement. Vehicle bridge interaction was ignored in the system model. An 
interpretive method has been developed by Law (1997) where bridge has been modeled as 
assembly of lumped masses and improvement of the model using Euler Bernouli continuous 
system has been considered by Chan et al. (1999). Laboratory experiments have been conducted 
by Chan et al. (2000) for identification of moving mass from measured strain. Later on, Law and 
Fang (2001) proposed a theoretical optimal state estimation with the use of dynamic programming, 
by which moving load could be identified, overcoming the difficulties of ill conditioning of state 
matrix in time and frequency domain approach encountered by the past authors (Law et al. 1997, 
1999). Moving load identification in multi-span beams is also reported (Chan et al. 1999, Zhu and 
Law 2000) where effect of noise, number of vibration modes and effect of support flexibility for 
non rigid bearings has been considered. Development of Bayesian state estimation methodologies 
has added a new dimension in system identification involving various uncertainties (Kalman 
1960). Most important Bayesian estimation is Kalman filtering which is applicable to linear 
models and Gaussian type of uncertainties. Ching et al. (2006), Nasrellah and Manohar (2010) 

applied a recently developed particle filter method for state as well as system parameter estimation 
of dynamic system. Many investigators commented particle filtering as a computationally 
expensive method although its efficiency has been admitted in reported application. To overcome 
the drawback of large computational time in a complex system, a relaxed Monte Carlo filter has 
been proposed by Sato and Tanaka (2013) by reducing number of particles in filtering stage. 
Yoshida and Akiyama (2013) developed a model updating process using particle filtering 
technique to monitor chloride induced damage of reinforced concrete structure in marine 
environment. Reports on moving load identification using particle filtering technique are scanty 
and therefore recognized as a new area of research in vehicle parameter identification from bridge 
response data. Further, literature survey reveals that most of the works on identification of moving 
load on bridge have considered vehicle model as rigid body. However, in recent years, long and 
slender multiaxle vehicles are frequently plying over the bridges carrying construction materials 
and other pay loads. This type of vehicle exhibits flexible modes under the influence of road 
excitation in addition to rigid body modes. The dynamic interaction of bridge with flexible vehicle 
and its application to solve inverse problems has not been addressed in the literature, although its 
necessity is being felt in modern days. In the present paper, Particle Filter Method (PFM) has been 
applied to estimate the vehicle parameters including its flexural rigidity. In addition the suspension 
and wheel characteristics are obtained using simulated bridge response. The identified vehicle 
parameters has been used to reconstruct interaction force time history and compared with the true 
value. The coupled bridge-vehicle dynamics in presence of non homogeneous random roughness 
of the bridge deck has been considered. The identification technique used in the paper has been 
examined in presence of noise with the response signal from different location along the span. 
Accuracy of the method with change in vehicle forward velocity and with various degrees of 
unevenness has been studied. The effect of range of the parameters to construct prior probability 
density function on the efficiency of the method has been discussed.   
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Fig. 1 Bridge-vehicle system model 
 
 
2. Mathematical model 
 

 The bridge-vehicle model has been shown in Fig. 1. The bridge has been modeled as a 
uniform beam with simply supported end conditions. The mass, stiffness and damping are assumed 
to be uniform along the span of bridge. Due to eccentricity of the vehicle path, the bridge is 
subjected to flexure as well as torsion. The bridge deck is uneven which has been realized as non 
homogeneous process in spatial domain. This is represented by a function h(x). 

 
2.1 Equation of motion of vehicle 

 
Vehicle body has been idealized as Euler-Bernoulli beam of length lv. The behavior of 

suspension systems consisting of spring and dashpot are assumed as linear. The governing 
differential equation of motion of the vehicle deflection can be expressed as 
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in which mv is the mass per unit length which includes self weight of the vehicle and payload. The 
symbols EvIv and Cv denote the flexural rigidity and viscous damping per unit length of the vehicle 
body, z(u,t) represents vertical deflection of the vehicle body measured at location u from the 
reference point (taken at the left end of the vehicle) at time instant t. It may be noted that the 
heave-pitch model of vehicle known as ‘Half Car model’ has been adopted in the present study. 
The model facilitates the representation of multi-wheel and suspension at each axle location as 
single wheel and single suspension. This, in fact, replaces the multi-wheel input force at front or 
rear side of the vehicle as their resultant values. This type of vehicle model is widely accepted for 
bridge vehicle interaction studies (Wen 1960, Velestos and Huang 1970, Yang et al. 1999) and able 
to reflect vehicle bounce and pitching motion due to difference of wheel input caused by pavement 
unevenness. The impressed vertical force, now, can be written as 

          )()(),()(),()()(),()(),(),( 2222211111 uutztuzctztuzkuutztuzctztuzktuf vvvvv      (2) 

where u1 and u2 represent the location of the attachment point of vehicle suspension from the 
reference point; z1 and z2 denote the vertical displacement of front and rear wheel masses 
respectively. kv1 and kv2 are the front and rear vehicle suspension stiffness respectively; cv1 and cv2 
represent damping for vehicle front and rear suspension respectively. In Eq. (1) and (2),  
represents Dirac delta function with the property 
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Nevertheless, the multi-axle inputs can also be considered in the present approach simply by 
adding more terms in Eq. (2) as the forces transmitted from other axle locations. 

