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Abstract.  In this paper, a new approach based on the continuum model is proposed to estimate the main 

cable tension force of suspension bridges from measured natural frequencies. This approach considered the 

vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along 

its entire length. The equation reflected the relationship between vibration frequency and horizontal tension 

force of a main cable was derived. To avoid to generate the additional cable tension force by sag-

extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the 

main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-

symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency 

deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field 

experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses 

of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable 

was identified from the first three odd frequencies. It is shown that the estimated results agree well with the 

designed values. The proposed approach can be used to conduct the long-term health monitoring of 

suspension bridges. 
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1. Introduction 
 

In the last few decades, suspension bridges have been employed increasingly in the civil 

engineering due to their advantages of long spans, low cost and high utilization of the materials. 

The main cables are a crucial element for overall structural safety of the bridge because most of 

the live and dead loads of suspension bridge are transferred to the anchorage systems by the main 

cables, hence, the accurate estimation of main cable tension force is essential for construction and 

maintenance inspection. 
The current available techniques to estimate the cable tension force are the static methods and 

the vibration methods. For the static methods, the tension force can be directly measured by a load 

cell or a hydraulic jack, but they are too expensive and not suitable for maintenance stage. 

Recently, Yim et al. (2013) studied the effectiveness of elasto-magnetic (EM) sensors for 

monitoring the cable tension force. The results indicated that EM sensor can sensitively detect 
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average stress changes in cables. However, temperature effects on the relative permeability should 

be considered for accurate cable tension force measurement. While for the vibration methods, the 

tension force can be indirectly estimated from measured natural frequencies, thus the vibration 

methods are widely used because of its simplicity and convenience. 

A number of experimental and theoretical studies have been conducted to estimate the cable 

tension force using vibration methods based on the taut string theory and the Bernoulli-Euler beam 

theory. Given the measured frequency and mode number, the cable tension force can be calculated 

straightforward based on the taut string theory. However, the application of this method which 

ignored the sag and flexural stiffness of the cables is strictly limited to a flat long slender cable 

(Casas 1994). The formulation from the Bernoulli-Euler beam theory considered the flexural 

stiffness, but it neglected the sag-extensibility. Fang and Wang (2012) proposed a practical formula 

in explicit expression to estimate cable force, and used the frequencies of the antisymmetric or 

higher modes of the cable to avoid the sag-extensibility effect. Other methods, with both flexural 

stiffness and sag-extensibility included, were also presented. Ricciardi and Saitta (2008) developed 

an analytical model for dynamics of large-diameter sagged cables by means of Hamilton‟s 

principle, but the proposed model had some limitations: (1) constant cable section; (2) no variation 

in boundary; (3) no external attachment; and (4) a sag-to-span ratio less than 1/8. Nam and Nghia 

(2011) studied the combined effects of flexural stiffness and sag-extensibility of the cable on its 

tension force. By introducing proper simplifying approximations, asymptotic forms for the wave 

number equation of an inclined cable considering flexural stiffness and sag-extensibility have been 

explicitly obtained. A set of practical formulas considering the effects of sag-extensibility and 

flexural stiffness have been proposed in which a prior knowledge of the axial and flexural stiffness 

of the cable is required (Zui et al. 1996, Yen et al. 1997, Mehrabi and Tabatabai 1998, Dan et al. 

2014). However, the axial and flexural stiffness of an elastic cable were often unavailable or 

invalid in some practical cases (Kim et al. 2007). 

For a suspender bridge, the dead loads of the girder and the distributed hangers are carried 

entirely by the main cable, and the vibration of a main cable is influenced by the effects of hangers 

and stiffening girder. The study of the dynamic behavior of suspender bridges including the 

stiffening girder has been initiated since the collapse of Tacoma Narrows Bridge in 1940. The 

earlier study results presented that the effects of shear deformation and rotary inertia of the 

stiffening girder were relatively small and only affected the higher modes of vibration (Kim et al. 

