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Abstract.  The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam 

incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is 

carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact 

load falling on beam structures. Three material models to describe the localized failure of structural elements 

are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the 

concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel 

reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by 

employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) 

implementation of linear and nonlinear softening in tension and compression regions, respectively, to 

express the complex behavior of concrete material during short time loading condition. Validation upon 

existing experimental test results is conducted, from which the impact behavior of concrete beams are best 

described using the SPH model adopting an average velocity and erosion algorithm, where instability in 

terms of numerical fragmentation is reduced considerably. 
 

Keywords:  erosion; impact loading; modified Drucker-Prager; RC beam; smoothed particle 

hydrodynamics 

 
 
1. Introduction 
 

Reinforced concrete (RC) is one of the common materials that is extensively used as structural 

members in building constructions. When the impact load is applied to the RC beam, it will be 

deflected, at any instant, such that various forms of damages occur during the loading process. 

Under the impact loads, the RC beams may suffer from different types of global or localized 
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damage, including flexural cracking, shear cracking, crushing of concrete beneath the impactor 

and spalling at the bottom of the concrete element. Therefore, understanding the structural 

behavior, especially the beam element when subjected to impact loads is essential to protect this 

critical member from collapse, a direct result of an ultimate failure. It is common in engineering 

practice to conduct a series of experimental tests to determine a reliable set of impact properties of 

beam elements. The study of RC beams response under low velocity impact loads has been done 

experimentally by many researchers such as Kishi et al. (2003), Chen and May (2009), Fujikake et 

al. (2009), Saatci and Vecchio (2009), Sangi et al. (2010). However, estimating the response of RC 

structures under impact loading through full-scale tests is expensive in terms of providing the 

necessary test material, test equipment, and time to perform the procedure. Nowadays, the 

prediction of the response of impacted structures by implementing numerical analyses is starting to 

become more accurate and reliable. Combined with modern computer hardware and numerical 

hydrocodes, the computational time for such an assessment has been reduced to a satisfactory 

level. In presence of the developments of the computer program that is currently made in this field, 

the numerical models for the impact load assessment are fairly quick to obtain. Better 

understanding of each time step of the impact response phenomena can be investigated thoroughly 

by computational simulations. 

Despite such aggressive progresses achieved in the computational field, it is worthwhile to note 

that analysis and design of structures that are focused on the dynamic loading are frequently very 

complex. Such analyses are further complicated when working with non-elastic materials such as 

RC. Thus, conventional structural analysis approach is not enough to define the real behavior of 

concrete element under severe load. Various grids or mesh methods such as finite element method 

(FEM), finite difference method (FDM) or finite volume method (FVM) have been explored for 

solving problems in the computational solid mechanics in particular those involve RC structures. 

As one of the most popular numerical methods, the FEM has been a greatly significant method and 

has achieved great success in various areas since its invention in 1950s. Over the past decades, the 

FEM has been widely employed for solving linear-elastic and elastic-plastic failure problems, as 

well as has become a common technique in civil engineering for predicting the response of 

structures and materials. Finite element (FE) is a general method of structural analysis, in which 

the solution for a problem in continuum mechanics is approximated by the analysis of an 

assemblage of FEs, which is interconnected at a finite number of nodal points that represents the 

solution to the problem.  

One notable feature of the grid/mesh based numerical model is to divide a continuum  domain 

into  discrete small subdomains, via a process termed as discretization or meshing. The individual 

grid points (or nodes) are connected together in a pre-defined manner by a topological map, which 

is termed as a mesh (or grid). Despite their great success, some of the FE techniques have certain 

inherent advantages and disadvantages, which strictly depend on a large extent of its particular 

application. Some problems related to the use of mesh are the process of generating/regenerating a 

quality mesh and difficulties to assess the reliability calculation of shear failure, flexural failure 

and crushing phenomena of RC member. In the research papers of Charles (1987), Liu et al.
 

(2006), Faham (2008), Ma et al.
 
(2009), some weaknesses in the mesh-based numerical methods 

have been stated explicitly particularly when working on large deformation problems, which 

include crack propagation, free surface, deformable boundary, moving interface, complex 

geometry and mesh generation, mesh adaptivity, and multi-scale resolution. 
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2. Statement of the problem 
 

A number of mathematical models dealing with the plastic constitutive law of concrete 

materials when subjected to various impact loads, such as collision and blast have been proposed 

in many technical papers (Park and Kim 2005, Rabczuk and Eibl 2006, Zhou et al. 2008, Gulkan 

and Korucu 2011, Gang et al. 2012, Youcai et al.
 
