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Abstract.  In this paper, the modified form of shear deformation plate theories is proposed. First, the 

displacement field geometry of classical and the first order shear deformation theories are compared with 

each other. Using this comparison shows that there is a kinematic relation among independent variables of 

the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation 

theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been 

analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode 

shapes of the plate are determined. The results of the present method are compared with those of previously 

published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method 

are extensible to a wide range of similar problems. Accurate solution for governing equations of thick 

composite plates has been made possible for the first time. 
 

Keywords:  classical theory; first order shear deformation; modified form; laminated plate; vibration; 

accurate solution 

 
 
1. Introduction 
 

Study of different types of continuous systems such as beams, plates and shells which are the 

mechanical models for several industrial devices, are subject of different scientific researches, due 

to their extensive applications. The behavior of mechanical structures reviewed during long 

periods and various methods have been developed for their analysis. For example, threads as the 

simplest form of one dimensional continuous system and membrane which have two dimensions 

are formulated simply. These equations have exact analytical solution and effect of initial 

conditions can be evaluated applying Fourier series. This type of work was conducted by Euler 

(1766) for the first time. Euler solved free vibrations in rectangular, triangular and circular 

membranes, but these solutions were not extendable to thick structures. After determining the 

behavior of beams, under pure bending, Bernoulli (1789) who was Euler’s assistant, developed his 

analogy for the beams which only have bending rigidity. A real study of the free vibration of plates 

has been explained by Chladni (1802) in his book. In his experiment, by using powder distributed 

uniformly on the plate, he identified the place of accumulation of powder in which, after vibration, 
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no displacement occurred on them. Also, in his method, similar frequency in each mode shape, the 

pattern of which was identifiable by help of powder, was determined. After different unsuccessful 

efforts being performed to obtain differential equation of the plates, finally Navier (1819) proposed 

differential equation of plate under a uniformly distributed transverse load. He offered the results 

of his discoveries about the plates, which were performed completely independently of the last 

efforts. The complete theory for thin plates was offered by Kirchhoff (1850, 1876), the German 

scientist; known as the classical plate theory (CPT). The most important effect of Kirchhoff’s work 

in comparison to Navier’s was explaining boundary shear forces of plate which were introduced as 

a twisting moments in plate boundary. In his work, different boundary conditions were expressed 

as a function of plate deformations and their derivatives in relation to independent variables of 

plate surface. Also, he understood that in the analysis of plates with large deflection, nonlinear 

terms are not negligible. Developing virtual deformation for analysis of plates and offering the 

frequency equation for plates are among his other works (Szilard 2004). In a model offered by 

Kirchhoff, deformation in all of the points on the plate was organized according to deformation in 

mid-plane. The most important assumption to achieve this purpose is that, the straight lines which 

initially are perpendicular to mid-plane, after deformation still remain straight and perpendicular. 

This issue will cause the shear stresses along thickness to be ignored. This assumption leads, in 

thick plates and high modes of vibration, an error to occur. For this reason, the classical plate 

theory forecasts the natural frequency more than real value and deflection of the plate less than 

real value. Therefore, Reissner (1944) proposed a shear deformation theory in which shear stresses 

have been obtained from three dimensional theory of elasticity. Mindlin (1951) proposed a new 

displacement field by considering the Taylor expansion in displacement of the plate about mid-

plane. In his offered displacement field, relative in-plane deformations of plate with respect to 

mid-plane were proportional to rotation functions. Regarding independency of rotation functions 

in the method that later on was known as the first order shear deformation theory (FSDT), this 

theory had five degrees of freedom. Also, the number of its governing equations was five. Of 

course, before that people like Basset (1890), Hildebrand et al. (1949), Hencky (1947) had used 

this method (Nyfeh and Frank 2004). But ultimately, this theory was recorded as Mindlin theory. 

Shear stresses in Mindlin theory were constant across the plate thickness and their values were 

equal to those of mid-plane, while in real case, shear stress is a second order function of thickness, 

and its value at the bottom and top of its surface is zero. Therefore, this theory demanded applying 

a shear correction coefficient to modify. Yang et al. (YNS) (1966) generalized the theory of shear 

deformation for homogenous isotropic plates to the anisotropic laminated plates, which include 

shear deformation and rotary inertia. Regarding the importance of shear correction coefficient and 

since value of this coefficient in composite plates is a function of material property, type of 

layering and geometrical properties of the plate, obtaining this coefficient is a very complex task 

(Nyfeh and Frank 2004). Therefore, to calculate a logical and reasonable approximation, the 

higher order shear deformation theories (HSDT) which include more number of terms in Taylor 

expansion were developed. These theories were especially useful for the analysis of thick 

composite plates. The more number of terms in Taylor expansion is increased, accuracy of the 

problem would be more and as a result it will cause the more complex equations to be developed. 