2000). In addition, McKenna and Walter (1987) and others (Lazer and McKenna 1990, Glover et 

al. 1989, Holubova-Tajcova 1999, McKenna and Moore 2002, Humphreys and McKenna 2005) 

presented a series of papers to explore the possibility of nonlinear oscillations of suspension 

bridges arising from the slackening of the hangers. Recently, Turmo and Luco (2010) studied the 

effect of flexibility of the hangers on vertical vibrations of suspension bridges. They found that the 

effect become more significant for the higher modes, particularly for stiff girders. 

Konstantakopoulos and Michaltsos (2010) proposed a mathematical model for the combined cable 

system of bridges. The model ignored the influence of bridge girder roughness and replaced the 

influence of hangers and stays with distributed loads. Luco and Turmo (2010) extended the 

analytical and numerical results of natural frequencies, mode shapes and modal participation 

factors for an extensible suspension cable to the case of a stiffened suspension bridge. 

Recently, many studies have been conducted to estimate the cable tension force with finite 

element (FE) method. Ni et al. (2002), Kim and Park (2007) established a FE model which 

considered both sag-extensibility and flexural stiffness for a target cable system to identify the 

model using frequency-based sensitivity- updating algorithm. Wang et al. (2010) developed a 

940



 

 

 

 

 

 

Estimation of main cable tension force of suspension bridges based on ambient vibration... 

3 

 

baseline model for the Runyang Suspension Bridge, then used it for the continuous structural 

health monitoring of the bridge. Brownjohn et al. (2001) studied the sensitivity analysis based on 

FE model updating method and used it to assess the structural behavior with particular reference to 

bridges. The results demonstrated that the accurancy of model updating method was affected by 

the number of measurements. Schlune et al. (2009) proposed a methodology to eliminate 

inaccurate modeling simplification by means of manual model refinements before parameters were 

estimated by non-linear optimization. Liao et al. (2012) formulated a precise FE model accounting 

for cable flexural stiffness, sag-extensibility, spatial variability of dynamic tension, boundary 

conditions, lumped masses and intermediate supports and/or dampers as the reference model in 

parameter identification, so that the modeling error was minimized. Although FE model updating 

method can be applied to a wide range of cable structures, more generic studies are best 

undertaken by use of continuum models. Simple continuum formulations can directly describe a 

general cable structure with a minimum number of parameters. 

Although the studies on vibration methods are extensive, there are no suitable vibration 

methods to directly measure the tension force of main cable in maintenance stage. Moreover, the 

existing vibration methods to estimate the tension forces of hangers and stayed-cables from 

measured natural frequencies are not suitable to estimate the tension forces of main cables of 

suspension bridge, because the vibration of a main cable is influenced by the hangers and 

stiffening girder. Hence, estimating the tension force of a main cable in maintenance stage has not 

been solved. 

To address the aforementioned shortcomings, a simple and innovative continuum model is 

proposed to estimate the main cable tension force of suspension bridges from measured 

frequencies. In this model, the elastic stiffening main cable, elastic stiffening girder and distributed 

elastic hangers with spatially variable stiffnesses are considered. The main cable is simplified as a 

one-dimensional structure hinged at both towers and flexural stiffness is added as a beam-like 

structure. Meanwhile, the girder and hangers provide additional elastic supports for the main cable 

along its entire length. Then, the differential equation of motion governing the vertical vibration of 

a main cable is obtained by introducing translational spring constant term associated with the 

girder and hangers, and the characteristic frequency formula of a main cable is utilized to estimate 

the main cable tension force. An application on a main cable of Taizhou Bridge is conducted to 

validate this new model. 

 

 

2. Free vertical vibration of the main cable model 
 

In this model, we assume that the main cables are hinged at the towers and supported by an 

elastic girder and distributed hangers along its entire length; the shear deformation and the rotator 

inertia of the main cable are ignored; the hangers are considered to be non-mass and elasticity, and 

the initial uniform dead load on the girder is carried by the main cable without causing any stress 

in the stiffening girder. Hence the main cable can be described by a parabolic profile under the 

initial dead load. The forces on a main cable segment with the length of dx are shown in Fig. 1. 