2013). However, the application of the precise 

constitutive model is very difficult due to their numerous and varying material parameters. Due to 

increase in the complexity of the model, the cost of the calculation may accordingly increase such 

that sometimes it is not efficiently useful for practical needs. In fact, the advanced existing 

plasticity models such as the Bresler-Pister model, William-Wranke model, Ottosen model, 

Reimann model and Hsieh-Ting-Chen model require many parameter identification that 

correspond to appropriate laboratory tests (tri-axial test, hydrostatic test, etc.). Thus, two-

parameter simple models (like linear Drucker-Prager) are widely applied for practical use.  

It has been recognized that many researchers (Saatci and Vecchio 2009, Unosson 2009, Kantar 

et al. 2011, Mokhatar and Abdullah et al.
 
2013) have successfully analyzed the elastic-plastic 

behavior of RC elements under low velocity impact loads using the FEM in simulating solid 

mechanics problem due to dynamic loads (impact, blast, etc.). However, their difficulties and 

limitations of FEM have been discussed extensively. One specific concern relates to the 

deformation of the material where the large relative movement of the connecting nodes cannot be 

tracked accurately if a fixed mesh is used. Thus, the employment of arbitrarily distributed particles 

without using any mesh is recommended to provide stable numerical solutions for such issue. For 

this particular matter, the Smoothed Particle Hydrodynamics (SPH) can be superior to the FEM to 

solve the limitation in the mesh-based technique. The SPH technique does not require a pre-

defined mesh to render any connection of the particles during the process of computation. Besides, 

the SPH particles also carry material properties, and are allowed to move in light of the internal 

interactions and external forces.  

During recent years, the application of mesh-less methods has been widely used for the 

evaluation of solid and structural behaviors in presence of the high-velocity impact (HVI) 

environment. Lavoie et al. (2015), Swaddiwudhipong et al.
 
(2010), Ma (2009), Johnson

 
(2011) 

have successfully applied SPH to study the perforation/penetration of aerospace structure, steel, 

thin plate and plain concrete subjected to HVI loads. Furthermore, typical bending failure problem 

of RC structural members under low impact velocity loads using SPH have also been presented in 

the study of Fukazawa and Sonoda (2011), Tokumaru et al. (2011), Mokhatar et al. (2013). These 

analyses employ the pressure independent criterion for concrete materials by ignoring the effect of 

confining pressure in the compression zone but considering only the tensile failure of the concrete. 

The failure in compression region is more complex than that of tensile area since it is 

accompanied by lateral deformations. According to the presented literatures, the constitutive model 

concerned with the compressive behavior when subjected to low velocity impact loads by means 

of the SPH method is still as yet fully explored. In our effort to address these issues, we modified 

the linear Drucker-Prager (DP) yield line using a simple plane cap (PC) surface with lesser 

parameter identification incorporating the SPH to simulate the concrete plastic response. The aim 

is to simulate the compression volumetric change due to the outward and inward movements of the 

cap surface with the stress state such that the plane surface without the require of various 

parameters is used. This paper also presents the derivation of the proposed constitutive model and 

its softening technique to demonstrate the compression and tensile responses of concrete materials. 

It is assumed that all stress components at a point prior to the crushing are released entirely, and 
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the strength of the concrete is assumed to decrease completely. Then, the validation upon existing 

experimental test results is conducted, in which the concrete beams are described using the SPH 

model adopting an average velocity and erosion algorithm.     

 

 

3. SPH method and numerical calculation setting 
 

SPH technique is used in this study to examine its ability in the impact response analysis of the 

RC beam under low velocity collision. The procedure of SPH method uses a kernel interpolation 

to approximate the field variables at any particle in a support domain, h. The superscript A and B is 

used in this paper to denote the target particle A and neighboring particle B, respectively. For 

example, to calculate field variable such as the displacement, stress or strain of particle A in the 

domain integral, Ω, the integral of this particle is shown as  

       



 BBAABBA dvhxxWxfxf ),()()(   (1) 

where f(x
A
) and f(x

B
) are functions of target particle A and neighboring particle B, respectively. 