The equation of motion for the front un-sprung mass is given by 
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The equation of motion for the rear un-sprung mass is given by 
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where, m1 and m2 are front and rear wheel mass respectively, kt1, kt2 are front and rear suspension 
stiffness respectively; ct1, ct2 are front and rear suspension damping respectively. h(x1) and h(x2) 
represents the non homogeneous deck profile under the front and rear wheels respectively. y(x1,t) 
and y(x2,t) are bridge displacements under front and rear wheels respectively at any instant of time 
t. z(u1,t) and z(u2,t) represents vehicle body deflection at the front and rear wheels position at any 
instant of time t. u1 and u2 is the location of wheel from the end of the vehicle body. Coriolis forces 
that arise due to rolling of wheel on the deflected profile of the bridge has been considered in the 
equation of motion using total derivative operator D/Dt (with Dy/Dt=(y/x) (x/t)+y/t). 
(Nasrellah and Manohar 2010, Fryba 1968).  
 

2.2 Equation of motion of bridge 
 

It is assumed that for symmetrical cross section (symmetrical about vertical axis), bending and 
torsion of the bridge would be independent under vertically applied live load. Thus governing 
differential equation of motion of the bridge in flexure can be expressed as 
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in which mb, EbIb and Cb represents the mass per unit length, flexural rigidity and viscous damping 
per unit length of bridge. The impressed vertical force fb(x,t) on the bridge due to vehicle 
interaction is given by 

 

 

)()](),([)()](),([

)(}
2

1
{)(}

2

1
{

)()](),([)()(),()(

)()](),([)()(),()(),(

22

2

212

2

1

2211

22222

11111

xxxhtxy
Dt

D
mxxxhtxy

Dt

D
m

xxglmmxxglmm

xxxhtxy
Dt

D
tzcxhtxytzk

xxxhtxy
Dt

D
tzcxhtxytzktxf

vvvv

tt

ttb



















 















 













 

(7)
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where g is the acceleration due to gravity. The governing differential equation of the bridge in 
torsion can be written as 
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in which Ib, GbJb, CbT and γ(x,t) represents the mass moment of inertia per unit length, torsional 
rigidity, distributed viscous damping to rotational motion and torsional function of bridge. Jb is 
torsional constant, Gb is the shear modulus of beam material. fT (x,t) is the torque produced in the 
bridge cross section due to eccentric loading which is given by 

 

 

)()](),([)()()](),([

)(}
2

1
{)(}

2

1
{

)()](),([)()(),()(

)()](),([)()(),()(),(

12

2

1222

2

2

2211

22222

11111

xxexhtxy
Dt

D
mxxxxexhtxy

Dt

D
m

xxeglmmxxeglmm

xxexhtxy
Dt

D
tzcxhtxytzk

xxexhtxy
Dt

D
tzcxhtxytzktxf

xxx

xvvxvv

xtt

xttT



















 















 













 

(9)

The parameter ex in Eq. (9) denotes the eccentricity of vehicle wheels from the centre line of 
bridge deck. 

 
2.3 Bridge deck roughness 
 
In the present study we introduce a roughness, which is non homogeneous in space even though 

vehicle velocity is constant, by adopting following relation 
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where hm(x) is a deterministic mean which represents construction defects, expansion joints, 
created pot holes, approach slab settlement, expansion joints, development of corrugation etc., ςs is 
the amplitude of cosine wave, Ωs is the spatial frequency (rad/m) within the interval [ΩL   ΩU] in 
which power spectral density is defined. L and U are lower and upper cut off frequencies. The 
deck roughness is a Gaussian process (Shinozuka 1971) with a random phase angle s uniformly 
distributed from 0 to 2π. N is the number of terms used to build up the road surface roughness. The 
parameters ςs and Ωs are computed as 

     NsS LULsss /)(;)2/1(;)(2   (11)

in which S(s) is the power spectral density function (m3/rad) taken from the reference (Huang and 
Wang 1992) modifying the same with addition of one term in denominator so that the function 
exists when Ω→0. 
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In the above equation, 0=1/2π rad/m has been taken. The spatial frequency Ω (rad/m) and 
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temporal frequency ω (rad/s) for the surface profile is related with the vehicle speed V (m/s) as 
ω=ΩsV. In the present study, vehicle forward velocity has been assumed constant. 
 