Some of these researches in this context were conducted by different researches. Lo et al. (1977, 

1977) extracted a theory in which transverse and in-plane deformations are second and third order 

function of plate thickness, respectively. Green and Naghdi (1981) proposed a dynamic theory for 

layered orthotropic plates. Some higher order shear deformation theories include displacement 

fields which are violating the equilibrium equations. Therefore, the forecast strain energy by them 
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Exact mathematical solution for free vibration of thick laminated plates 

does not have enough accuracy. Beside, since in these theories shear stress is not zero in the top 

and bottom surfaces, they need coefficient to correct the shear which is unknown. Therefore, using 

such theories computationally is expensive. Some theories were proposed that did not have recent 

difficulties. Reddy (1984) proposed a third order shear deformation theory (TSDT) in which, shear 

stress is the second order function of thickness and in top and bottom surfaces, its value is zero. 

This theory includes the same five dependent variables in FSDT, but in-plane deformations are 

determined in such a way that boundary conditions of shear stresses are satisfied. So, there is no 

need to apply shear correction coefficient in TSDT. Zenkour (2004) proposed the displacement 

field of Reddy’s theory as a new form. In his theory, shear stress is in the form of sinusoidal 

function of thickness which is equal to zero in top and bottom surfaces. Therefore, there is no need 

to apply shear correction coefficient. Most of recent theories include some assumptions applying 

which gives a displacement filed. The most general case of mechanical structures behavior 

analysis is three dimensional theory of elasticity in which there is no simplifying assumption. 

Srinivas et al. (1970) indicated that, in vibration analysis of thick laminated plates, ignoring shear 

deformation across plate thickness, leads to large errors. Therefore, Seide (1975), Srinivas and Rao 

(1970), Pagano (1970), Pagano and Hatfield (1972) offered three dimensional theories. These 

theories could cause a good approximation, in strain and stress fields of composite plates. Despite 

this, the most important issue in these theories was that increasing the number of layers causes 

more complex equations of motion. For this reason, lamination theories are commonly used where 

layers of composite plates are bonded to each other perfectly (Lekhnitski 1968, Vinson and 

Sierakowski 1986, Whitney 1987, Qatu 2004). Several other researches performed on plate 

theories, recently. Among them, Zenkour (2009) using a sinusoidal shear deformation theory and 

considering the interaction of plate foundation, showed a thermo-elastic bending analysis for FGM 

plates. Thai and Choi (2014) used the introduced refined theory by Shimpi (2002) to develop a 

finite element analysis for thick laminated plates. Their work results had good accuracy and were 

applicable for thin to very thick plates without shear locking, because the applied deformation field 

had similarity with CPT and at the same time, a third order function of thickness was used. 

Despite all valuable researches and efforts which, during long times, are devoted to studying 

the behavior of plates with more efficient methods, still there is a gap for presence of an integrated, 

efficient, simple and comprehensive theory which is applicable for different problems, and also 

can give reasonable and acceptable results. The old methods, except simple and especial problems, 

result in numerical solutions. Numerical solution is time consuming and a hard task. Regarding 

vast application of plates, it seems having a theory which can lead to exact mathematical solution 

for a more extensive spectrum of problems can help the researchers.  

This paper offered the modified form of shear deformation theories. In fact this theory will be 

introduced by approving a kinematic relation among independent variables of the plate, which 

describes its deformation and are equal to five in FSDT and TSDT. The rotation functions are 

shown to be proportional with the plate slope curves in both horizontal directions. Applying this 

relationship in governing equations, the main equation which indicates the transverse displacement 

of the plate decouples completely and will be solved by the method of separation of variables. The 

new theory is applied for linear vibration analysis of thick rectangular and circular laminated 

plates. The mode shapes for both cases are obtained and their corresponding natural frequencies 

are evaluated using boundary conditions analytically. Comparison of the results with those of 

published papers shows good agreements. 
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Fig. 1 Undeformed and deformed geometries of an edge of a rectangular plate in the CPT (Reddy 2004) 
 

 

2. Displacement field of modified shear deformation theory 
 

Consider a rectangular thin plate, shown in Fig. 1. Kirchhoff’s assumptions for thin plates are: 

(1)-Displacement of mid-plane in comparison with plate thickness is insignificant, (2)-Straight 

lines that initially are perpendicular to mid-plane, after deformation, still remain straight and 

perpendicular to mid-plane, (3)-After pure bending is applied, the mid-plane of plate remains 

without strain and (4)-The stress component σzz which is perpendicular to mid-plane, is negligible 

in comparison with other stress components (Nyfeh and Frank 2004). From the second 

assumption, it is resulted that shear deformations are ignored. Under these assumptions, 

displacement field which describe the plate deformations is written as below (Washizu 1975) 

   
 

   
 

   

0

0

0

0

0

, ,
, , , , ,

, ,
, , , , ,

, , , , ,

w x y t
u x y z t u x y t z

x

w x y t
v x y z t v x y t z

y

w x y z t w x y t


 




 





                     (1) 

where u0, v0, and w0 are the displacements of the mid-plane along x-, y-, and z- axes, respectively 

and also u, v, and w are the displacements of any arbitrary point of the plate along the above 

mentioned directions, respectively. 

