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Abstract.  A formulation of the boundary element method (BEM) based on Kirchhoff’s hypothesis to 

analyse stiffened plates composed by beams and slabs with different materials is proposed. The stiffened 

plate is modelled by a zoned plate, where different values of thickness, Poisson ration and Young’s modulus 

can be defined for each sub-region. The proposed integral representations can be used to analyze the coupled 

stretching-bending problem, where the membrane effects are taken into account, or to analyze the bending 

and stretching problems separately. To solve the domain integrals of the integral representation of in-plane 

displacements, the beams and slabs domains are discretized into cells where the displacements have to be 

approximated. As the beams cells nodes are adopted coincident to the elements nodes, new independent 

values arise only in the slabs domain. Some numerical examples are presented and compared to a well-

known finite element code to show the accuracy of the proposed model. 
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1. Introduction 
 

The boundary element method (BEM) has already proved to be a suitable numerical tool to 

deal with plate bending problems. It is particularly recommended for the analysis of building floor 

structures where the combinations of slab, beam and column elements can be more accurately 

represented, considering that the method is very accurate to compute the effects of concentrated 

(in fact loads distributed over small areas) and line loads, as well to evaluate high gradient values 

as bending and twisting moments, and shear forces. Moreover, the same order of errors is expected 

when computing deflections, slopes, moments and shear forces, because the tractions are not 

obtained by differentiating approximation function as for other numerical techniques. In this 

context, it is worth also mentioning two edited books (Beskos 1991, Aliabadi 1998) containing 

BEM formulations applied to plate bending showing several important applications in the 

engineering context. 

The direct BEM formulation applied to Kirchhoff’s plates has appeared in the seventies 

(Bezine 1978, Stern 1979 and Tottenhan 1979). Besine
 
(1981) apparently was the first to use a 

boundary element to analyse building floors structures by analysing plates with internal point 

                                                           

Corresponding author, Ph.D., E-mail: gabrielar.fernandes@gmail.com 



 

 

 

 

 

 

Gabriela R. Fernandes and João R. Neto 

supports. It is interesting mentioning the works Hu and Hartley (1994), Hartley (1996), Tanaka 

and Bercin (1997) where BEM was coupled with FEM to develop the numerical model. In these 

works boundary elements have been chosen to model the plate behaviour, while beams and 

columns have been represented by finite elements. As usual, the different elements are combined 

together by enforcing equilibrium and compatibility conditions along the interfaces. However, for 

complex floor structures the number of degrees of freedom may increase rapidly diminishing the 

solution accuracy.  

In Tanaka et al. (2000), Sapountzakis and Katsikadelis (2000a, b), Paiva and Aliabadi (2004), 

are proposed BEM formulations for analysing the bending problem of beam-stiffened elastic 

plates. A BEM formulation for building floor structures in which the eccentricity effects are 

considered and the warping influence arising from both shear forces and twisting moments is taken 

into account is presented by Sapountzakis and Mokos (2007). In Venturini and Waidemam (2009a, 

b) develop BEM formulations for elastoplastic analysis of reinforced plates and in Venturini and 

Waidemam (2010) the same authors extend the previous formulation for considering geometric 

non-linearity as well. Wutzow et al. (2006) present a non-linear BEM formulation for analysing 

reinforced porous materials, where the beam elements are modelled by the Reissner’s theory 

applied to shell elements. 

An alternative scheme to reduce the number of degrees of freedom has been proposed by 

Fernandes and Venturini (2002) to perform simple bending analysis using only a BEM 

formulation based on Kirchhoff’s hypothesis. In this work the building floor is modelled by a 

zoned plate where each sub-region defines a beam or a slab, being all of them represented by their 

middle surface. The beams are modelled as narrow sub-regions with larger thickness, being the 

tractions eliminated along the interfaces, reducing therefore the total number of unknowns. Then 

in order to reduce further the degrees of freedom, the displacements are approximated along the 

beam width, leading to a model where the bending values are defined only on the beams axis and 

on the plate boundary without beams. This composed structure is treated as a single body, being 

the equilibrium and compatibility conditions automatically taken into account. In Fernandes and 

Venturini (2005) the authors have extended the formulation proposed in Fernandes and Venturini 

(2002) in order to represent all sub-regions by a same reference surface, so that the eccentricity 

effects should be taken into account. It is important to note that in the formulations proposed in 

Fernandes and Venturini (2002, 2005) all sub-regions should have the same Poisson’s ration and 

Young’s modulus. In Fernandes and Venturini (2007) the same authors have extended the BEM 

linear formulation presented in Fernandes and Venturini (2005) in order to perform the non-linear 

analysis of stiffened plates and in Fernandes et al. (2010) columns have been incorporated to the 

formulation developed in Fernandes and Venturini (2005). A BEM formulation for simple bending 

analysis of stiffened plates composed by different materials is proposed in Fernandes (2009) 

whose formulation is an extension of the one developed in Fernandes and Venturini (2002). As in 

the formulation proposed in Fernandes (2009) there is no domain integrals involving 

displacements the number of degrees of freedom remain the same. 