2.4 Discretization of flexible vehicle equation of motion 
 

As mentioned earlier vehicle body has been modeled as free-free beam which has two rigid 
modes and nv number of elastic modes. It can be shown that when the translation of the mass 
centroid and the rotational motion about the mass centroid are considered, the two motions are 
orthogonal with respect to each other and with respect to the elastic modes (Hodges and Pierce, 
2002). Thus total displacement of these rigid body degrees of freedom and elastic modes can be 
described by 

     






1

)()(),(
j

jvj tutuz   (13)

where vj(u) is the vehicle mode shapes, the subscript v denotes vehicle, j(t) is the time dependent 
generalized coordinate, j is the mode number; j=-1, 0 are taken to denote rigid body translatory and 
pitching mode, j=1,2,3…nv represent elastic mode sequence of free-free beam and nv is the number 
of significant flexible bending modes considered. The two rigid modes are vertical translation 
(heave) and rotation of longitudinal axis about centroid of the vehicle (pitc. The normalized rigid 
body translation can be represented by unity whereas rigid body rotation is to be represented by a 
liner function of distance from the trailing edge of the vehicle (Meirovitch 1967). The rigid body 
functions are taken as 

     201 ;1 Du    (14)

D2 is a distance of vehicle centre of gravity from the trailing edge as given in Fig 1.  
The elastic bending modes of free-free beam can be obtained by solving Eq. (1) in absence of 

external force. This is given by (Inman 2001) 
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The mode shape function for elastic bending given by Eq. (15) satisfies the zero shear and 
bending moment conditions at the free ends of the vehicle. The corresponding non dimensional 
frequency parameters αjlv can be related to circular natural frequency as 
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Substituting Eq. (13) in Eq. (1) and multiplying both sides of the equation by vk(u) and then 
integrating with respect to u from 0 to lv along with orthogonality conditions, the equation of 
motion can be discretized as 

..-1,0,1,2..=;)()()(2)( 2 jtQttt vjjvjjvjvjj                   (17) 

Generalized force Qvj(t) in the jth mode acting on the vehicle is given as 
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in which generalized mass Mvj in the jth mode is given by 
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Making use of Eqs. (2) and (13) in Eq. (17) and integrating the expression using the property of 
Dirac delta function, one has the following expression for generalized force. 

     
)](})()()({)(})()()({

)(})()()({)(})()()({[
1

)(

2
1

2222
1

222

1
1

1111
1

111

ututzcututzk

ututzcututzk
M

tQ

j

n

j
jvj

n

j
jv

j

n

j
jvj

n

j
jv

vj
vj

vv

vv




















 

(20)

It may be mentioned that infinite number of modes are possible in continuous system 
considered in the present study. However, for practical implementation only first nv modes of 
vehicle body has been included. 
 

2.5 Discretization of bridge equation of motion 
 
The bridge deflection in flexure be written as 
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where k=1,2,3…nb; nb represents number of significant bridge flexural modes. Subscript b 
represents bridge, bk(x) is the flexural mode of the beam for simply supported boundary condition 
corresponding to natural frequency bk and qk(t) are generalized co-ordinates in kth mode (Inman 
2001) 

Now, substituting Eq. (21) in Eq. (6) and multiplying both sides of the equation by bj(x) and 
then integrate with respect to x from 0 to L with the use of orthogonality conditions, the equation 
of motion can be discretized in normal co-ordinates as 
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The generalized force Qbk(t) in the kth mode of bridge in flexure is given as, 
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in which generalized mass Mbk in the kth mode is given by 
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The generalized force in the kth of mode of bridge transverse vibration has been worked out as 
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in which (.) denotes time derivative. Repeating the similar steps, the discredited bridge equation 
for torsion in normal co-ordinate can be expressed as 
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Where nT represents number of bridge torsional modes considered, ωTl and ξTl are the natural 
frequency and modal damping coefficient of lth mode in torsion respectively. The generalized 
torque in the lth mode is given by 
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The torsional natural frequency ωTl and the corresponding mode Tl for the given simply 
supported boundary conditions for no warping restrains have been taken from reference (Inman, 
2001). The generalized mass moment of inertia MTl in the lth mode is given by 

     

L

TlbTl dxxIM
0

2 )(  (28)

The generalized torque in the lth mode can be expressed as, 
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2.6 Method of solution 
 

The system of Eqs. (4), (5), (17), (22) and (26) are coupled second order ordinary differential 
equations. In general for continuous system like the ones (vehicle and bridge), presented in the 
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paper infinite number of modes exists. However, for practical applications, modes have to be 
truncated to a finite size. Let nv, nb and nT be number of significant modes of vehicle motion, 
bridge flexural and torsional vibration respectively. The number of coupled equations becomes 
n=2+nv+nb+nT. The system equations can be expressed in matrix notation as 