Particle A is weighted by the kernel function, W
AB

 using a function of W
AB

(x
A 

- x
B
,h), where, x

A
 and 

x
B
 are the positions of particles A and B, respectively. The integral computation in Eq. (1) is 

approximated by the summation of all neighboring particles B in the support domain, h.  

 

 

 

Fig. 1 SPH particle approximations in a three-dimensional problem domain Ω with a surface 

S. W
AB

 is the smoothing or kernel function that is used to approximate the field variables at 

particle A using averaged summations over particles B within the support domain, κh 

 

 

Fig. 1 shows the problem domain consists of the discretization of body by particle, where each 

particle is associated with some field properties. These particles can be employed not only for 

integration, interpolation, and differentiation, but also for representing the material as mass 

particles. One may regard these particles as the mass centre of the corresponding sub-domains of 

the material. The volume of a sub-domain is lumped on the corresponding particle. Therefore, each 

particle is associated with a fixed lumped volume. We associate with particle B a volume, dv, to 

present the concept of particle mass, m 

       
B

B
B m

dv


  (2) 
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where ρ
B
 is the density of particle B. Assuming that the kernel function has a compact supporting 

radius of kh and substituting Eq. (2) into (1), an approximation form of Eq. (1) by the discretized 

particles becomes 

    

),()()(
1

hxxWxf
m

xf BAABB
N

B
B

B
A 

 
 (3) 

where the summation is over all the particles (with a total number of N, including particle A) 

within the supporting domain of the given particle A. These influenced particles are the 

neighboring particles of particle A. The particle B has mass, m
B
, position, x

B
, density, ρ

B
, velocity, 

v
B
 and other properties. 

In this study, the B-spline function as shown in Fig. 2 is employed for the kernel function as 

shown in Eq. (4) to acquire a stable condition of the calculation. 
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10  q  

(4) 
21  q  

2q  

where q is the distance between two particles A and B. 

Finally, the function of particle A is calculated by using the first-order partial differentiation of 

kernel functions to solve Eq. (4). The first-order differentiation is only applied to the smoothing 

kernel function as shown in Eq. (5). 

      
),().()(.

1

hxxWxf
m

xf BAABB
N

B
B

B
A  

 
 (5) 

 

 

 

Fig. 2 The smoothing function, W, and its first derivative W’ 
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Fig. 3 Structure of calculation flow for the updated Lagrangian elastic-plastic analysis using SPH 

 

 
It should be noted that the SPH particle approximations as explained above are employed to the 

governing equations such as the conservation of momentum equation to derive the motion of 

particles. The artificial viscosity of Monaghan (1985) is used to prevent immoderate penetration 

between particles during the impact response and aimed to smooth shocks over a few resolution 

lengths and to stabilize numerical solutions. Since this paper focused on the development of 

modified Drucker-Prager model, the derivation of discrete equations of motion in the SPH form 

and formulation of artificial viscocity used in this paper can be referred comprehensively in the 

 

Define the interactive particle in the 

influence area 

Derive the kernel function  

 

Calculate the acceleration using the 

momentum equation 

Calculate the contact force 

Calculate the strain rate and rotation rate 

tensor.  

Compute the stress from strain increments 

using the constitutive law  
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textbook and research thesis written by Liu and Liu (2003), Mokhatar (2013), respectively. 

 

3.1 Calculation scheme of SPH for the analysis 
 

The calculation scheme employed in this study for the updated Lagrangian elastic-plastic 

analysis is shown in Fig. 3 and described as follows: 

(1) The interactive particles in the influence areas are defined prior at a every time increment 

where a certain number of particles within the support domain are used in the particle 

approximations. 

(2) The derivative of kernel function as shown in Eq. (4) is calculated using the first-order 

partial differentiation as given in Eq. (5).  

(3) The acceleration of particle A is computed under the force thread using the momentum equ

ation. In the case of impact analysis, contact forces are calculated from the simple relationship 

between crossover volume and crossover area. The acceleration, velocity and displacement of 

each particle are then updated accordingly. 

(4) Computation of the strain rate tensor and rotation rate tensor. Strain rate tensor and rotation 

can be written by the derivatives of the velocity as comprehensively explained by Liu and Liu 

(2003), Mokhatar (2013).    