In this work the formulation presented in Fernandes and Venturini (2005) for the coupled 

stretching-bending analysis is now extended to consider the stiffened plate with different 

materials. The sub-regions can be defined with different values of Poisson’s ration and Young’s 

modulus, but these values have to be constant over each sub-region. The proposed integral 

representations can be also used to analyse the bending and stretching problems separately without 

coupling them. In order to compute the domain integrals of the integral representation of in-plane 

displacements (related to the stretching problem) the beams and slabs domains had to be 

606



 

 

 

 

 

 

Analysis of stiffened plates composed by different materials by the boundary element method 

discretized into cells, considering different approximations for the displacements over the beams 

and slabs domains. For the beams, the displacements over the domain are written in terms of their 

nodal values defined along the beam axis which are already required to approximate the 

displacements over the elements. Thus, new independent values have to be defined only in the 

slabs domain. The accuracy of the proposed model is confirmed by numerical examples whose 

results are compared with a well-known finite element code. 

 

 

2. Basic equations  
 

Without loss of generality, let us consider the stiffened plate depicted in Fig. 1(a), where t1, t2 

and t3 are the thicknesses of the sub-regions Ω1, Ω2 and Ω3, whose external boundaries are Γ1, Γ2 

and Γ3, respectively. In Fig. 1(a) the total external boundary is given by Γ while Γjk represents the 

interface between the adjacent sub-regions Ωj and Ωk. In the simple bending analysis all sub-

regions are represented by their middle surface, as shown in Fig. 1(c), while for the coupled 

stretching-bending problem the Cartesian system of co-ordinates (axes x1, x2 and x3) is defined on a 

chosen reference surface (see Fig. 1(b)), whose distance to the sub-regions middle surfaces are 

given by c1, c2 and c3. As in Fig. 1(b) the reference surface is adopted coincident to Ω2 middle 

surface one has c2=0. 
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(a) plate surface view 

 

 

(b) sub-regions represented by the reference surface (c) sub-regions represented by their middle surfaces 

Fig. 1 Reinforced plate 

 

 

Initially the bending and stretching problems will be treated separately in order to present their 

equilibrium equations and their internal force×displacement relations as well. Then in section 3 the 

two problems will be coupled in order to obtain the bending problem solution taking into account 

the membrane effects. Let us consider initially the bending problem. For a point placed at any of 

those plate sub-regions, the following equations can be defined: 

-Equilibrium equations in terms of internal forces: 
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0q, ijij m                                 (1) 

0g,q ii 
                                 

(2) 

where g is the distributed load acting on the plate middle surface, mij are bending and twisting 

moments and qi represents shear forces, with subscripts taken in the range i,j={1, 2. 

-The plate bending differential equation 

0gm ij,ij                                  (3) 

or  

  )2,1j,i(D/g,w iijj                        (4) 

where D=Et
3
/(1−v

2
) is the flexural rigidity, E the Young’s modulus, v the Poisson’s ratio and 

w,iijj=
4
w, being 

4
 the bi-harmonic operator. 

- The generalised internal force×displacement relations 

 ijkkijij ,w)1(,wDm      i, j=1, 2                (5) 

jjii ,Dwq 
                                

(6) 

where δij is the Kronecker delta. 

- The effective shear force 

s/mqV nsnn                                (7) 

where (n, s) are the local co-ordinate system, with n and s referred to the plate boundary normal 

and tangential directions, respectively. 

Considering now the stretching problem, the in-plane equilibrium equation is 

0b,N ijij             i, j=1, 2                        (8) 

where bi are body forces distributed over the plate middle surface and Nij is the membrane internal  

force, which, for plane stress conditions, can be written in terms of the in-plane deformations 
S

ij   

as follows 

 
  S

ijij

S

kk2ij 1
1

E
N 





                        (9) 

where E =Et. 

For the coupled stretching-bending problem, the strain and stress components are the sum of an 

uniform part due to stretching plus a non-uniform part due to bending, i.e. 

B
ij

S
ijij                                 (10a) 

B
ij

S
ijij                                 (10b) 
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where B and S refer, respectively to bending and stretching problems; B
ij x3w,ij with w,ij being  

the plate surface curvature. 