But in thick plates, the second Kirchhoff’s assumption is not valid. In the moderately thick  
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Fig. 2 Undeformed and deformed geometries of an edge of a rectangular plate in the FSDT (Reddy 2004) 

 

 
Fig. 3 A thick rectangular plate which vibrates in (1,0) mode 

 

 

plates, displacement field of plate will be achieved by expansion about mid-plane. Fig. 2 shows a 

moderately thick plate deformation field, before and after deformation. Displacement field of a 

moderately thick plate FSDT is as follow (Reddy 2004) 

     
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 

 



                      (2) 
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Fig. 4 Relative displacement of top surface points with respect to their corresponding pints in mid-

plane in a rectangular plate 

 

 
(a)                                      (b) 

Fig. 5 The deflection (a) and slope curve (b) of a rectangular plate which vibrating in (1, 0) mode 

 

 

New variables φx and φy are the rotations of mid-plane, about y and x axis, respectively. In 

FSDT, these functions are considered as two fully independent functions of spatial variables and 

time. Governing equations of CPT are three partial differential equations and applying FSDT leads 

to five PDEs. In both theories, except in special cases, governing equations are very complicated 

and numerical approaches are needed to solve them. For this reason, approximately all the 

published related articles deal with numerical analysis. It is shown in the present paper that 

rotation functions in FSDT are not independent of the deflection of the plate. 

Consider a rectangular plate with the dimensions of a, b and h in x, y and z directions, 

respectively, as is depicted in Fig. 3. This plate is vibrating in (1, 0) mode and its side view, 

perpendicular to plane of x-z, is shown in Fig. 4. 

As can be observed in Fig. 4, bending the plate about y axis leads relative motion of different 

points of the top surface of the plate to have the following relationship with the mid-plane 

displacements 

* qq
u u                 * rr

u u               * ss
u u                (3) 

Considering simply supported boundary conditions on x axis, we assume the mode shape of 

mid-plane according to Fig. 4 is: w0=cos(πx/a). So, the transverse displacement and slope curve of 

the plate are as depicted in Fig. 5. 

Consider the first relation of CPT displacement field in Eq. (1). From Fig. 5 and the first 
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Exact mathematical solution for free vibration of thick laminated plates 

relation of Eq. (1), it can be understood that relative displacements of different points on the top 

surface of the plate (Eq. (3)) are satisfied with CPT displacement field 

   

     

   

* 0
0

* 0
0

* 0
0
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2 2
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   
     

   

 
   

 

   
     

   

                      (4) 

For a thick plate, the geometry constraint which is expressed in Eq. (3) and Fig. 4 is satisfied, 

too. That is, the relative deformation of points on top surface of the plate, with respect to 

corresponding mid-plane displacement must be satisfied in FSDT displacement. So 
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


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   

 

 

 
   

 

                         (5) 

Regarding Eqs. (4)-(5) and considering that Eq. (5) must satisfy geometrical constraint which is 

expressed by Eq. (3) and Fig. 4, we conclude rotation φx cannot be independent of the slope curve 

of the plate. Therefore, the behavior of φx is predicted as shown in Fig. 6. As a result, from two 

unknown constants, the rotations are obtained as functions of the plate slopes 
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











                           (6) 

 

 

 
(a)                                    (b) 

Fig. 6 The slope curve (a) and rotation (b) of a thick rectangular plate which vibrating in (1, 0) mode 
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According to Eq. (6), displacement fields of FSDT and TSDT (Reddy 2004) can be rearranged 

with three functions and two unknown constants in their modified form. Since the transverse shear 

strains are obtained from sum of rotation functions and plate slopes (Reddy 2004) therefore, the 

additional assumption of modified shear deformation theories is that the transverse shear strains in 

plates are proportional to the slope curves of the plate. Here, we introduce the new displacement 

field which is called modified first order shear deformation theory (MFSDT) as the following form 

   
 

   
 

   

0

0 1
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0 2
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, , , , ,

, ,
, , , , ,

, , , , ,

w x y t
u x y z t u x y t zk

x

w x y t
v x y z t v x y t zk

y

w x y z t w x y t


 




 





                     (7) 

and the modified third order shear deformation theory of Reddy (MTSDT) 
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     
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  
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

         (8) 

The constants i.e., k1 
and k2 are the ratios of φx/(∂w0/∂x)

 
and φy/(∂w0/∂y), respectively and are 

inserted in plate equations so that shear effects can be evaluated. So, we call them ratios of 

rotation. It can be seen that independent variables of MFSDT, describing the plate deformation, are 

three functions and two constants. These unknowns will be determined using PDEs of motion. 

 
 

3. Physical interpretation of rotation ratios k1 and k2 
 

To have a better understanding of rotation ratios, here we suggest a mental experiment on a 

thick plate. As already stated, the constants k1 and k2 are the ratio of rotations in MFSDT on the 

rotations of CPT. So, the physical significant of rotation ratios can be investigated by comparing 

two plates which are subjected to assumptions of CPT and MFSDT. The essential assumption of 

CPT is that the straight lines which are perpendicular to mid-plane before deformation remains 

straight and perpendicular after deformation. In the suggested mental experiment, the boundary 

conditions are selected in a way that, the mentioned assumption be satisfied for thick plates, too. 

Consider the plate shown in Fig. 7(a), the boundary layers of which are bonded perfectly with 

two rigid sheets (rigid B.C.) and it is impossible for a relative deformation to occur between them. 