(5) The plasticity theory for yield criterion, the flow rule and the hardening rule of both 

concrete and steel materials are calculated under the stress thread. Explanation of this calculation 

is described in the following section. 

(6) Then, the strain and stress are updated at every time step by time integration of strain ra

te and by applying constitutive equation, respectively.  

 

 

4. The material model 
 

Next we present our adopted simple and reliable non-linear numerical method as well as the 

constitutive models of failure for concrete. Three basic schemes to present the localized failure of 

RC beam subjected to low velocity impact load are: (i) linear pressure-sensitive yield surface, in 

which DP with volume dependent PC hardening function when confining pressure occurs between 

60 MPa~150 MPa are utilized (ii) two damage variables, tensile and compressive, are used to 

model different damaging behavior of concrete. Furthermore, strain softening in tension and 

compression is implemented during the post-peak regime by damage parameter to degrade the 

material stiffness (iii) two kinds of constitutive equations are developed to simulate the crushing, 

shear and bending cracking. All of these features are incorporated in the SPH method. 

 

4.1 Yield function 
 

The determination of plastic yielding and the control of the plastic volumetric change of 

concrete material are performed using the linear DP criterion with PC surface under confining 

pressure. Initially, the yield surface/failure line of this pressure-dependent (DP) model depends on 

two parameters; the slope of the failure line, α, and the intercept of the failure line, k, as displayed 

in Fig. 4.  

In Fig. 4, x-axis represents the first invariant of stress tensor as shown in Eq. (6b). Meanwhile, 

the second invariant of deviatoric stress tensor forms the y-axis. 
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Fig. 4 Envelope for yield model of DP with PC surface 

 

 

The generalized equation for the DP criterion by utilizing first invariant of stress tensor, I1, and 

second invariant of deviatoric stress tensor, J2D, is 

     
  0, 1221  kIJJIf DDDP  ,     ζt ≤ I1

pc
 ≤ I1

ultimate
 (6a) 

where 
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In the equation above, α and k are the positive constants of the concrete material, while ζij is 

stress tensor. These constants can be related to the yield stress of compressive, ζc and tensile, ζt. 

Then, its elasto-plastic stiffness matrix has the following form 
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      klklH  231   (7b) 
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The denotation ζ’ij is the deviatoric stress and µ  and λ are the Lamè constants.  

 

4.2 Compressive failure 
 

The original DP yield surface gives large shear strength with large compressive confining 

pressure and there is no limiting bounds in the compression region. In the highly compressible 

conditions, certain compression limit is necessary to evaluate an accurate behavior of concrete 

material. Besides, the cap surface can be utilized to simulate the compressive failure under large 

mean stress. In this study, the PC surface is utilized to control the volumetric expansion as well as 

to displace the failure surface in the hydrostatic compression axis using the hardening rule. The 

cap criterion in the compressive side is defined by the compression cut-off. This is crucial for 

practical modeling of the volumetric expansion (dilatancy) under compression for frictional 

materials such as concrete.   

Poinard et al. (2010) have conducted hydrostatic test for concrete under a very high-stress state. 

When the hydrostatic compression rises beyond 60 MPa, the cement matrix starts to damage and 

the behavior of concrete becomes cohesive-brittle, the property of which is governed by the 

crushing failure in the compression region. Thus, the initial compression failure surface I1
pc

 at 60 

MPa is adopted in order to control the plastic volumetric response. In this analysis, the limit 

(compression cut-off) for stress state is approximately twice or thrice the size of the concrete 

compressive strength, depending on its yield strength values. This limit is chosen in order to attain 

the possible cement-matrix-damage range. The yield criterion for PC is customarily represented as 

  0))(,,( 11121  p
v

pcp
v

pc
DPC IIIJIf  ,           I1 ≥ I1

pc
 (8) 

Generally, the concrete/mortar material fails in crushing such that some compression shearing 

cracks appear under compaction (impact region). By modifying the DP model, the cap can move 

outward due to proposed hardening rule during the plastic loading under volumetric compression 

stress state. Therefore, compaction can be predicted during loading and unloading in this state. 

This compaction leads to the plastic volumetric change in the hydrostatic compression.  