The coupled stretching-bending problem definition is then completed by assuming the 

following boundary conditions over Γ: Ui=Ūi on Γu (generalised displacements: deflections and  

rotations (bending problem); in-plane displacements (stretching problem)) and Pi= iP  on Γp  

(generalised tractions: bending moments and effective shear forces (bending problem); in-plane  

tractions (stretching problem)), where   pu . Note that the integral representations  

derived in section 3 can be also used to analyse the simple bending or the stretching problem 

without coupling thee two problems. For that we have only to consider cm null (see Fig. 1) for all 

sub-regions (where m varies from 1 to the sub-regions number).  

 

 

3. Integral representations 
 

In this section, we are going to derive the integral representations of displacements for the 

simple bending problem, the stretching problem and the coupled stretching-bending problem of a 

zoned plate where the thickness, Poisson’s ratio and Young’s modulus may vary from one sub-

region to another, but must be constant over each sub-region. The equations will be derived by 

applying the reciprocity theorem to each sub-region and summing them to obtain the equation for 

the whole body. Complementary domain integral terms will be inserted in the reciprocity relation 

to take into account variations of material properties or rigidities from one sub-region to another as 

well as the effects of the relative position of the sub-region middle surfaces. The integral equations 

derived in this section can be used to model building floor structures, being each sub-region the 

representation of either a slab or a beam. Note that if the coupled stretching-bending problem is 

considered, in the final displacements representations all sub-regions will be represented by their 

reference surface, as depicted in Fig. 1(b). If the two problems are not coupled the sub-regions are 

represented by their middle surface (cm is null for all sub-regions m, see Fig. 1) and the integral 

representations can be used to analyse the bending problem or the stretching problem separately. 

As described in details in Fernandes and Venturini (2005), from Betti’s theorem, the following 

two equations can be obtained for any sub-region Ωm, respectively, for the bending and stretching 

problems 

 




dN

m

m

jk

Sm

ijk

* 


dN Sm

jk

*m

ijk

m

                   i, j, k=1, 2            (11a) 




dm,w

m

m

jk

*m

jk  


dwm m

jk

m

jk

m

,*
                  j, k=1, 2            (11b) 

 

where *Sm
ijk , *m

ijkN ,
*,m

jkw  and 
*m

jkm  are fundamental solutions. 

Note that for Eq. (11b) the unit load is applied in x3 direction. Eqs. (11) can be now modified 

by writing the fundamental strains of sub-region Ωm in terms of the values (
*S

ijk , 
*

jk,w , D and E  

t) referred to the sub-region where the load point s is placed. This simplifies the formulation 

because allows to eliminate the tractions along the interfaces. Thus, the following relations can be 
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defined 

m
*S

ijk

*Sm

ijk E/E                                (12) 

  ** ,/, jkm

m

jk wDDw                               (13) 

where mE =Emtm, being Em the Young’s modulus in the sub-region Ωm. 

Considering Eqs. (12) and (13) the moment 
*m

ijm  and the membrane force 
*m

ijN can be also 

written in terms of v, 
*

ijm  and 
*

ijN
 

referred to the sub-region where the load point is placed as  

follows 

*

jk

m*

jk

m)m(*

jk ,w1Dmm 
















                      (14) 

 
   

*S

ijk

m

2

m

*

ijk2

m

m

2

)m(*

ijk 1
1

E
N

1

1
N 
























                  (15) 

Replacing (14) and (13) into Eq. (11b) as well as Eq. (12) and (15) into (11a) one obtains, 

respectively, for the bending and stretching problems 

 mjk

*

jk dm,w

m




m

*

jkjk

m

ms

*

jkjk

mm d,w,w1Ddm,w
D

D

mm













 







        (16) 

 
























mmm

m

S*

ijk

S

jk
m

m
*

ijk

S

jk
mm

mjk

S*

ijk d1EdN
E

E
dN












        (17) 

where 
 2

m

m
m

1

E
E


 . 

Note that in the case of having v=0, Eqs. (16) and (17) can't be used. On the other hand one can 

demonstrate that if v=0, Eq. (11) result into the same equations presented in Fernandes and 

Venturini (2005) related to the formulation where all sub-regions must have the same Poisson’s 

ratio and Young’s modulus. Applying Eqs. (16) and (17) for all sub-regions one obtains the 

following relations for the whole plate, respectively, for the bending and stretching problem 




dm,w jk

*

jk  
 























S

mm

N

1m

m

*

jkjk
m

mm

*

jkjk
mm d,w,w1Ddm,w

D

D













       (18) 

 
 























S

mmm

N

1m

m

S*

ijk

S

jk

m
m

*

ijk

S

jk

mm

mjk

S*

ijk d1EdN
E

E
dN














     