Now, we deform the rigid sheets so that they lie on the radial lines of a circle. Consequently, top 

and bottom planes of plate will constitute the circumferential lines of same circle with different 

radiuses (Fig. 7(b)). Thus, although plate is thick, the mentioned assumption of CPT is satisfied. In 

fact, the deformation of rigid sheets causes the stretch and compress stresses to be developed in 

top and bottom planes, respectively. 
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(a) (b) 

 
(c) 

Fig. 7 Side view of a thick rectangular plate before deformation with rigid B.C. (a), after deformation 

with rigid B.C. (b) and after deformation with simply supported B.C. (c) 

 

 

 

 

Now assume the rigid B.C. is replaced by simply supported B.C. and mid-plane still has saved 

its sectorial form. According to essential assumption of FSDT and MFSDT, now the straight lines 

are still straight but not perpendicular to mid-plane (Reddy 2004) (Fig. 7(c)). In this case, top 

plane is shortened to release its stretch stress and bottom plane becomes larger to release its 

compress stress as well as it is possible. So, the absolute value of deformation in bottom and top 

planes in simply supported B.C. case, are less than their corresponding value in rigid B.C. case:  

  (Fig. 7). Since the rigid B.C. is representative of CPT assumptions, we conclude the  

absolute value of rotation in a thick plate is less than the corresponding rotation of a thin plate: 

|φx|<|∂w0/∂x|. This is while that, most of previously published books and article have mistaken in 

depicting FSDT deformation field (Fig. 2) and have considered: |φx|>|∂w0/∂x|, the true form of 

FSDT and MFSDT deformation field is represented in Fig. 8. 

Regarding the above context, the rotations of thick plates are a percentage of plate slopes. 

Absolute value of rotation ratios |ki|, is representative of this percentage. So, the general form of 

rotation ratios should satisfy this relationship: −1<ki<0. In thin plates and lower modes value of ki 

tends to −1 and for thick plates and higher modes it approaches zero. As a consequence, when ki 

approaches zero, shear strains have their maximum effect and equality of ki=−1 is corresponded to 

removing shear effects. 

843



 

 

 

 

 

 

Mohammad Asadi Dalir and Alireza Shooshtari 

 

Fig. 8 Undeformed and deformed geometries of an edge in a rectangular plate in the MFSDT 

 

 
4. Examples 
 

4.1 Vibrations of cross ply laminated rectangular plate 

 

Different researches have been devoted to studying the vibrations of rectangular plates. Chen 

and Lue (Chen and Lue 2005) conducted a semi analytical method which is combination of spatial 

approximate and DQM technique to review the vibrations of laminated rectangular plates. 

Viswanathan and Lee (2007) analyzed the rectangular composite plate by Spline method. Civalek 

(2008, 2009) showed the fundamental frequency of linearly varying thickness orthotropic plates, 

and in another work, using DSC method studied the vibration of thick symmetrically laminated 

plate applying FSDT. Shooshtari and Razavi (2010) studied the nonlinear vibrations of a FML 

rectangular plate. Neglecting the nonlinear terms and considering cross ply fibers and symmetric 

lamination for plate, we obtain the equations of motion in reference (Reddy 2004) which are 

reduced to 

   

   

   

55 0, , 44 0, , 0 0,

11 , 12 , 66 , , 55 0, 2 ,

22 , 12 , 66 , , 44 0, 2 ,

xx x x yy y y tt

x xx y xy x yy y xy x x x tt

y yy x xy x xy y xx y y y tt

KA w KA w I w

D D D KA w I

D D D KA w I

 

     

     

   

     

     

           (9) 

where Aij are extensional stiffness and the Dij are bending stiffness (Reddy 2004). These equations 

have been obtained by using FSDT where the in-plane deformations (i.e., u0 and v0) and their 

corresponding governing equations are neglected to investigate only transverse vibrations. 
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Exact mathematical solution for free vibration of thick laminated plates 

In MFSDT, similar to FSDT, transverse shear stress is constant along thickness, while its real 

value is a function of thickness. For this reason, a shear correction coefficient K=5/6 is considered 

for all examples, except in thick plates (h/a≥0.2) which is considered to be: K=1. First equation is 

simply the Newton’s second law in vertical direction and the other two are result of moments 

which are induced by forces along x and y
 
axis, respectively about mid-plane. Applying MFSDT 

assumptions, beside spatial and time dependent functions, we can achieve the natural frequencies 

of the plate directly from boundary conditions. In order to study the transverse vibrations of plate, 

the first equation of Eq. (9) must be reviewed. For this, the rotations in this equation are replaced 

by their corresponding forms in MFSDT which are given in Eq. (6). This issue results in the 

decoupling of the deflection of the plate w0 that is 

   55 1 0, 44 2 0, 0 0,1 1xx yy ttKA k w KA k w I w                      (10) 

Since w0 is a function of spatial variables and time, the method of separation of variables is 

used to solve Eq. (10). Based on this method, we have 

w0 (x,y,t) = g (x) p (y) f (t)                           (11) 

where, g(x), p(y) and f(t) are single variable functions of x, y and time, respectively. Substituting 

Eq. (11) into (10) and separating the time variable give 

   ,, , 2

55 1 44 2 01 1
yyxx tt

pg f
KA k KA k I

g p f


  
       

   
             (12) 

The new parameter of μ
2
=λ

2
+η

2
 is defined to separate spatial variables from each other. 