The equation of free vibration for the main cable is given as 
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Fig. 1 Equilibrium of an infinitesimal part of a main cable 

 

 

where w is the vertical displacement of the main cable, m is the combined mass of a main cable 

and the girder per unit length along the main cable, EcIc is the effective flexural stiffness of the 

main cable, Hw is the horizontal component of main cable tension force under dead load, h(t) is the 

horizontal component of the increment of main cable tension force, z(x) is the parabolic profile of 

the main cable under dead load, N is the number of hangers, ki is the equivalent stiffness of the ith 

hangers and the girder, and δ(x−xi) is the Dirac delta function. 

The function h (t) can be calculated by Eq. (2) (Timoshenko and Young 1965). 
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where Ec is the Young modulus of the main cable, Ac is the cross sectional area of the main cable, f

 is the maximum (centre) sag of the main cable, and L is the main span of suspension bridges. 

The length Le can be expressed as 
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In the case of anti-symmetric vibration,  
L
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0

0  and the mode shape is given by 
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Thus the equation for the anti-symmetric free vibration of the main cable is  
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According to the mode superposition theory, the vertical displacement of anti-symmetric 

vibration of the main cable can be assumed to take the form 

ds+∆ds 
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where φ2n (x)
 
is the 2n th “normal” mode shape of the main cable, and Z2n (t) is the associated 2n th 

generalized coordinate. 

If the axial stiffness of hangers is infinite, then the equivalent stiffness of the girder with respect 

to the main cable ki
′ is determined by the flexural stiffness of girder. Using the orthogonal property 

of the mode shapes 
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where N is the number of hangers, and EbIb is the flexural stiffness of the girder. 

From Eq. (7), ki
′
 is given by 
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Connecting the axial stiffness of hangers in series with the flexural stiffness of girder will lead 

to the equivalent stiffness ki in the form 
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where Es, As 
and li are the Young‟s modulus, cross-sectional area and length of the ith hangers, 

respectively. 

Substituting Eq. (6) into Eq. (5), and multiplying  xs  to both side of Eq. (1), then integrating 

each term over the main span L 
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  According to the orthogonal property of the mode shapes, Eq. (10) can be expressed as 
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where M is related to the mass introduced by the main cable and girder, KC, KH, and KS are related 

to the stiffness introduced by the elasticity of the main cable, the static tension Hw and the 

equivalent stiffness of the hangers and a girder. Full expressions for the above coefficients are 
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In the case of anti-symmetric vibrations, the mode shape is given by Luco and Turmo (2010) 
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Substituting Eqs. (17) - (20) in Eq. (11), the 2n th anti-symmetric characteristic frequency ω2n 

is given by  
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3. Parametric variation of characteristic frequencies 

 

It is convenient to introduce dimensionless formulation to elucidate the effect of parametric 

variation on characteristic frequencies. As mentioned by Luco and Turmo (2010), the 

dimensionless x , t  and w  were used to replace the variables, in which x =x/L, 
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For anti-symmetric vibration, the dimensionless equation of free vibration is given by 
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Substituting the dimensionless into Eq. (21), the natural anti-symmetric frequencies n2  is 

given by 
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The parameter 2
c  reflects the relative flexural stiffness of the main cable (Luco and Turmo 

(2010) and Steinman (1953)). The Irvine-Caughey cable parameter λ2 accounts for the relationship 

between the elastic and geometric stiffnesses of the main cable (Irvine and Caughey (1974)). 
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Figs. 2(a) to (c) show the first three anti-symmetric natural frequencies varied with different  

values of 
2

b  and 
2

c  for N=50 in the cases of inextensible and perfectly flexible hangers, 

respectively. It is indicated that the first three anti-symmetric frequencies are relatively 

independent of 2
c  for the value of 0025.02 c , which is consistent with the results presented in 

Luco and Turmo (2010). For 0025.02 c , the effects of 2
c  on the anti-symmetric frequencies 

appear to increase with the decreasing of 2
b . Moreover, the anti-symmetric frequencies for 

0ik  and 001.02 b  are almost identical. To study the effect of N on natural frequencies,  

Table 1 shows numerical values for the first anti-symmetric natural frequencies with N=50 and  
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(a) 

 
(b) 

 
(c) 