   (19) 

 

where Ns is the sub-regions number. 
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Eqs. (18) and (19) are the reciprocity relations of a stiffened plate composed by different 

materials, treating the bending and stretching problems separately, i.e., with all values related to 

the sub-regions middle surface. In the coupled stretching-bending problem, the boundary and 

interface values are referred to the reference surface (see Fig. 1). Therefore, to derive the 

reciprocity relations in which stretching and bending effects are coupled, we have to take into 

account the effects of the relative position of the sub-region middle surfaces. It is worth noting that 

internal normal forces and the curvatures do not depend on the plate surface position and therefore  

the local values are replaced by the global ones, i.e., 
m

jkN = jkN  and 
jk

m

jk ,w,w  . On the other  

hand, the in-plane strain and the bending moments change if the position of the plate surface is 

modified. Thus according to Eqs. (10) we can write strain and moment values of sub-region Ωm  

(
Sm

jk  and 
m

jkm  ) in terms of the reference surface values (
S

jk  and 
jkm ), as follows 

jkm

S

jk

Sm

jk ,wc             j, k =1, 2                    (20a) 

jkmjk

m

jk Ncmm                              (20b) 

where cm is the distance from the reference surface to the middle surface of sub-region m (see Fig. 

1 for more details). 

Replacing Eq. (20a) into (19) and (20b) into (18) one obtains the following reciprocity relations 

for the coupled stretching-bending problem 




dm,w jk

*

jk  
 

S

m

N

m

mjkjkm dNwc
1

*,  

 
 























S

mm

N

1m

m

*

jkjk
m

mm

*

jkjk
mm d,w,w1Ddm,w

D

D













            (21) 















 



S

mm

N

1m

*

ijkjkm

*

ijk

D2

jk
mm

jk

S*

ijk dN,wcdN
E

E
dN







  

 
 
























S

mm

N

1m

S*

ijkjkmm

S*

ijk

S

jk
m

m d,wcd1E






             (22) 

Eq. (21) can be integrated by parts twice to give the following representation of deflection 

)s(w)s(k    


S

m

N

1m

*

nn

*

n

mm dwV,wM
D

D








  












 
 


in t

ja

N

1j

ja

*

nn

*

n

aajj
dwV,wM

D

DD








 





0cN

1i

ci

*

ci

ii wR
D

D


















 
 





2c1c NN

1j

cj

*

cj

aajj
wR

D

DD








cN

1i

*

cici wR   




d,wMwV *

nnnn
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
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
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
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
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
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m d
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D

Q
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a
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
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
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







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0Nc

1i

ci

*'
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





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

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s
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N

1m

*

nnm ,wpc
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 m

*

ss d,wp       


int
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N

1j

j

*

ss

*

nnaj d,wp,wpcc 

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

g
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
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


s

i

N
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where Nc is the total number of corners, Nint is the interfaces number, no summation is implied on 

n and s that are local normal and shear direction co-ordinates, respectively; Γm is the external 

boundary of sub-region Ωm; Γja
 
represents an interface, being the subscript a referred to the 

adjacent sub-region to Ωj; Nc0, Nc1 and Nc2 are numbers of corners between boundary elements, 

between interface elements and between interface and boundary elements, respectively (see more  

details in Fernandes and Venturini (2005)); Ωg is the plate loaded area and )*(

ns

)*(

ns

*'

ci ,w,wR   , 

being )*(

ns,w   the value of the curvature 
*

ns,w  after the corner i and )*(

ns,w   the value of *

ns,w  

before the corner i; the free term K(s) can assume several values depending on the position of the 

collocation point s (see more details in Fernandes and Venturini 2005).  

Integrating now Eq. (22) by parts one obtains the following integral representations of in-plane 

displacements 

             


s

1i

N

1m

*

kss

*

knn

mm

iui,wr dpupu
E

E
susKs,wsKc







 

 
  







in t

ja

N

1j

ja

*

kss

*

knn

aajj

dpupu
E

EE






  



S

m

N

1m

n

*

knm

mm
,wpc

E

E



  d,wp s

*

ks  

 
  







in t

ja

N

1j

jas

*

ksn

*

kn

aaajjj

d,wp,wp
E

cEcE







    

b

dbubudpupu s

*

ksn

*

kns

*

ksn

*

kn





  







 



s

m

N

1m

S*

knss

S*

knn

m
m duu1E






   







 



s

m

N

1M

S*

knss

S*

knn

m

mm d,w,w1cE






 

612



 

 

 

 

 

 

Analysis of stiffened plates composed by different materials by the boundary element method 

  



































in t

ja

N

1j

ja

S*

knss

S*

knn

a
a

j
j duu1E1E











 

  






























 



in t

ja

N

1j

ja

S*

knss

S*

knn

a

aa
j

jj d,w,w1cE1cE










 

 












S

m

N

1m

m

S*

k,ijkj

m
m du1E







 












S

m

N

1m

m

S*

k,ijkj

m

mm d,w1cE






       (24) 

where 
*

ikp =
*

ikN , with k=n,s, is the usual traction fundamental solutions for the stretching  

problem; the free term values are given in Fernandes and Venturini (2005); cR is the distance of the 

collocation point sub-region to the reference surface. 