Response of system is achieved as the following from solution of Eq. (12) 
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g A B
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y y
p C D

KA k KA k




 

 

 
  

 
 

   
    
       

   
    
       

            (13) 

where 
0/n I   is the natural frequency of the system. Obtaining frequency parameter of μ,  

gives the natural frequency of the system for all mode shapes of vibrations. Moreover, the mode 

shapes of the plate can be determined for all modes of vibration. The effect of each mode on the 

motion of plate can be easily determined using double Fourier series. The parameters m and n 

show the modes of vibration. Assuming that x-and y-axes lie on plate’s length, for simply 

supported case the following two boundary conditions are used to obtain unknown constants 

 

 

0

0

0, , 0 0

,0, 0 0

n

m

w y t B

w x t D

  

  
                           (14) 

Finally, six unknown constants of η, λ, k1, k2, ψ and ϕ(n,m)=AnCm remain in the response of the 
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system. ψ, is obtained from initial condition of speed. ϕ(n,m), is obtained from the initial mode shape 

as a series, which, is the sum of all of the mode shapes with specified weights. The constants λ and 

η will be obtained from other boundary conditions of plate. But the constants k1 and k2 represent 

the rotation functions of plate. In the FSDT, these functions are obtained using two last PDEs of 

Eq. (9). In the MFSDT, the same PDEs are used and solved algebraically. To this end, Eq. (6) and 

(11) are substituted into two last PDEs of Eq. (9) and time variable is separated to obtain 

     

     

22 1 2 1
11 , 12 66 , , 55 ,

1 1 1

21 1 2 2
22 , 12 66 , , 44 ,

2 2 2

1
0

1
0

xxx x yy x

yyy y xx y

k k k k
D pg D D g p KA g p

k k k

k k k k
D gp D D p g KA p g

k k k





    
       
   

    
       
   

       (15) 

where α=I2/I0. Eq. (15) includes functions g(x) and p(y), variables x and y, and constants, η, λ, k1, 

and k2. Since all the four constants are independent of plate area, an arbitrary point on the surface 

of plate can be selected. Selecting an arbitrary point in these equations is the only approach which 

has been used in the solution process of the present method. Therefore Eq. (15) is reduced to two 

algebraic equations with four unknown constants. On the other hand, the boundary conditions give 

equations that include these four unknown constants. So 







.
)1(

 
0),,(

.
)1(

 
0),,(

244

0

155

0

m
kKA

b
tbxw

n
kKA

a
tyaw











                      (16) 

Simultaneous solution of algebraic Eqs. (15)-(16) gives the unknown parameters. If the 

achieved unknowns from above algebraic equations are constant for each arbitrary x and y, it is 

concluded that the only used approach of present method is indeed an exact decision. As a result, 

in this case the obtained results will be the exact response of the governing equations. 

The obtained mode shapes by the present method are the same as actual ones. The natural 

frequency which is obtained using MFSDT is compared with that of the published literature. The 

natural frequencies obtained using CPT are compared with available results as seen in Table 1. The 

natural frequencies of CPT are achieved using following equation (Chakraverty 2009) 

2 2

2

CPT

n m D

a b h
 



    
          

                       (17) 

Rotation ratios k1 and k2 are also determined for each mode shape as shown in this table. These 

parameters are considered as k1=k2=−1 in CPT for all conditions while, in FSDT, they are 

functions of plate area. In MFSDT, k1 and k2 are considered to be constant on the plate area and are 

only functions of mode shape, material property and geometry of the plate.  

It is seen from Table 1 that the present method gives acceptable results for thin plate. However, 

the error of CPT increases in higher modes. The reason is that, since k1 and k2 parameters are 

considered to be -1 in CPT, it can be seen that in higher modes, because of increasing of transverse 

shear stresses, the absolute value of ratios of rotation (k1 and k2) are less than |−1|.  

The dimensionless frequencies of a moderately thick isotropic square plate, which are obtained  
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Exact mathematical solution for free vibration of thick laminated plates 

Table 1 Natural frequency of thin isotropic plate 

3

1
0.5, 0.5, 0.2 , 0.5 , 2700 , 0.005 , 71 ,

3

kgyx a m b m h m E Gpa v
a b m


 

        
 

 

Mode (n, m) 
Method  Rotation ratio  

CPT MFSDT k1 k2 

(1,1) 2246.98 2243.91 -0.99786 -0.99786 

(2,1) 8058.16 8018.88 -0.99237 -0.99237 

(1,2) 3176.77 3170.63 -0.99697 -0.99697 

(2,2) 8987.95 8939.13 -0.99150 -0.99256 

(2,3) 10537.59 10470.61 -0.99006 -0.99006 

(3,2) 18673.59 18464.76 -0.98255 -0.98255 

(3,3) 20222.88 19978.78 -0.98114 -0.98114 

 
Table 2 Dimensionless natural frequency for moderately thick isotropic rectangular plate 

, 0.3, 0.1
h

a b v
a

 
   

 
 

Solution (1,1) (2,1) (1,2) (2,2) (3,1) (1,3) (3,2) (2,3) 