Fig. 2 Effects of 2
c , 2

b  and 0ik  on the natural frequencies of the first three anti-symmetric 

modes: (a)  /2 , (b)  /4 , and (c)  /6  
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Table 1 The first anti-symmetric natural frequencies  /  for N=50 and N=100 

2
c

 

001.02 b  01.02 b  1.02 b  

N=50 N=100 N=50 N=100 N=50 N=100 

0 2.040 2.040 2.369 2.365 4.483 4.466 

0.00001 2.040 2.040 2.369 2.366 4.483 4.466 

0.0001 2.044 2.043 2.372 2.369 4.485 4.467 

0.0005 2.059 2.059 2.385 2.382 4.492 4.474 

0.001 2.078 2.078 2.402 2.398 4.501 4.483 

0.0025 2.134 2.134 2.450 2.447 4.527 4.510 

0.005 2.225 2.224 2.530 2.526 4.570 4.553 

0.01 2.396 2.395 2.681 2.678 4.656 4.639 

0.025 2.847 2.847 3.090 3.088 4.903 4.887 

0.05 3.471 3.471 3.674 3.672 5.290 5.275 

0.1 4.465 4.465 4.624 4.623 5.990 5.976 

 

 

N=100, respectively. It is found that the number of hangers has an insignificant effect on the first 

anti-symmetric natural frequencies. 

 
 
4. Estimation of main cable tension force 
 

Given the measured anti-symmetric characteristic frequencies, this paper deals with the 

problems how to identify the horizontal tension force, flexural stiffness of a main cable, as well as 

the combined mass of the main cable and girder per unit length along the main cable. Estimating 

the tension forces of main cables in suspension bridges is essential for regular inspection and 

health assessment of those structures. The horizontal tension force is selected for an identification 

variable because it is a constant. In addition, the reason why to select the flexural stiffness of a 

main cable and the combined mass of main cable and girder per unit length along the main cable is 

that such material properties are associated with the health condition of a bridge, and usually 

unavailable in some practical cases. In order to avoid the influence of h(t), the anti-symmetric 

characteristic frequencies are adopted to estimate Hw, EcIc and m. From Eq. (21), the anti-

symmetric characteristic frequency function can be written as 
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The presence of inevitable measurement noise introduces unequal on both sides of the Eq. (31).  

Considering the error ε between Z and Z
~

, 

 
~

X
~

Z
~

                               (35) 

where the symbol „~‟ indicates approximate values. 
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From Eq. (35), error vector can be calculated by 

 X
~

Z
~


                                (40) 

Based on the principle of least-squares, 
~

 can be estimated by the following equation 

  Z
~

X
~

X
~

X
~~ T1T 

                              (41) 

Therefore, parameters of Hw, EcIc and m can be extracted from vector 
~

. 

 
 
5. Application 
 

5.1 Description of Taizhou Bridge over the Yangtze River 
 

To verify the proposed approach, an experimental verification task is conducted for Taizhou 

Bridge. Taizhou Bridge, built in 2012, is a three-tower suspension bridge over the Yangtze River in 

China. As shown in Fig. 3, it has two consecutive main spans of 1080 m and side spans of 390 m. 

The total height of the central steel tower is 191.5 m and the side concrete towers are lower than 

the central tower by some 20 m. The foundation for the central tower, which is located in the 

centre of the river, is a caisson structure with cross-sectional dimensions of 58 m by 44 m. 

Foundations for the side towers are supported by 46 friction piles. Each of main cable consists of 

184 prefabricated parallel wire strands, each of which consists of 91 high-strength galvanized 5.2  
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Fig. 3 View of the Taizhou Bridge 

 
Table 2 The stiffness coefficients Kc, KH, Ks for modes n=1~5 

Mode
 

KC* (kN/m) KH (kN/m) KS (kN/m) 

n=1 2.10 6383.58 8936.91 

n=2 16.79 25534.32 28274.35 

n=3 85.01 57452.22 112061.88 

n=4 268.67 102137.28 345292.89 

n=5 655.94 159589.49 690264.67 

*KC, KH, and KS are related to the stiffness introduced by the elasticity of the main cable, the static tension 

Hw and the equivalent stiffness of the hangers and a girder. 