Note that Eq. (24) can be used to analyse the stretching problem of plates without considering 

the bending problem and Eq. (23) can be used to analyse the bending problem without considering 

the membrane effects, which is the formulation developed in Fernandes (2009). For that we have 

only to consider the values cm, ca, cr and cj nulls in both equations. Eqs. (23) and (24) are the exact 

representations of deflection and in-plane displacements of a zoned plate for the coupled 

stretching-bending problem. In the set of equations, to be discussed in the next section, if the 

coupled stretching-bending problem is considered these equations have to be coupled and can’t be 

treated separately. The interface values Vn and Mn were eliminated, remaining therefore four 

generalized displacements, w, w,n; un and us and two in-plane tractions, pn and ps as unknown 

values along interfaces. Note that the tractions, pn and ps have been also eliminated on the 

interfaces for the stretching problem (Eq. (24)), but not for the bending problem (Eq. (23)). The 

rotation w,s is conveniently replaced by numerical derivatives of w, therefore leading to six 

unknowns at each interface node. On the external boundary eight values are defined: w, w,n; un, us, 

pn, ps Mn and Vn, requiring therefore four equations for each boundary node. In Eq. (24) besides the 

problems values defined along the external boundary and interfaces one has also the values ui and 

w,i defined inside the domain. Thus to solve the problem, the external boundary and interfaces 

must be discretized into elements and the domain into cells. 

Observe that differentiating relation (23) once one can obtain the integral representation of 

deflection derivative as well as the in-plane displacements derivatives can be obtained by 

differentiating Eq. (24) and the membrane forces computed considering Eq. (8). Differentiating 

once more Eq. (23) to obtain the curvature integral representations at internal points and applying 

the definition given in Eq. (5) the bending and twisting moment integral representations can be 

derived. To obtain the shear force integral representation, completing the internal force values at 

internal points, one has to differentiate the curvature equation once and apply the definition given 

in Eq. (6). 

Eqs. (23) and (24) can be used for solving the coupled stretching-bending problem of stiffened 

plates, but in this case the collocation points would have to be adopted on the interfaces and along 

all external boundary. However we have considered some approximations for the displacements 

over the beam cross sections in order to translate the displacement components related to the beam 

interfaces to its axis. In this model instead of having interface collocations points we have 

collocations points placed along the beams axis and along the part of the external boundary where  
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(a) Local system of coordinates on beams (b) Tractions on internal beam interfaces 

Fig. 2 Reinforced plate view 

 

 

no beam is defined. These kinematics approximations are the same adopted in the formulation 

presented in Fernandes and Venturini (2005) applied to stiffened plates with v and E constant over 

all sub-regions. The deflection and in-plane displacements are assumed to vary linearly along the 

beam width, while the deflection normal derivative is adopted constant (see more details in 

Fernandes and Venturini 2005). Then, the displacement components related to the beam interfaces 

are written in terms of theirs values along the skeleton line, decreasing the number of degrees of 

freedom. Besides approximating the displacement field, one can also simplify conveniently the 

interface tractions to reduce the number of the required values by assuming linear distribution of 

stresses across the beam section. Let us consider the beam B3 represented in Fig. 2(a) by the sub- 

region Ω3. The tractions 31

kp


 and 32

kp


along the interfaces Γ31 and Γ32, can be conveniently split  

into two parts: Δpk and pk (related to the beam skeleton line), as follows (see Fig. 2 (b)) 

kkk p2/pp 31 
                              (25) 

kkk p2/pp 32 


                            
(26) 

The part of the tractions Δpk is referred to linear stress field across the beam and is written in 

terms of displacement derivatives using Hooke’s law, as follow 












 ),u,u(n,u

)1(

2
Gtp knnkkk 




  k=n,s               (27) 

where the n is the beam axis outward vector and G the shear modulus. 

The part pk of Eqs. (25) and (26) refers to the constant stress distribution across the beam 

section and represents new independent values, i.e., new degrees of freedom for internal beams. 