Exact
* 

9.315 22.260 22.260 34.207 41.714 41.714 52.391 52.391 

HSDT
* 

9.310 22.220 22.220 34.110 41.580 41.580 52.210 52.210 

FSDT
* 

9.300 22.176 22.176 34.018 41.440 41.440 51.974 51.974 

Shooshtari
* 

9.337 22.326 22.326 34.249 41.679 41.679 52.137 52.137 

MFSDT 9.302 22.192 22.192 34.053 41.492 41.492 52.052 52.052 

Error% 0.021 0.0721 0.0721 0.1028 0.1254 0.1254 0.1498 0.1498 
*
Shooshtari and Razavi (2010) 

 

 

from Eq. (18), summarized in Table 2. The MFSDT results of this table are compared with those of 

FSDT for evaluating the error. The important note which here should be explained is that, FSDT 

cannot be known as the validity measurement factor of MFSDT and MFSDT contains an 

additional assumption in comparison with FSDT. Despite this, their results are usually confirmed 

with each other. It is observed that the results are in very good agreement with the published ones 

for higher modes as well as lower modes. 

Table 3 shows the fundamental natural frequencies of a square laminated composite plate for 

different length-to-thickness ratios (a/h). These dimensionless natural frequencies are obtained by 

Eq. (19). Table 4 shows the dimensionless frequencies of different modes for the same plate of 

Table 3. 

 2

2

2 1
n

va

h E





                              (18) 

2

2

orth n

a

h E


                                (19) 
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Table 3 Dimensionless fundamental natural frequency for rectangular laminated plate 

 1
12 13 2 23 2 12

2

40, 0.6 , 0.5 , 0.5, 0 ,90 ,0
E

G G E G E v
E

 
        

 

 

Solution a/h    

 2 5 10 100 

Xiang
* 

5.744 10.475 14.817 18.787 

Reddy
* 

5.205 10.290 14.767 18.891 

Shooshtari
* 

5.197 10.704 14.825 18.829 

MFSDT 5.205 10.289 14.766 18.829 
*
Shooshtari and Razavi (2010) 

 
Table 4 Dimensionless natural frequencies for moderately thick rectangular plate 

 10, 0 ,90 ,0
a

h

 
    

 

 

Solution (1,1) (1,2) (2,1) 

Omer civalek
* 

14.765 22.150 36.688 

Khdeir
* 

14.766 22.158 36.900 

Song xiang
* 

14.817 22.203 36.435 

Shooshtari
* 

14.825 22.137 37.327 

MFSDT 14.766 22.157 37.379 
*
Shooshtari and Razavi (2010) 

 

 
4.2 Vibrations of cross ply laminated circular plate 
 

Vibrations of circular plates have been studied in different researches. Rao and Prasad (1980) 

obtained the natural frequencies of circular plate based on FSDT. Hosseini-Hashemi et al (2010) 

performed an accurate analytical solution for free vibrations of thick plate using TSDT. 

Viswanathan et al (2009) studied the free vibration of laminated circular plates by applying FSDT. 

Mbakogu and Takagishi (1998) analyzed the free vibrations of polar orthotropic circular plate. 

Liew et al (1997) analyzed circular isotropic plate using DQM technique on governing equations 

which was obtained from FSDT. In reference (Viswanathan et al 2009), the governing equations 

for asymmetric orthotropic plate are given. Simplifying these equations for symmetric plate and 

ignoring in-plane inertias, we obtain the following equations  

 

 

   

44 , , 55 , , , 0 ,

11 , , 12 , 22 ,2

66 , , , 55 , 2 ,2

12 , 66 ,2

1 1 1
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1 1
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D D
r r
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

  

    

    

 

    
         

    

     
         

     

 
      

 

 
 

 
   

 

, , ,

22 , , 44 , 2 ,2

1

1 1

r r r rr

r tt

r

D KA w I
r r

    

     

   

   

 
    

 

   
       

   
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 

 

   

44 , , 55 , , , 0 ,

11 , , 12 , 22 ,2

66 , , , 55 , 2 ,2

12 , 66 ,2

1 1 1

1 1 1

1 1

1 1

r r rr r r tt

r rr r r r r

r r r r r tt

r r r

KA w KA w w I w
r r r

D D D
r r r

D KA w I
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D D
r r

  

   

    



  

    

    

 

    
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     
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     

 
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 

 
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 
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22 , , 44 , 2 ,2

1

1 1
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r tt

r

D KA w I
r r

    
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   

   

 
    

 

   
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     

(20) 

In which the first equation describes the transverse motion and the other two equations are 

moments of in-plane stresses about mid-plane. To obtain the response of the circular plate using 

MFSDT, Eq. (6) is rewritten in the polar coordinates. So 

 
 

 
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1

2

, ,
, ,

, ,
, ,

r
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r t k
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r



 


 













                         (21) 

Substituting the rotations from Eq. (21) into first equation of Eq. (20) results in the decoupling 

of w0. Then, according to the method of separation of variables, w0 is assumed to be 

       0 , ,w r t g r p f t                           (22) 

where, g(r) and p(θ) are undetermined functions of r and θ, respectively. Substituting Eq. (22) into 

the decoupled differential equation, separation of the variables gives 

 , , , , 22
44 55 1 02

1 1
1

rr r ttp g g fk
KA KA k I

r p g r g f

 
   

        
   

          (23)  

where, μ is the frequency parameter. In Eq. (23) the time variable has been separated and the time 

response of the system is 














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

0

 
sin)( 

I

t
tf                            (24) 

To obtain the mode shapes of the plate, r and θ must be separated from each other in Eq. (23). 