     )}({)}(]{[)}(]{[)}(]{[ tFtrKtrCtrM    (30)

where {r(t)}={η1(t), η1(t),…,ηnv(t), z1(t), z2(t), q1(t), q2(t)…,qnb(t), γ1(t), γ2(t)…, γnT(t)}T is the 
response vector, {F(t)} is the generalized force vector and, [M], [C] and [K] are system mass, 
damping and stiffness matrix respectively. Any direct integration method can be used to solve Eq. 
(30). In the present study, the Newmark-β method has been adopted (Bathe and Wilson 1987). 
Modal system response obtained from numerical integration is used to obtain bridge responses at 
various locations. The force vector {F(t)} is a function of deck roughness and its derivative which 
are considered as a random process in the study. The response samples thus form complete 
ensemble of the process. Averaging across the ensemble at each time step yields mean μY(tk) and 
standard deviation σY(tk) of a response process Y. 
 

3. Identification of vehicle parameters 

 
Vehicle parameters estimation plays an important role in the axle load identification. This paper 

presents the applicability of PFM to identify the unknown vehicle parameters and estimate time 
dependent axle load on the bridge from the available bridge response measurements. The basic 
idea of PFM is to represent the required posterior density function of unknown vehicle parameters 
by a set of random samples (particles) with associated weights, and to compute the estimates based 
on these samples and weights. As the number of samples becomes very large, this Monte Carlo 
characterization becomes an equivalent representation of the posterior probability function, and the 
solution approaches the optimal Bayesian estimate. 

Vehicle parameters to be identified include sprung and un-sprung masses, suspension stiffness 
damping, tyre stiffness and tyre damping which are represented by a vector {Ф}. Bridge 
parameters and the velocity with which vehicle traverse the bridge is taken to be known. The 
system states rl are assumed to propagate according to system equation 

),(1 llll rgr   ;  l=0,1,2,3…. Nt                  (31) 

in which, l represents discretized time dimension and Nt is the number of time instants considered. 
rl Є Rn is a n-dimensional vector denoting the state of the system, a model noise ηl Є Rm is the 
discretized m-dimensional vector of a sequence of independent and identically distributed random 
variables which are independent of past and current state and whose probability density function 
are assumed to be known. gl(.)  is a system transition function. It is assumed that the transition 
function is such that gl(.) : R

n × Rm→ Rn.  
When the system measurements become available, the system states are related to these 

measurements via the observation equation.  

;),( llll rfZ   l=0,1,2,3…. Nt        (32) 

where Zl Є Rp is a p-dimensional  bridge response measurement vector, a measurement noise ζl Є 
Rs is a s-dimensional vector of a sequence of independent and identically distributed random 
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variables and fl(.) is a non linear function that relates the measurements to the system state such 
that fl(.) : R

n × Rs→ Rp. 
However, the main interest is on estimating the unknown vehicle parameters and that remains 

invariant with respect to time for the duration of measurements being taken. In writing the model 
equation, a model noise has to be added leading to the model equation as (Nasrellah and Manohar 
2010) 

     
),( 1 llll g 

  l=0,1,2,3…. Nt (33)

Here, as before, a model noise ηl Є Rm is the discretized m-dimensional vector of a sequence of 
independent and identically distributed random variables with density p(Ф). It is further assumed 
that the initial conditions are random having a PDF p(Ф0). 

Similarly, the observation equation given in Eq. (32) can be written in terms of unknown 
vehicle parameters as 

    
;),( llll fZ 
  l=0,1,2,3…. Nt (34)

Vehicle parameters identification problem can now be considered as being equivalent to the 
determination of the posterior probability density function p(Фl│Zl). Thus knowing posterior PDF, 
also known as filtering density, one can determine the first few moments of the vehicle parameters 
Фl, conditioned on bridge response measurement Zl, at each time step. Mathematically, one can 
express first two moments as 

       llllll dZp )|(|  (35)

       llllll
T

lllll dZp )|()()( |||
2   (36)

The main steps of the particle filtering algorithm for identifying vehicle parameters now can be 
stated in a sequential manner for implementation in computer program in MATLAB environment 
(Arulampalam et. al 1991).  

(i) For l=0, simulate Np samples for Ф0 from the assumed PDF p(Ф0). 
(ii) For l=1, calculate the prior prediction for the state, in this case denoted by Фl

*, from the 
model equation.  

(iii) Once the measurements at the lth state are available, the likelihood corresponding to all the 

samples Np
jlj 1

* }{  needs to be evaluated. This implies that one has to evaluate Np
jljlZp 1

* )}|({   

(iv) To evaluate the likelihood for the samples, one requires to solve the associated equations 

and evaluate Np
jljlf 1)}({  . 