Note that in Eq. (27) the displacements derivatives un,s and us,s with respect to beam axis, direction 

s, are replaced by numerical derivatives of un and us, respectively. Adopting these approximations 

for displacements and tractions, the number of values at each internal beam skeleton node remains 

eight: three displacements (w, un and us) three rotations (w,n; un,n and us,n) and two distributed forces 

(pn and ps). Therefore, for collocations defined along the internal beam axis one has to write eight 

different integral representations. 

For external beams, only the interface in-plane tractions have to be approximated as the  
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(a) beam axis prescribed free (b)beam axis adopted simply supported 

Fig. 3 Tractions acting along external beam interfaces 

 

 

external boundary tractions represent the actual boundary values. In this case, the interface values 

Δpn and Δps are also written in terms of displacements derivatives as described in Eq. (27) and the 

in-plane tractions approximation depends on the boundary conditions of the beam axis. They are 

approximated as described in Fig. 3(a) when the beam axis is prescribed free or as defined in Fig. 

3(b) if the beam axis is adopted simply supported. 

It is important to stress that all values are referred to nodes defined along the beam axis, while 

the integrals are still performed along the interfaces. Thus, no singular or hyper-singular term is 

found when transforming the integrals representations into algebraic ones.  

 

 

4. Algebraic equations 
 

As usual for any BEM formulation, the integral representations (Eqs. (23) and (24), as 

example) are transformed into algebraic expressions after discretizing the external boundary 

without beams and the beams axis into geometrically linear elements, where quadratic shape 

functions have been adopted to approximate the variables. As domain integrals in term of 

displacements are defined in Eq. (24) the domain has also to be discretized into cells where the 

displacements u1, u2, w,1 and w,2 have to be approximated.  

We have adopted different kind of cells for the beams and slabs. In the beams each three nodes 

element defines a beam rectangular cell (see Fig. 4, where 1, 2 and 3 are the element nodes). Then 

each beam rectangular cell is divided into four triangular cells over which the displacements are 

approximated by continuous linear shape functions (see Fig. 4, where 1', 2', 3', 1", 2" and 3" are 

the triangular cells nodes). Then the values related to the triangular cells nodes are translated to the 

beam axis nodes, using the same kind of approximations defined previously along the beam cross 

section. Thus no additional degrees of freedom are defined in the beams, as the beam cells nodes 

are coincident to the beam axis nodes. To perform the integral over these triangular cells we have 

transformed the domain integrals into cell boundary integrals, which have been performed 

numerically by using a sub-element scheme that has already demonstrated to be efficient and 

accurate. The same kind of triangular cells have been used to discretize the slabs domain, where 

the displacements u1, u2, w,1 and w,2 defined in the slabs cells nodes represent new independent 

values. 

Along the external boundary without beams the nodal values are: two in-plane displacements 

(un and us) for the stretching problem; one deflection w and its normal derivative w,n for the  
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Fig. 4 Discretization of a generic beam rectangular cell into four triangular cells 

 

 

bending problem. The counterpart values are respectively: in-plane tractions (pn and ps) for the 

stretching problem; bending moment Mn and the effective shear force Vn for the bending problem. 

Therefore, four equations must be written for each boundary node as four unknowns are defined 

per node. Besides, on the corners is defined the deflection w and its counterpart value given by the 

corner reaction Rc, requiring therefore one equation in each corner. Along the beams axis we have 

defined two in-plane displacements un and us, two displacement derivatives with respect to the 

skeleton line normal direction, ∂un/∂n and ∂us/∂n
 
for the stretching problem, and one deflection w 

and one deflection derivative w,n for the bending problem. Besides, in the internal beams there are 

also the in-plane tractions pn and ps as unknowns. Thus, for each external and internal beams axis 

node, six and eight relations are required, respectively.  

For each boundary node we have defined one outside collocation point very near to the 

boundary and another one coincident to the node. For the collocation on the boundary we write 

three displacements algebraic relations: two in-plane displacement relations (Eq. (24)) and one 

deflection relation (Eq. (23)). For the external point we write only the deflection Eq. (23). Note 

that we have chosen to write the deflection equation for one outside collocation point instead of 

employing the gradient equation because in previous studies (see Venturini and Paiva 1993, Paiva 

and Venturini 1992) this technique showed to lead to very good results. 

For each beam skeleton node we write two in-plane displacement relations obtained from Eq. 

(24), one deflection relation from Eq. (23), two in-plane displacement derivative relations and one 

slope relation. Besides, for internal beams two in-plane traction relations have to be added. These 

collocations points are coincident to the node when variable continuity is assumed or defined at 

skeleton element internal point when variable discontinuity is required. Finally, the amount of 

equations required to solve the problem is completed by writing the equations of displacements u1, 

u2, w,1 and w,2 at the cells nodes defined in the slabs domain. 