The hardening rule of PC model is illustrated in Fig. 5, in which the hardening mechanism is 

expressed by the relationship between plastic volumetric strain, εv
p
, and the first stress invariant, I1, 

as given in Eq. (9a) 
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Fig. 5 Nonlinear hardening rule 

 

 

where 

     ch 5.2'  (9b) 
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The value of the first invariant of stress tensor and volumetric plastic strain are always negative 

(since negative sign means compression state). 

 
4.2.1 Plane Cap (PC) model 
The constitutive equation for PC model is now derived. Substitute Eq. (9a) into Eq. (8) to 

express the function of the PC model 
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The general form of a plastic multiplier can be obtained as 
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Differentiating Eq. (10) and substituting the derivatives as well as the fourth-order tensor of 

elastic stiffness, )()( jkiljlikklij

e

ijklD    into Eq. (11), the plastic multiplier of the cap 

is defined by 
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Finally, by applying the Einstein summation rule the constitutive equation of the plane cap 

takes the following form 
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where the plastic stiffness matrix is written in Eq. (14). 
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(14) 

The above constitutive equation for material loading conditions are employed when the stress 

state reaches the point A as shown in Fig. 4. After this point, the increment of stress as derived in 

Eq. (13) produces volume change by the movement of the cap surface. 

 
4.2.2 Nonlinear strain softening  
Generally, the concrete material fails in crushing. If the materials has crushed in compression, it 

is assumed that there occurs also the strain softening. In this analysis, when the state of stress 

exceeds a certain critical value, concrete will fail by crushing. At this point, all stress components 

are released homogeneously and the material is assumed to lose its strength entirely against any 

type of further deformation (see Fig. 6). 

The degradations of material stiffness correspond to the same damage parameter such that they 

are expressed by the integrity tensor, φ 

     )1(2 D  (15) 

where the scalar degradation (damage), D, is caused by the confining pressure defined as a 

volumetric plastic strain 
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Fig. 6 Nonlinear softening rule 

 

 
Fig. 7 Strain-softening in tension 

 

 

When the parameter εv
p
 reaches the crushing strain limit, εcru , it is assumed that the damage 

parameter, φ, becomes almost zero. The crushing strain limit is assumed by the simple equation 

     
10000

1


c

cru

E


  (17) 

where E is the Young’s modulus of concrete. Finally, the form of constitutive equation after point 

B can be expressed by the multiplication of Eq. (15) with (14) as below 

      
     kl

ep
ijklij dDd  2  (18) 

 

4.3 Tensile failure 
 
In the tension region, the flexural and shear cracking are common prominent features of 

concrete failure mechanism. It has been known that this tensile cracking degrades the stiffness of 

concrete material. Thus, this paper considers the local material orthotropy caused by tensile failure 

of concrete, in which the failure initiates the decrease of elastic stiffness normal to the crack 

Gf 
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direction isotropically. The plasticity and damage are directly defined after the tensile strength, ζt , 

is exceeded using the softening path. The stiffness degradation of the concrete materials in tensile 

side can be identified by the linear tension-softening path as shown in Fig. 7. In addition, the 

ultimate strain, εcrc , (end point of softening path) is assumed and its adequate value is chosen in 

order to prevent particle size dependency using the relation between fracture energy, Gf , and 

particle size. 

Generally, we consider the mortar to be formed by fine aggregates having a maximum diameter 

of 2 mm. Thus, 50 N/m is chosen as the value of Gf due to the specific fracture energy of mortar. 

Besides, the particle size employed in this analysis is 5 mm. 

The cracking of the material is assumed to propogate in the direction normal to the principal 

tensile strain. The integrity tensor, φi
+
 (i = x,y,z) is introduced in the tensile side by considering the 

positive values of principle strain; in which the principal value and its direction are calculated by 

the eigenvalue analysis based on each of the strain on target particle. 
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Then, the damage formulations according to Eq. (19) are multiplied with the initial fourth-order 

isotropic elastic matrix. Finally, the orthotropic constitutive equation and its stiffness matrix can be 

formed as shown in Eqs. (20) and (21), respectively. 
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5. Analysis and results discussion 
 

The proposed model is implemented in the JAVA code program incorporated with the SPH 

method and is verified with two experimental results conducted elsewhere. For convenience, we 

numerically explore in the current study the impact tests carried out by Kishi et al. (2003) and 

Sonoda et al. (2012) concerning the high mass-low velocity impact behavior of reinforced 

concrete beam. In order to distinguish the impact tests and its failure mode, the denotations as in 

Table 1 are employed.  
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Table 1 Denotation of specimen and its failure characteristic 

Specimen 
Span 

(mm) 

Velocity 

(m/s) 
Failure characteristic Literature 

K2000-4.4 2000 4.4 

Bending cracks at the centre of the bottom part 

of concrete and cracks propagate along the 

lower region of specimen. 