(v) Now, for the lth measurement, calculate the weighting function as 

     








pN

j
ljl

ljl
j
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w

1

*
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)|(

)|(  
(37)

(vi) The discrete mass probability function for the next iteration is defined as 

jllj wP  ][ *                        (38) 
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(vii) From the discrete mass distribution function, a new set of Np samples of Фl are generated. 
This constitutes the posterior estimates of Фl. 

(viii) The mean of estimates are obtained by averaging across the ensemble, and is expressed as 





pN

j
lj

p
ll N 1
|

1                                (39) 

(ix) The corresponding standard deviation of the estimate is calculated as 
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(40) 

When standard deviation becomes very small (less than or equal to tolerance value set by the 
programmer), the value of parameters are taken to be converged to true mean value. Otherwise, the 
above steps are repeated by setting l=l+1. In this way, the filtering is carried out for the entire 
available time history of measurements. 
 
 
4. Result and discussion 
 

In this study, the applicability of particle filter method in identifying moving vehicle load and 
its parameters based on measured bridge dynamic response has been demonstrated. Since no 
physical experiments have been undertaken, the measured response samples have been 
synthetically generated using the present analytical expression with artificial noise added to it to 
mimic field data.  

A RC slab-girder bridge of span (L) 20 m with three longitudinal girders along the span and 
three cross girders, one at mid span and two at supports are selected for the study. The lane width: 
8.6 m, Deck Thickness: 200 mm, concrete characteristic strength 25 N/mm2. The cross section of 
the bridge is shown in Fig. 3(a). A Finite Element (FE) model of bridge in SAP2000 commercial 
software is first developed using above details of the bridge so as to match the fundamental natural 
frequency and first modal damping ratio of the simply supported beam model of T-beam bridge. 
The sectional properties of FE model is then used in the present numerical scheme. These are mass 
(mb): 11.15×103 kg/m, flexural rigidity (EbIb): 3.7×1010 N-m2, torsional rigidity (GbJb): 1.695×1010 

N-m2.  

For modeling deck surface roughness, the values of spectral roughness coefficient (ς) have been 
taken as 2×10-6 to 18×10-6 m2/(m/cycle) according to International Organization for 
Standardization specifications for the class of different road conditions (ISO 8606 1995). The 
lower and upper limits of the spatial frequencies of the road profile are taken as ωL=0.01 cycle/m 
and ωU=3 cycle/m. The cut-off spatial frequencies are chosen in view of the practical size of tyre. 
The forward problem is solved using the assumed data and numerical integration employed to 
generate bridge dynamic responses.  

A long vehicle carrying heavy load often crossing the bridge has been chosen to illustrate the 
present approach. The standards of vehicle are different from the live load prescribed by bridge 
code. In the present study, we use a Vehicle type: TATA 3516C-EX as shown in Fig. 3(b). 
Following are the important physical parameters pertaining to vehicle: length (lv): 12 m, flexural 
rigidity (EvIv): 5.3×106 N-m2, mass per unit length (mv): 1500 kg/m, front and rear wheel masses 
(mw1=mw2): 800 kg each, Suspension stiffness front and rear (kv1=kv2): 3.6×107 N/m, Suspension  
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(a) Cross section of T-beam bridge (b) Vehicle model 

Fig. 3 Cross section of bridge and vehicle model (All dimensions are in meter) 
 

(a) Mean (b) Standard deviation 

Fig. 4 Acceleration response of bridge at different location for constant vehicle speed 60 km/h 
 
 

damping front and rear (cv1=cv2): 7.2×104 N-sec/m, front and rear tyre stiffness (kt1=kt2): 0.9×107 
N/m, front and rear tyre damping (kt1=kt2): 0.7×104 N-sec/m. The representative vehicle in Fig. 
3(b) has been idealized as heave-pitch (two inputs) model in the formulation. Therefore, tyre and 
suspension parameters of the vehicle adopted in numerical simulation represent the resultant 
values of two axle parameters located in front and rear side of the vehicle. 

The main focus of the study is to find out the vehicle parameters from the measured dynamic 
response of the bridge using PFM. The mean acceleration time history at two stations (quarter and 
mid span) obtained by numerical solution was used. We first present the mean acceleration of the 
bridge at one fourth and middle span and corresponding standard deviation in Fig. 4(a) and Fig. 
4(b) respectively. Vehicle velocity is taken as 60 km/h.  No noise has been added at this stage. 
However, measured data will be considered in the particle filter algorithm by adding different level 
of noise. In the present study, two different level of noise 5% and 10% will be considered to test 
the convergence of filtering method. The mean quantities of mid span response is larger compared 
to other span locations. Standard deviation values do not show any definite pattern of variation. 

 
4.1 Vehicle parameter identification 
 
The PFM is now applied to estimate the unknown vehicle parameters which include vehicle 

mass, flexural rigidity, suspension stiffness, suspension damping, tyre mass, stiffness and damping.  