After writing the required number of algebraic equations, one can get the set of equations 

defined in (28) to solve the problem in terms of boundary, beam axis and slab domain values.  

Note that if the coupled stretching- bending problem is considered, in Eq. (28) the bending and 

stretching problems have to be coupled and cannot be treated separately.  
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     (28) 

In Eq. (28) the upper and bottom parts indicate, respectively, algebraic equations of the bending 

and stretching problems; {U}
 
and {P} are displacement and traction vectors, respectively; the 

subscripts B and S are related to values defined on the external boundary and beam skeleton lines  
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(a) plate modelling for simple bending analysis (b) plate modelling for the coupled stretching-bending 

problem 

  
(c) reference surface view (d) discretization 

Fig. 5 Plate reinforced by two external beams 

 

 

of bending and  stretching problems,  respectively; the subscript C is related to the corners and i 

to the internal nodes of the slabs domain; {T} is the independent vector due to the applied loads; 

[H] and [G] are matrices obtained by integrating all boundary and interfaces and also the beams  

cells for the stretching equations, [ H ]
S
 and [G ]

S
 represent the influence of the stretching problem 

into the bending problem; [ H ]
B
 is the influence of the bending problem into the stretching 

problem; [E] is computed by the integration of the triangular cells defined in the slabs domain. 

Eq. (28) can be represented in a reduced form, as follows 

TGPHU                                 (29) 

where U contains the generalized displacement nodal values defined along the boundary, the 

skeleton lines, the corners and slabs domain; P contains nodal tractions on the boundary, corners 

and skeleton lines; T is the independent vector due to the applied loads.  

 

 

5. Numerical applications 
 

Two examples are now shown to demonstrate the performance of the proposed formulation 

being the results compared to a well-known finite element code (ANSYS, version 9), where solid 

elements have been adopted to analyse the coupled stretching-bending problem. Moreover results 

computed considering the BEM formulation presented in Fernandes (2009) are also presented in 

order to show the difference between the coupled stretching-bending analysis and the simple 

bending analysis. In the numerical analysis related to Fernandes (2009) only the beam axis and the 

external boundary without beams have to be discretized as there are no domain integrals involving 

the displacements. Observe that in the proposed model the elements placed at external beams ends,  
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(a) Deflections convergence (b) Comparison with other models 

Fig. 6 Deflections on the plate axis x - Example 1 
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(a) Deflections on the plate axis y (b) Deflections on the beam axis yb 

Fig. 7 Deflections in the stiffened plate - Example 1 

 

 

in the direction of the beam width, are automatically generated by the code, so that there is no need 

of defining them. Besides, for all presented examples a simple convergence test has confirmed that 

the obtained displacements and other relevant values practically do not change when finer meshes 

were used leading to the same results presented herein. 

In the first numerical example the plate is reinforced by two boundary beams, increasing the 

stiffness of the structural system mainly in the x1 direction, as shown in Fig. 6(a), where Fig. 5(a) 

and 5(b) indicate how the stiffened plate is analysed, respectively, in simple bending and the 

coupled stretching-bending analysis. A distributed load g of 0.04 kN/cm
2
 is applied over all 

surface of the stiffened plate. The two sides defined in the span direction of the beams are assumed 

free (Vn=Mn=0.0) while the other two are considered simply supported (w=Mn=0.0), as shown in 

Fig. 5(c). For this analysis thickness tp=10.0 cm, Poisson’s ratio p=0.2 and Young’s modulus 

Ep=3×10
3 

kN/cm
2
 have been adopted for the plate, while tb=25 cm, b=0.15 and Eb=2.7×10

4 

kN/cm
2
 have been assumed for the beams. For the coupled stretching-bending analysis, the plate 

middle surface has been adopted as reference surface, resulting into cp=0.0 and cb=7.5 cm for the 

plate and beam, respectively. 

To verify the results convergence two discretizations have been used, adopting for both 32 cells 

to discretize the slab domain. In the poorest one each plate side without beams and each beam axis 

was discretized by 12 quadratic elements, giving the total amount of 48 elements and 100 nodes 

while for the finest mesh (presented in Fig. 5(d) we have adopted 192 elements with 388 nodes. 