Kishi et al. (2003) 

S800-3.5 800 3.5 
Flexural and shear cracks, total crush on the 

impact region. 
Sonoda et al. (2012) 

 

 
Fig. 8 Rebar arrangement (a) side view (b) cross-sectional view 

 
Table 2 Concrete and steel reinforcement properties 

Material 

Properties 
Concrete Steel 

Young Modulus (N/m
2
) 2.050×10

10
 2.020×10

11
 

Poisson’s ratio 0.17 0.3 

Density (kg/m
3
) 2350 7850 

Compressive yield Stress, ζc (N/m
2
) 31.68×10

6
 366×10

6
 

Tensile yield stress, ζt (N/m
2
) 3.16×10

6
 366×10

6
 

 
 
5.1 K2000-4.4 
 
Kishi et al. (2003) presented different impact experiments of RC beams under a variety of 

velocities. A RC beam with details as described in Fig. 8 with a length of 2400 mm is chosen to 

validate the proposed numerical analysis. They used a 300 kg steel drop-weight, which was 

impacted onto a beam, and the related properties of material are presented in a tabulated form as 

shown in Table 2. 

We adopt simply-supported models with a length half that of experiment with 10 mm particle 

size for the numerical simulation in order to simplify the analysis. All analyses in this paper 

assume a perfect bonding interaction between concrete and steel reinforcement. The crack patterns 

formed after the 4.4 m/s impact velocity is shown in Fig. 9 (a). In the experimental tests, it can be 

seen that many vertical cracks are developed from the lower edge of the beam,which then 

propagate to the loading point, and no severe shear cracks are observed. This phenomenon has 

been replicated numerically (see Fig. 9 (b)) by using pressure-volume dependent and softening 
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technique as explained in the preceding Sections 4.1, 4.2 and 4.3. The distribution of cracks are 

demonstrated when the positive stress state exceeds the tensile strength. The principal strain is 

extracted from the six components of strain values and defined as the tension damage parameter. 

The cracking is considered when the maximum principal strain value, εkk
max

, is more than 5000μ 

and 10000μ. From the modeled results, it can be seen that the RC beam is completely cracked 

vertically, which matches well with experiment. 

The integration of Drucker-Prager with a simple plane cap surface (DPPC) that is used in the 

high-stress state area can simulate the compression response satisfactorily. As stated in the 

preceding section, the cap model (see Fig. 4) has some desirable features. Based on the analysis 

results, it can be noted that by applying the PC constitutive equation in Eqs. (13) and (14) for the 

compression side, the crushing phenomenon can be simulated accurately beneath the impact area 

(see Fig. 9 (b)). However, the application of DPPC criteria shows an instability in rebar particles, 

which results in an impractical fracture. Thus, this study utilizes the average velocity, ,v̂ for the 

rebar particle as proposed by Gray et al. (2001) in order to keep the movement of particles in an 

orderly manner. The average velocity differs from the actual velocity, where v
A
 is replaced by v̂

A
 

as given in Eq. (22). 

     
  

B

ABB
i

A
iB

B
AA Wvv

m
vv


ˆ  (22) 

The value of 0.3 is chosen for the constant parameter, ψ, in order to simulate the RC beam with 

no sign of unrealistic particle separation in rebar. Although the numerical instability in tension 

rebar cannot be fixed completely by using the average velocity, the degree of particle separation is 

reduced to a satisfactory condition as shown in Fig. 9(c). For further comparison, the computed 

impact force-time histories can be seen in Fig. 10. Based on these curves, it can be observed that 

the maximum mid-span displacement by utilizing the average velocity is smaller than that of 

experimental results. Additionally, the residual displacement gives a 15 mm difference compared 

to the experimental results. It is interesting to notice that moving the particle with the average 

velocity, ,v̂ affects the displacement calculations.  

A number of researchers such as Colin et al. (1995), Nandlall and Wong (1999), Beppu et al. 