32



 
 
 
 
 
 

Identification of flexible vehicle parameters on bridge using particle filter method 

(a) Mean (b) Standard deviation 

Fig. 5 Estimate of vehicle mass/length from acceleration data at different locations 

 

(a) Mean (b) Standard deviation 

Fig. 6 Estimate of front wheel mass from acceleration data at different locations 

 

(a) Mean (b) Standard deviation 

Fig. 7 Estimate of rear wheel mass from acceleration data at different locations 
 
 

Only acceleration response of the bridge has been used as in most of the practical situation, 
acceleration response is picked up by the sensor. The numerically simulated bridge acceleration 
response has been contaminated by the addition of artificial noise to mimic field data. The iteration 
is started with a range of vehicle parameters which has been used to generate particles of assumed  
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(a) Mean (b) Standard deviation 

Fig. 8 Estimate of front suspension stiffness from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 9 Estimate of rear suspension stiffness from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 10 Estimate of front suspension damping from acceleration data at different locations 
 
 
probability density function. The mean and standard deviation values of the vehicle parameters are 
calculated at each stage of iteration at each time step of the synthetically generated time history. 
When the standard deviation of the parameters becomes very small, iteration is ended and 
observed as spike in the probability density curve. The progress of iteration and its convergence 
are presented in the subsequent sub sections taking various factors into considerations. 
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(a) Mean (b) Standard deviation 

Fig. 11 Estimate of rear suspension damping from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 12 Estimate of front tyre stiffness from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 13 Estimate of rear tyre stiffness from acceleration data at different locations 
 
 
4.1.1 Effect of bridge response measurement location 
The bridge acceleration measurement at different location along the span has been used as input 

to the particle filter algorithm. Having been estimated the vehicle parameters; the dynamic 
interaction force has been reconstructed and compared with the simulated value. The progress of  
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(a) Mean (b) Standard deviation 

Fig. 14 Estimate of front tyre damping from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 15 Estimate of rear tyre damping from acceleration data at different locations 
 

(a) Mean (b) Standard deviation 

Fig. 16 Estimate of vehicle flexural rigidity from acceleration data at different locations 
 
 

estimation of mean and standard deviation of some of the important vehicle parameters-mass/ 
length, flexural rigidity, wheel masses, suspension stiffness and damping has been displayed in the 
form of graphical plot of estimated parameters vs. corresponding number of iterations (Fig. 5 to 
Fig. 16).  
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Table 1 Effect of response measurement location on identified vehicle parameters 

Parameters 
No of iteration Percentage error

Parameters
No of iteration Percentage error 

Mid 
span 

Quarter 
span 

Mid 
span 

Quarter 
span 

Mid 
span 

Quarter 
span 

Mid 
span 

Quarter 
span 

mv 44 53 1.69 2.16 kt2 33 60 5.016 9.37 

kv1 52 103 11.822 20.06 ct1 49 102 14.49 20.96 

kv2 53 57 1.67 2.08 ct2 58 61 1.667 3.64 

cv1 64 66 8.187 11.73 mw1 45 64 8.76 8.96 

cv2 42 43 3.13 3.28 mw2 28 115 2.343 7.37 

kt1 38 58 7.531 16.25 EvIv 48 59 1.085 2.53 

 

(a) Mean (b) Standard deviation 

Fig. 17 Dynamic interaction force from different location of bridge acceleration response measurement 
 
 
Table 1 presents number of iterations required for convergence and percentage deviation of 

identified parameters from true values using response samples at two different locations. The 
results show that estimate made from mid span response samples provide better accuracy 
compared to that of quarter span response samples used in present method. The mean and standard 
deviation of the vehicle-bridge interaction forces reconstructed from identified parameters have 
been shown in Fig. 17. It is seen that estimated dynamic force time history is close to the true 
value when mid span measurement or simulated samples are used in the algorithm. It is to be noted 
that number of iterations and percentage error differs in each parameter. It has been noticed that 
the sampling interval plays an important role for convergence and accuracy in the present 
numerical study. The simulation for the identification purpose in the present study has been carried 
out taking three sampling frequencies 300 Hz, 500 Hz and 700 Hz. Out of these, the results 
obtained using 500 Hz sampling frequency has been reported in the present paper. Use of higher 
sampling frequency, although, increases accuracy of estimate but has been found to delay the 
convergence. The similar observations has been reported by Law et al. (2004) while estimating 
moving load traversing on a beam using low sampling frequency. This could be due to the fact that 
high frequency component of random deck unevenness could not be properly filtered out with the 
low sampling frequency. However, the present results reflects that convergence has achieved after 
28 to 48 iterations when mid span measurement is used. The number of iterations, however, 
remains in the higher range 43-115 when quarter span measurement is utilized. It may be noted  

37



 
 
 
 
 
 

S. Talukdar and R. Lalthlamuana 

(a) Vehicle mass (b) Vehicle front suspension stiffness 

Fig. 18 Evolution of Probability density function at different stages of iteration 
 

(a) Vehicle front suspension damping (b) Vehicle flexural rigidity 

Fig. 19 Evolution of probability density function at different stages of iteration 
 
 

that particle filtering method can accommodate model imperfection (Narsellah and Manohar 2013) 
in terms of added model noise which is necessary for the working of the method, and, thus, has 
rare possibility of failure to identify the hidden parameters.    