 

 

mm-diameter steel wires with standard tensile strength of at least 1670 MPa. The Young‟s 

modulus, the inertia moment, the effective cross-sectional area and the equivalent specific weight 

of the main cable are 2×108 kPa, 0.0085 m4, 0.3266 m2 and 78.987 kN/m3, respectively. The 

designed dead load horizontal component of main cable tension is . The sag-to-span ratio for the 

main cable is 1/9. Hangers are made of prefabricated parallel high strength 5 mm-diameter steel 

wires, again with a tensile strength of at least 1670 MPa. The typical spacing of hangers is 16 m 

and the tower centre-line is 20 m from the nearest hangers. The main girder is a streamlined, 

closed steel box girder cross-section, designed as a single box structure with three internal 

sections. The main girder is 3.5 m deep and 39.1 m width. 

 

5.2 Influence of measured frequency deviations  
 

Natural frequencies of the main cable obtained from dynamic test are necessary to estimate the 

tension force. Accounting for both the ambient noise and uncertainty of output-only characteristic 

frequencies identification, the influence of errors in characteristic frequencies could not be ignored 

on estimation of main cable parameters. 
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Table 3 Anti-symmetric characteristic frequencies for modes n=1~5 

Mode n=1
 

n=2
 

n=3
 

n=4
 

n=5
 

ω2n * (rad/s) 0.987 1.988 3.489 5.669 7.814 

*ω2n  is the anti-symmetric characteristic frequency. 

 
Table 4 Estimation results of parameters of the main cable with frequency deviations 

Frequency 

*Hw (105 kN) EcIc (106 kN.m2) m (101 ton/m) 

Designed 

value 

Estimated 

value 

Error 

(%) 

Designed 

value 

Estimated 

value 

Error 

(%) 

Designed 

value 

Estimated 

value 

Error 

(%) 

95% ω2n-1 1.748 1.75 0.114 1.7 1.628 -4.24 2.5798 2.861 9.83 

105% ω2n-1 1.748 1.75 0.114 1.7 1.564 -8 2.5798 2.343 -9.18 

*Hw is the horizontal tension of the main cable, EcIc is the flexural stiffness of the main cable and m is the 

combined mass of main cable and girder per unit length along the main cable. 

 

 

According to Eqs. (18)-(20), the stiffness coefficients KC, KH, KS for modes n=1~5 are 

presented in Table 2.  

Then the anti-symmetric characteristic frequencies ω2n could be obtained from Eq. (21), and the 

results of ω2n for modes n=1~5 are shown in Table 3. 

To investigate the error of the estimation due to characteristic frequency deviations, the first 

three anti-symmetric characteristic frequencies with ±5% deviation were used to estimate the main 

cable parameters Hw, EcIc, and m. 

Firstly, the anti-symmetric characteristic frequencies with -5% deviations from the values in  

Table 3 were used to calculate the main cable parameters. From Eq. (36), the vector Z
~

 was  

obtained as 

 88.11206135.2827491.8936
~

Z  

  From Eq. (37), the matrix X  was obtained as 



















  5.4937-0.1643 5.9158

   1.7839- 0.07303 1.1686

   0.4392-  0.01826 0.0730

X
~

 

  Substituting X
~

 and Z
~

 into Eq. (39), the vector 
~

 was obtained as 

  103.09 101.75 13.76 45 
~

 

  Then the anti-symmetric characteristic frequencies with 5% deviation from the values in Table 2 

were used, and the vector 
~

 was obtained in a similar way  

   102.53  101.75   13.22 45 
~

 

In Table 4, according to the frequencies with ±5% deviation the estimated results of Hw, EcIc 

and m were compared with the designed values. It can be observed that m is more sensitive to 

main cable frequencies than Hw and EcIc. 
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Fig. 4 Effects of ik  on the natural frequencies of the first three anti-symmetric modes 

 

 

5.3 Influence of the stiffness of the girder and hangers  
 

To study the influence of the stiffness of the girder and hangers on the natural frequencies of 

the main cable of Taizhou Bridge, Eq. (27) was used to calculate the first three anti-symmetric  

frequencies for designed value of 2
c , and for several values of ik  ranging from 0 to 1. As 

shown in Fig. 4, the low value of ik (< 0.1) has a negligible effect on the first three anti-

symmetric frequencies, but the effect becomes strong for higher value of ik (> 0.1). The first three 

anti-symmetric frequencies increased 52.17%, 17% and 8.05%, respectively, as ik  increased 

from 0.1 to 1. It is indicated that the effect of ik (>0.1) is progressively stronger on the lower  

modes. 