(2008), Luccioni and Aráoz (2011) have employed an erosion algorithm incorporated with FEM 

and SPH to allow the simulation of material fracture, perforation and penetration. In general, a 

number of mechanisms are available to initiate the erosion of elements or particles and this can be 

used in any combination. Elements and particles will erode if any of the criteria are met. An 

instantaneous geometric strain is employed in this analysis as a numerical erosion criterion and its 

ultimate value is assumed to be 100μ. A value of 100μ is chosen as the specified limit (εeff)lim due 

to small value of strain components that is used in the quadratic form of the effective strain 

equation. This erosion criteria allows decreasing the influence area (support domain) when the 

instantaneous geometric strain exceeds (εeff)lim. After this point, the particle connectivity has been 

disintegrated by means of decreasing of influence domain.  
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    limeff  (23) 

Applying the concept of decreasing the influence area when the instantaneous geometric strain 

exceeds the effective strain limit by means of erosion criteria, the numerical results as in Fig. 9 (d) 

provide a sensibly accurate failure mode in terms of crushing and bending cracks. It is also found 

that the erosion algorithm contributes to a reasonable maximum displacement value and the shape 
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(a) Experimental results (full specimen) 

 

 

 

(b) Numerical results for DPPC model 

 

 

(c) Numerical results for DPPC model with average velocity, v̂  

 

 

(d) Numerical results for DPPC model with average velocity, v̂ and erosion criteria 

Fig. 9 Comparison of numerical and experimental results for K2000-4.4 specimen 

 

 
Fig. 10 Displacement-time histories for K2000-4.4 specimen 
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of the displacement curve is comparatively the same as compared to the experimental results (refer 

Fig. 10). 

 

5.2 S800-3.5 
 
The crushing and flexural failure mechanisms of the S800-3.5 specimen from the experimental 

work of Sonoda et al. (2012) are the highlights of this investigation to verify the ability of the 

proposed model. The related specimen details and material properties are given as in Fig. 11 and 

Table 3. The numerical simulation is conducted using a quarter size of that studied by Sonoda et 

al. (2012) by applying symmetry condition, with 5 mm particle size and 900 mm length. 

The experimental result (refer Fig. 12 (a)) shows the predominant crushing occurs beneath the 

impact zone, and the flexural failure propagates from the bottom of the beam towards the top 

region. Further shear cracking and short vertical crack as well as yielding of the tension rebar 

occur in the beam specimen. Since the aim is to focus only on mortar beam failure simulation, the 

yielding of steel reinforcement is not discussed in this study. Based on the experimental results, 

there is an extensive crushing in the impact region, due to the proportionally more significant 

amount of energy in the crushing area. 

 

 

 

Fig. 11 Rebar arrangement (a) side view (b) cross-sectional view 

 
Table 3 Mortar and steel reinforcement properties 

Material 

Properties 
Mortar Steel 

Young Modulus (N/m
2
) 1.66×10

10
 2.06×10

11
 

Poisson’s ratio 0.22 0.3 

Density (kg/m
3
) 2400 7800 

Compressive yield Stress, ζc (N/m
2
) 23.78×10

6
 300×10

6
 

Tensile yield stress, ζt (N/m
2
) 2.37×10

6
 300×10

6
 

 

 

The proposed failure criterion is decomposed into two components, deviatoric and volumetric 

plastic strains, as readily illustrated in Section 4.1, where the volumetric plastic strain changes 

during the cap yielding. However, this study employs the plane cap surface, in which during the 

movement of the cap, there is no change of deviatoric plastic strains. Thus, the prediction of shear 

cracks is unable to be observed clearly in Fig. 12 (b), (c) and (d). In the numerical results, the 

failure in maximum deformed condition is indicated when the maximum principal strain value, 

εkk
max

, exceeds 4000μ, 8000μ and 11000μ. The degree of compaction in the compressed region is 

controlled by the hardening rule of the DPPC model. Although this model is able to simulate the 
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(a) Experimental (full specimen) 

 

 

 

 
 

(b) Numerical results for DPPC model 

 

 
 

(c) Numerical results for DPPC model with average velocity, v̂  

 

 
 

(d) Numerical results for DPPC model with average velocity, ,v̂ and erosion criteria 

Fig. 12 Comparison of numerical and experimental results for S800-3.5 specimen 

 

 

crushing phenomena adequately as revealed in Fig. 12 (b), the particle in the tension area 

especially the rebar particles show a great deal of dispersion. In Fig. 12 (c), the numerical 

simulations are shown at the same time increment as in Fig. 12 (b), but the analysis is calculated 

using the average velocity with an appropriate constant value 0.3. As a result, the particle 

instability in tension region disappear.  