To this end, a new parameter η is used. So, Eq. (23) can be rearranged in the following separated 

form 

   , , ,2 2 2 2

44 2 55 11 1
rr rp g g

KA k KA k r r r
p g g

  
   

          
   

         (25) 

Mode shapes for circular laminated plate are obtained by solving Eq. (25). So, we have 

     nAp )( ∙Jϱ 














 155 1(

 

kKA

r
Bn∙Yϱ 














 155 1(

 

kKA

r
 (26) 

where the order of Bessel function ϱ=  55 1/ 1KA k ñ  shows that in spite of the rectangular 

plates, the material property affects the mode shapes of circular plates. Assuming that the origin 

point of coordinate system is located at the center of circular plate, the boundary conditions for 
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simply supported case are 

      0
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 (27) 

The required algebraic equations to determine unknown constants (i.e., η, μ, k1 
and k2) include 

two equations for moments and two equations induced from boundary conditions which are in the 

following form, respectively 
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




        (28) 

In Eq. (28), e is the different roots for Bessel function of first kind with the order ϱ. Shown in 

Table 5 are natural frequencies of isotropic circular plates. In this table, the natural frequencies of 

CPT (Chakraverty 2009) and the dimensionless frequency are obtained using Eqs. (29)-(30), 

respectively 

4

CPT

D
e

h



                               (29) 

2

5

h
R

D


                                (30) 

Table 5 shows the advantages of MFSDT very well. Because of simplifying assumptions of 

CPT, this theory yields to accurate solution only in the simplest problems (isotropic thin plates), 

while the MFSDT leads, the same accurate solution to be obtained in thick laminated composite 

plates. If the thickness of the plate is increased, the CPT results given in Table 5 do not change and 

the error is increased, while the results of MFSDT are affected by the ratio of h/R, since in this 

theory the shear strains are taken into account. On the other hand, although TSDT (Hosseini-

Hashemi et al 2010) gives relatively accurate results, it needs much more efforts to solve the 

governing equations. In fact, MFSDT is much simpler than CPT whereas it is as accurate as FSDT. 

An interesting point in Table 5 is that, although in the thin plates and fundamental mode 

transverse shear strains are negligible (Nyfeh and Frank 2004), results of CPT are not consistent 

with the results of FSDT and TSDT while, in this case the results of CPT must not have any 

significant difference with the results from shear deformation theories. This difference is 
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Exact mathematical solution for free vibration of thick laminated plates 

Table 5 Dimensionless frequency for isotropic circular plate with various thicknesses 

   (n, m) Mode     

(6, 0) (5, 0) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0) Theory h/R 

449.180 325.830 222.200 138.310 74.155 29.719 4.9335 HSDT
a 

 

449.180 325.830 222.210 138.310 74.155 29.720 4.9351 FSDT
b 

 

449.895 326.544 222.922 139.035 74.886 30.471 5.7832 MFSDT 0.001 

449.933 326.563 222.932 139.040 74.887 30.471 5.7831 CPT
c 

 

380.820 287.170 203.000 130.420 71.780 29.327 4.9247 HSDT
a 

 

380.130 286.790 202.810 130.350 71.756 29.323 4.9247 FSDT
b 

 

381.133 287.628 203.544 131.043 72.452 30.053 5.7677 MFSDT 0.05 

449.933 326.563 222.932 139.040 74.887 31.471 5.7831 CPT
c 

 

287.210 226.400 168.090 113.820 66.024 28.254 4.8942 HSDT
a 

 

285.440 225.340 167.530 113.570 65.942 28.240 4.8938 FSDT
b 

 

286.559 226.238 168.256 114.205 66.559 28.915 5.7227 MFSDT 0.100 

449.933 326.563 222.932 139.040 74.887 30.471 5.7831 CPT
c 

 

222.700 179.95 137.910 97.209 59.214 26.774 4.8448 HSDT
a 

 

219.860 178.230 136.980 96.775 59.062 26.715 4.8440 FSDT
b 

 

220.902 179.073 137.646 97.333 59.593 27.319 5.6501 MFSDT 0.15 

449.933 326.563 222.932 139.040 74.887 30.471 5.7831 CPT
c 

 
a
Hosseini-Hashemi et al. (2010), 

b
Liew KM et al. (1997), 

c
Chakraverty (2009) 

 

 

negligible for higher modes of thin plate. On the other hand, results of MFSDT and CPT are 

consistent with each other in all modes of thin plate. However in thicker plates and higher modes, 

the results of MFSDT are consistent with those of shear deformation theories. Thus, inconsistency 

of MFSDT results in fundamental mode compared with those of shear deformation theories can be 

attributed in circularity of the plate. Since this problem does not occur in rectangular plates and 

affects the results of CPT, it can be concluded that the cause of this phenomenon is circular shape 

of plate and not the MFSDT itself.  

In Table 6, the effect of orthotropic ratio (E1/E2), the ratio of thickness to radius (h/R) on the 

dimensionless natural frequencies of the system and the ratio of rotation are given. The 

dimensionless natural frequency is obtained using Eq. (31). 