If the effect of the stiffness of the girder and hangers on the vibration of the main cable of  

Taizhou Bridge was ignored ( 0ik  ), the first three anti-symmetric frequencies decreased  

31.38%, 31.89% and 41.76%, respectively. The stiffness of the girder and hangers is found to have 

a significant influence on the anti-symmetric frequencies of the main cable of Taizhou Bridge. 

 
5.4 Analytical modal analysis 
 
To perform the analytical modal analysis of Taizhou Bridge, a three-dimensional finite element 

model (FEM) was established according to the design drawings using commercial software 

packages ANSYS 13.  

The steel girders, concrete and steel towers are modeled by three-dimensional elastic beam 

elements (BEAM4). The middle tower is considered to be fixed at its base, while the platforms of 

the side towers are considered to be restrained with translational and rotational springs. The main 

cables and hangers are modeled by 3-D tension-only truss elements (LINK 10) since they are 

primarily designed to sustain tension forces. The main cables are divided into 386 truss elements 

and each hanger unit is modeled by a single element. The main span cables are considered as 

horizontal sagged cables fixed at the tower saddles and moving together with the towers, and the  
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(a) The first symmetric mode (b) The first anti-symmetric mode 

Fig. 5 Vertical modes of Taizhou Bridge 

 
Table 5 Summary of vertical modes of Taizhou Bridge 

Mode 
Frequency (Hz) 

Nature of mode shape 
FEM Eq.(21) Error (%) 

1 0.1288 - - 1st Vertical (Sym) * 

2 0.1503 0.167 11.10% 2nd Vertical (Asym) 

3 0.2332 - - 3rd Vertical (Sym) 

4 0.3279 0.313 4.54% 4th Vertical (Asym) 

5 0.4521 - - 5th Vertical (Sym) 

6 0.4840 0.556 8.96% 6th Vertical (Asym) 

*1st Vertical (Sym): The first type of mode is cables and deck in main span moving symmetrically. 

 

 

side span cables are considered as inclined sagged cables with the top ends fixed at the tower 

saddles and the lower ends fixed at the main anchorage. The geometric nonlinearity is taken into 

account in the FEM due to the cable tension. The static equilibrium profiles of the main cables are 

calculated based on the static horizontal tensions and the unit weight of both cable and steel girder 

given in the design drawings. Rigid arms are accordingly assigned to the beam elements modeling 

the members at the joints. 

The first vertical mode of the bridge is almost symmetric in the main span at a natural 

frequency of 0.1288 Hz, and the second vertical mode is anti-symmetric in the main span at a 

natural frequency of 0.1503 Hz, as shown in Fig. 5. Due to the suspenders, the motion of the main 

cables is always in phase with the motion of deck. The first five natural frequencies related to 

vertical vibration of bridge are listed in Table 5. Moreover, Table 5 gives a comparison between 

the anti-symmetric characteristic frequencies obtained from Eq. (21) and analytical natural 

frequencies. Results from the proposed formulae are found to be in good agreement with the 

numerical values. 

 
5.5 Experiments 

 
Final closure of the Taizhou Bridge was completed in September 2011, and then ambient 

vibrations of a main cable for Taizhou direction were measured with six accelerometers LC0115.  
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Fig. 6 Layout of accelerometers measuring vertical vibration 

 

 

Fig. 7 Accelerometers mounted on the main cable 

 

 
Among these accelerometers, five were used to measure the vertical vibration (Fig. 6), and one 

was used to measure the lateral vibration of the main cable (Fig. 7). 