Focusing and examining the impacted regions, it is interesting to see that the DPPC model 

incorporated with the average velocity and erosion criteria as shown in Fig. 12 (d) exhibits 

reasonably close resemblance to that demonstrated by the experimental work. Particularly of  
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Fig. 13 Displacement-time histories for S800-3.5 

 

 

interest are the high compression stress states, in which a larger area of crushing appears and 

covers the impact zone. It is important to note that the combination of average velocity and erosion 

algorithm are able to express the impact failure with considerably good agreement with the 

experimental results in terms of compressive failure.  

The comparisons of displacement-time relationship between the numerical analysis and 

experimental results can be seen in Fig. 13. It is confirmed that by including the average velocity 

and erosion criteria in the numerical simulation, the computed maximum displacement conforms 

practically to that of experimental work. It should also be noted that the simulation without 

considering the average velocity and erosion algorithm gives a reasonably well replication of 

displacement curve and maximum values as indicated by the black colour curve. The effect of 

model with average velocity but without erosion algorithm decreases the maximum displacement 

approximately 30 percent of that with erosion. Even though the model with average velocity but 

no erosion algorithm displays differences in the displacement profile, it reduces the fragmentation 

of particle in tension regions satisfactorily.      

 
 
6. Conclusions 
 

This paper investigates the impact response of RC beam by means of the SPH approach by 

modifying the DP criterion incorporating the PC with a lesser parameter identification of 

hardening rule in the compression zone. The yielding of concrete using the PC model in 

compression zone and the fracture property in tension zone are combined, where the PC model in 

the tensile area is employed associating with the linear softening. This approach consists of linear 

and nonlinear softening in tension and compression regions, respectively, to express the complex 

behaviour of concrete and mortar material during a short time loading condition. The model is a 

combination of the generalized effective space plasticity theory followed by the damage theory 

applied simultaneously under the assumptions of small strain. In order to simulate the compression 

failure under high stress state, the erosion criteria associated with the decreasing of an influence 

domain in this zone has been proved to be a useful tool to provide a sensibly accurate result. The 
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erosion criteria allow decrease of the influence area (support domain) when the instantaneous 

geometric strain exceeds the effective strain limit such that the particle connectivity is then 

disintegrated.      

The simulated results match those experimental in terms of the crushing, flexural cracks and 

displacement especially when average velocity and erosion algorithm are incorporated. It should 

be noted that these results can be extrapolated to RC slabs simulation under high velocity impact 

loads. Further improvement of the model is required to enhance the numerical results in 

reproducing realistic estimation of damage behavior of RC elements when involving large 

deformation. Another future consideration involves the use of nonlinear envelope criterion with an 

optimum number of parameters.  
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Nomenclature 
 
h  influence area 

A
  

particle A 

B  particle B 

dv  volume of the integral that contains all particles 

Ω  domain integral 

S   surface of support domain 
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f(x
A
)  functions of target particle A 

f(x
B
)   function of neighboring particle B 

W
AB

  kernel function 

W’ and ∇𝑊 first derivative of kernel function 

q  relative distance between two point particles 

N  number of particles in influence domain 

δij  Kronecker-delta 

ζij   stress tensor 

I1   first invariant of stress tensor 

I1
pc

  initial compression limit 

I1
ultimate

  initiation point of post peak regime 

ζc  yield stress (compressive) 

ζt  yield stress (tensile) 

J2D  second invariant of deviatoric stress tensor 

H  hardening modulus 

E  Young’s modulus 

εv
p
  volumetric plastic strain 

λpc  plastic multiplier for plane-cap model 

λ, μ  Lamè constants 

Gf  fracture energy 

εcrc  cracking strain limit 

εcru  crushing strain limit 

φ  integrity tensor 

D  scalar damage parameter 

D
e
ijkl  initial elastic stiffness 

(εeff)lim  limit for the instantaneous geometric strain 
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