2

6

22

h
R

D


                               (31) 

It is seen that for each specified orthotropic ratio, in the thicker plates and higher modes, the 

ratio of rotation approaches to zero. However, in thin plates and lower modes, this parameter tends 

to be -1. On the other hand, for a specified mode and thickness, it is clear that ratio of E1/E2 

changes the value of rotation ratios. Based on this matter, for some cases of fundamental mode 

which E1/E2 and h/R lead to the rotation ratios approach to -1, the last two equations of Eq. (28) 

which include  55 11KA k  and  44 21KA k  become ill conditioned. So, the round off 

errors decreases the accuracy. As a result k1 and k2 become less than -1 in these cases and an  
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Table 6 The effect of orthotropic ratio and thickness on dimensionless frequency and rotation ratio for 

moderately thick orthotropic circular plate  

(E2=40, G12=G13=0.6E2, G23=0.5E2, v12=0.5)  

  (n, m) Mode   Frequency 

& rotation 
h/R 

𝐸1
𝐸2

 
(5, 0) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0) 

166.56 119.81 81.450 51.148 28.188 11.059 𝜔   

-0.9985 -0.9989 -0.9991 -0.9994 -0.9995 -0.9996 𝑘1  0.2 

293.77 201.65 126.91 69.657 29.907 7.4603 𝜔   

-0.9952 -0.9967 -0.9979 -0.9988 -0.9994 -0.9998 𝑘1 0.01 0.8 

449.44 304.72 186.96 96.511 33.077 Error 𝜔   

-0.9874 -0.9915 -0.9948 -0.9974 -0.9992 -1.0002 𝑘1  2 

696.47 470.63 285.88 142.93 39.916 Error 𝜔   

-0.9716 -0.9810 -0.9887 -0.9974 -0.9990 -1.0013 𝑘1  5 

159.00 115.85 79.614 50.423 27.956 11.005 𝜔   

-0.9671 -0.9744 -0.9806 -0.9855 -0.9891 -0.9911 𝑘1  0.2 

271.371 190.578 122.339 68.224 29.632 7.4407 𝜔   

-0.8987 -0.9268 -0.9516 -0.9720 -0.9870 -0.9957 𝑘1 0.05 0.8 

411.434 291.177 185.736 99.038 34.782 Error 𝜔   

-0.7672 -0.8292 -0.8885 -0.9411 -0.9821 -1.0068 𝑘1  2 

531.44 386.22 251.62 133.97 39.332 Error 𝜔   

-0.5867 -0.6802 -0.7824 -0.8854 -0.9757 -1.0351 𝑘1  5 

141.647 106.081 74.766 43.393 27.277 10.843 𝜔   

-0.8957 -0.9143 -0.9317 -0.9469 -0.9585 -0.9654 𝑘1  0.2 

228.005 166.547 111.235 64.379 28.830 7.3805 𝜔   

-0.7140 -0.7765 -0.8401 -0.9005 -0.9510 -0.9830 𝑘1 0.1 0.8 

292.087 218.783 148.631 84.653 31.600 Error 𝜔   

-0.4690 -0.5635 -0.6770 -0.8054 -0.9333 -1.0279 𝑘1  2 

353.635 274.35 194.24 114.55 37.687 Error 𝜔   

-0.2680 -0.3546 -0.4813 -0.6650 -0.9109 -1.1562 𝑘1  5 

 

 

imaginary value is obtained for the corresponding frequencies. The word “Error” in this table is 

used for these frequencies. Moreover, it is observed from Table 6 that increasing the orthotropic 

ratio (E1/E2) similar to thickening the plate causes the ratio of rotation to approach to zero. 

 

 

5. Conclusions 
 

In this research, the FSDT and CPT have been compared with each other. It is shown that there 

is a kinematic relation among rotation functions and slope curves of the plate. By considering the 

rotations as a linear ratio of the slope curves of the plate, we proposed the displacement field for 

modified shear deformation theories. The behavior of transverse shear strains was assumed to be 

similar to the slope of the plate. Exact mathematical solution for governing equations of thick 
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Exact mathematical solution for free vibration of thick laminated plates 

laminated plates was accessible from the method of separation of variables, for the first time. It 

was shown that the new method is very simple and has good accuracy. The results of newly 

developed theory MFSDT were compared with those of CPT, FSDT and TSDT from both 

qualitative and quantitative point of views. In qualitative review, it was shown that using MFSDT 

leads to mathematical solution for a wider range of problems. Whereas MFSDT governing 

equations are a decoupled second order PDE and two algebraic equations, CPT leads to a fourth 

order PDE which usually cannot be decoupled (in-plane deformations and their related governing 

equations were neglected). On the other hand, FSDT and TSDT have three coupled PDEs. So, 

qualitative review showed that governing equations of MFSDT are much simpler in comparison 

with those of CPT, FSDT and TSDT.  As a consequence, it can cover a more extensive spectrum 

of the problems by mathematical solution. In quantitative review, natural frequencies of CPT were 

only applicable for thin plates and lower modes, while the results of MFSDT were consistent with 

those of FSDT and TSDT in thick plates and higher modes. 
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