For frequency identification, only responses from accelerometers are utilized. These 

accelerometers have a range of frequency from 0.1 Hz to 1500 Hz. The acceleration time 

responses of the main cable were obtained with the sampling rate 0.2 s for 10 min and the data-

sampling rate was 5 Hz. A rectangular window was applied to the time signals to minimize 

leakage. The vertical acceleration time histories are plotted in Fig. 8. Frequencies associated with 

peaks in the power spectral density function (PSD) of each recorded motion provided estimates of 

natural frequencies. The spectra of vertical accelerations obtained from five different locations on 

the main cable are shown in Fig. 9 and a typical cross-power spectrum between two response 

measurements (location 3 and location 4) is shown in Fig. 10. Hence, the first five actual 

frequencies of the main cable can be determined. 
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Fig. 8 Vertical acceleration time histories recorded at different locations of the main cable 

 

 

Fig. 9 PSDs of vertical accelerations measured on different locations of the main cable 

 

 

The first three measured anti-symmetric frequencies (0.166, 0.337, and 0.612 Hz) were used to 

estimate the main cable parameters Hw, EcIc, and m.  

From Eq. (37), the matrix X
~

 was  



















  7.3857-0.1643 5.9158

  2.2395- 0.07303 1.1686

     0.5434-  0.01826 0.073

X
~
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Fig. 10 Cross-power spectrum between response measurements of location 3 and location 4 

 
Table 6 Comparison of estimation results from measured frequencies and designed values 

Hw * (105 kN) EcIc (106 kNm2) m (101 ton/m) 

Designed 

value 

Estimated 

value 

Error 

(%) 

Designed 

value 

Estimated 

value 

Error 

(%) 

Designed 

value 

Estimated 

value 

Error 

(%) 

1.748 1.734 -0.801 1.7 1.614 -5.06 2.5798 2.3801 -8.125 

* Hw is the horizontal tension of the main cable, EcIc is the flexural stiffness of the main cable and m is the 

combined mass of main cable and girder per unit length along the main cable. 

 

 

From Eq. (41), the vector 
~

 was  

   10*2.5704  1073351   13.64 45 .
~
  

Therefore, parameters Hw, EcIc and m are determined by 
~

. The estimated results are 

compared with designed values in Table 6. It can be observed that the estimated Hw and EcIc agree 

well with the designed values. For the case of the estimated m, a relatively large variation is 

observed, compared to that of the estimated Hw and EcIc. This may be due to the fact that the 

extracted errors of frequencies have a relatively great effect on the estimation of m.  

 

 

6. Conclusions 
 

This study presents a simple and effective approach to estimate the main cable tension force 

from the measured frequencies. The main cable is considered as a uniform, elastic and flexural 

beam hinged at both towers and elastic supported by the girder and hangers along its entire length. 

When the hangers are located in the nodes of the 2n th mode, the influence of hangers on vibration 

of the main cable can be disregarded. The differential equation of the main cable is solved in the 

case of free motion by deriving anti-symmetric eigen frequencies and mode shapes in closed form, 

thus the sag does not generate the additional cable tension force in case of an anti-symmetric 

vibration mode. The anti-symmetric characteristic equation can be transformed into a least squares 

problem that can be solved efficiently to determine the main cable tension force. 

Numerical study of the main cable of the Taizhou Bridge was carried out to examine the effects 

of deviations of the measured frequencies on the precision of estimation. It is shown that the 

955



 

 

 

 

 

 

Jun Wang, Weiqing Liu, Lu Wang and Xiaojian Han 

sensitivity of the combined mass of main cable and girder per unit length along the main cable is 

relatively larger than that of the horizontal tension and effective flexural stiffness of main cable. 

Moreover, ignoring the effect of the stiffness of the girder and hangers on the vibration of the main 

cable of Taizhou Bridge results in the decreases of 31.38%, 31.89% and 41.76% in the first three 

anti-symmetric frequencies, respectively. Finally, the field ambient experiments on the main cable 

of the Taizhou Bridge were conducted to obtain the natural frequencies before opening of the 

bridge to traffic. Comparison of the horizontal tension force of the main cable from estimated 

results and designed values shows a good agreement.  
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