It may be noted in Particle Filtering technique, probability density function of unknown 
parameters at each stage of iterations is updated until the convergence is achieved. The evolution 
of probability density function of some of the parameters to be estimated are shown at initial 
guess, at intermediate stages and at the end of identification process of some of the important 
parameters of the vehicle in Fig. 18 and Fig. 19. It may be mentioned that standard deviation 
approaches very low value at a certain number of iteration which implies that the algorithm has 
achieved convergence. A sharp peak of the probability mass function has been observed when 
convergence has been achieved. This is expected because of Gaussian excitation and linear system 
adopted in the study.  
 

4.1.2 Effect of noise level 
The effect of noise level on the algorithm has been tested by increasing it to 10%. Table 2 

shows the percentage error as well as number of iteration required to converge, when noise level is 
increased. Result shows that, with the same accuracy more number of iterations is required when 
higher level of noise is added to the simulated bridge response. However, for some parameters it  
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Table 2 Effect of different noise level on the estimated vehicle parameters 

Parameters 
No of iteration Percentage error

Parameters
No of iteration Percentage error 

5% 
noise 

10% 
noise 

5% 
noise 

10% 
noise 

5% 
noise 

10% 
noise 

5% 
noise 

10% 
noise 

mv 44 51 1.69 1.67 kt2 33 98 5.02 8.23 

kv1 52 69 11.822 13.44 ct1 49 63 14.49 15.05 

kv2 53 48 1.67 4.95 ct2 58 52 1.667 2.09 

cv1 64 59 8.187 15.95 mw1 45 142 8.76 6.44 

cv2 42 47 3.13 1.26 mw2 28 51 2.343 2.84 

kt1 38 63 7.531 10.01 EvIv 48 72 1.085 2.17 

 
Table 3 Range of mass of vehicle, flexural rigidity and wheel mass to construct prior PDF 

Range 
Vehicle mass/length 

(mv) kg/m 
Vehicle flexural rigidity 

(EvIv) N-m2 
Front and rear wheel mass 

(mw1, mw2) kg 
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

Γl 0.5 ×103 1.3 ×103 1.5x106 5.8x106 0.5 ×103 1.3 ×103 

Γu 4.5 ×103 1.9 ×103 1.3 ×107 1.1x107 4.5 ×103 1.9 ×103 

 
Table 4 Range of suspension stiffness, tyre stiffness, suspension damping and tyre damping to construct 
prior PDF 

Range 

Front and rear vehicle 
suspension stiffness 

(kv1, kv2) N/m 

Front and rear wheel 
stiffness 

(kt1, kt2) N/m 

Front and rear vehicle 
suspension damping 

(cv1, cv2) N-s/m 

Front and rear wheel 
damping 

(ct1, ct2) N-s/m 
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

Γl 0.3×107 2.8×107 Γl 0.3×107 1.5×104 6.5×104 

Γu 8.5×107 4.0×107 Γu 8.5×107 12.3×104 8.3×104 

 
 

has been observed that faster end of iteration process even in presence of increased noise. 
 

4.1.3 Effect of assumption of the prior PDF p(Γ0) 
In the absence of any information about the unknown parameters, it is assumed that the prior 

PDF p(Γ0) is uniformly distributed within a range [Γl  Γu]. Two different cases have been 
considered to specify the range within which random particles are generated assuming uniform 
probability density function p(Γ0). Case (i): Keeping the lower and the upper limits with large 
variation from the true value. Case (ii): Keeping the lower and upper limits close to the true value. 

The range of values of the parameters assumed for the above two cases are mentioned in Tables 
3 and 5. In these two cases, number of particles Np=1000 and artificial noise is taken to be 5% of 
the simulated maximum bridge dynamic response. The mean and standard deviation is observed at 
each stage of iteration and stopped when standard deviation becomes less than equal to tolerance. 

It has been found that a incorrect choice of p(Γ0) does not necessarily lead to wrong estimates 
by the particle filter identification method. However, a crude assumption of the prior probability 
density is found to consume longer time to achieve convergence. Identified vehicle bridge 
interaction force is shown in Fig. 20 simultaneously comparing with the true value of dynamic  
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(a) Mean (b) Standard deviation 

Fig. 20 Dynamic interaction force for different prior PDF p(Γ0) 
 

Table 6 Effect of vehicle speed on the estimated vehicle parameters 

Parameters 
No of iteration Percentage error 

Parameters
No of iteration Percentage error 

40 
km/h 

60 
km/h

80 
km/h 

40 
km/h 

60 
km/h

80 
km/h

40 
km/h

60
km/h

80 
km/h 

40 
km/h 

60 
km/h 

80 
km/h

mv 57 44 31 2.40 1.69 1.97 kt2 62 33 106 1.90 5.02 6.67

kv1 34 52 46 10.61 11.82 12.75 ct1 56 49 32 11.73 14.49 15.60

kv2 77 53 19 5.60 9.67 10.87 ct2 81 58 93 2.07 1.67 4.59

cv1 41 64 93 2.73 8.19 8.50 mw1 21 45 63 1.23 8.76 7.58

cv2 22 42 48 1.24 3.13 1.69 mw2 18 28 65 1.78 7.14 9.41

kt1 59 38 51 1.37 7.53 8.06 EvIv 26 48 94 2.18 3.09 3.43

 
 

interaction force. Assumption based on the first case of prior density function leads to 2 to 19 
percent error while the second case assumption gives 1 to 14 percent error. 
 

4.1.4 Effect of different vehicle velocity  
The identification algorithm has been examined from the measured response for different 

vehicle speed over the bridge. The response samples have been generated at 40, 60, 80 km/h of 
vehicle speed. The sampling time interval in measured response sample (after adding 5% artificial 
noise) has to be chosen based on vehicle forward velocity so as to obtain sufficient data points. 
Number of iteration required to get convergence and resultant percentage error are tabulated in 
Table 6. It has been found that lower speed gives better estimate but it requires more number of 
iteration to achieve the convergence. Further, it has been observed that error in parameter 
estimation does not depend solely on the vehicle speed; rather there is necessity of adequate data 
points for satisfactory performance.  
 

4.1.5 Effect of different roughness condition 
Bridge deck surface irregularity has been considered in the identification of vehicle parameters 

based on ISO specification (ISO 8606:1995) for different conditions- good, average and poor. 
Among the three conditions, results show that good condition of pavement, gives the best estimate 
with less number of iteration as shown in Table 7. This may be attributed to the reason that noise  
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Table 7 Effect of vehicle speed on the estimated vehicle parameters 

Parameters 
No of iteration Percentage error 

Good 
condition 

Average 
condition 

Poor 
condition 

Good 
condition 

Average 
condition 

Poor 
condition 

mv 24 44 47 1.30 1.69 2.21 
kv1 30 52 69 11.28 11.82 12.41 
kv2 19 53 49 3.95 9.67 7.11 
cv1 59 64 138 7.89 8.19 11.98 
cv2 38 42 92 2.13 3.13 8.70 
kt1 29 38 62 6.59 7.53 9.33 
kt2 31 33 55 3.28 5.02 11.83 
ct1 44 49 137 11.20 14.49 15.28 
ct2 47 58 110 2.86 1.67 4.55 

mw1 33 45 167 4.99 8.76 9.86 
mw2 23 28 127 3.79 7.14 8.55 
EvIv 52 48 108 3.87 3.09 5.71 

 
 

effect in dynamic input for the case of rougher pavement increases, requiring more number of 
iterations for convergence. This is in conformity with the results obtained when artificial noise 
level was increased from 5% to 10% in as stated earlier. 
 
 
5. Conclusions 
 

In the present study, Particle Filter method (PFM) has been employed for identification of 
vehicle parameters. Bridge parameters and vehicle speed were assumed to be known. However, 
PFM has general applicability in system identification and can also be used to identify bridge 
parameters which exist in coupled dynamic system. The efficiency of the proposed method has 
been studied by synthetic bridge acceleration response. The dynamic interaction force time history 
has been reconstructed with the identified parameters and compared with mean value. Different 
measurement location at the bridge span and effect of artificially added noise has been 
investigated. The accuracy of the proposed method has been checked by considering two different 
cases of prior density function selection. Some of the major findings and recommendations on the 
applicability of particle filter technique for vehicle parameter identification are given below: 

• Response Measurement location has greater influence on the accuracy and computational 
time required in application of particle filtering technique. For simply supported single span bridge 
like the one being presented, mid span location of sensor point may be the better option. 

• For identification of vehicle parameters with greater accuracy and within short time, response 
picked up at lower vehicle movement would be preferable for the implementation of particle 
filtering method.  

• Rough bridge deck surface and presence of measurement noise would require more time for 
the convergence of the result. 

• The initial wrong assumption of parameters of prior probability density function does not 
eventually lead to wrong estimate, except that the convergence time would increase.  
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