The displacements along the slab axis x (see Fig. 5(c)) obtained with these two meshes are very 

similar, as one can observe in Fig. 6(a).  
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Fig. 8 Moments M11 on the plate middle axis x- Example 1 
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(a) Moments M22 on the plate axis y (b)Moments M22 on the beam axis yb 

Fig. 9 Moments in the stiffened plate - Example 1 

 

 

Deflections obtained in the plate middle axes x and y (see Fig. 5(c)) as well as along the beam 

axis yb, are displayed, respectively, in Figs. 6(b), 7(a) and 7(b) where SB refers to the simple 

bending analysis obtained from the formulation presented in Fernandes (2009) and CP to the 

coupled stretching-bending problem. As can be seen the numerical results in the slabs compare 

very well with the ones obtained by ANSYS and the deflections along the beam axis are very 

similar to ANSYS. 

Some moments components along the axis x, y and yb are presented in Figs. 8, 9(a) and 9(b), 

respectively. As we can observe in the slabs the moments also compare very well with the ones 

obtained by ANSYS. Note that the moments obtained from ANSYS along the beam axis are not 

presented, because as the ANSYS compute only stress components is not possible to obtain the 

moments in the beams. 

In the second example we have a building floor structure defined by five beams and two plate 

regions as shown in Fig. 10, where the slabs surface has been assumed as the reference surface and 

the length unit is centimetre. The plate thickness has been considered equal to tp=8.0 cm while 

for the beams B1 and B2 we have adopted height tb=25.0 cm and tb=15.0 cm has been assumed 

for B3, B4 and B5. Besides, it has been adopted Young’s modulus Eb=25000 kN/cm
2
 and Ep=3000 

kN/cm
2
, respectively, for the beams and plates as well as the following Poisson rations: νb=0.3 and 

νp=0.2. A distributed load of 0.003 kN/cm
2
 has been applied over the whole stiffened plate surface 

while all plate sides are considered simply supported (note that the values w=Mn=0 are prescribed 

along the beam axis). Besides it has been prescribed in-plane tractions nulls along all external 

beams axis, except for nodes 71, 103 and 87 (see Fig. 10) where has been adopted un=0 for nodes 

71 and 103 and us=0 for the node 87. To confirm the results convergence three meshes have been 

considered. The poorest one (see Fig. 10) contains 82 elements and 173 nodes defined on the  
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(a) geometry (b) BEM discretization 

Fig. 10 Building floor structure 
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(a) Deflections convergence (b) Comparison with other models 

Fig. 11 Deflections along Beam Axis Xb - Example 2 
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(a) Deflections along axis y (b) Deflections along the axis x 

Fig. 12 Deflections in the plate- Example 2 

 

 

beams axis while 16 triangular cells have been used to discretize each slab domain, resulting into 

32 cells. The other two meshes (162 and 322 elements) have been obtained by doubling the 

number of elements of the previous mesh (except at beams intersections, where has been adopted 

one element). Besides, to confirm the convergence we have also considered 64 cells over the 

domain, but no difference was observed in the numerical results. Despite the deflections along the 

internal beam axes presents a very good convergence (see Fig. 11 (a)), the finer mesh had to be  
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(a) Moments Mxx along axis x (b) Moments Myy along axis y 

Fig. 13 Moments in the plate - Example 2 
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Fig. 14 Moments Mss along the internal beam axis - Example 2 

 

 

considered to compute the numerical results for moments. 

The deflections along the internal beam axis as well as the ones along the plate middle axes x 

and y defined in Fig. 10 are displayed, respectively, in Figs. 11(b), 12(a) and 12(b). As can be 

observed, the results along the internal beam compare very well to ANSYS. On the other hand, the 

deflections along the axes x and y are similar to the ones obtained with ANSYS, but a little bigger. 

The bending moments along the plate middle axes x and y are displayed in Figs. 13(a) and 13(b), 

where can be observed a good agreement with the ANSYS results. The bending moments along 

the internal beam axes are shown in Fig. 14, where the results are not compared to ANSYS, 

because is not possible to compute the moments in the beams with the stress given by ANSYS. 

 
 
6. Conclusions 
 

A BEM formulation based on Kirchhoff’s hypothesis for performing the coupled stretching-

bending analysis of reinforced plates has been extended to define sub-regions with different 

materials, i.e., different Young’s modulus and Poisson’s ratio. The proposed integral 

representations can be also used to analyse the bending and stretching problems separately without 

coupling them. The beams are assumed as narrow sub-regions, without dividing the reinforced 

plate into beam and plate elements. In the coupled stretching-bending analysis the elements are not 

displayed over their middle surface, i.e., eccentricity effects are taken into account. This composed 

structure is treated as a single body, where equilibrium and compatibility conditions are 

automatically guaranteed by the global integral equations. To compute the domain integrals of the 
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integral representation of in-plane displacements, the stiffened plate domain had to be discretized 

into cells where different approximations had been adopted for the displacements over the slabs 

and beams domain. In the beams the cells nodes are adopted coincident to the elements nodes, 

while the nodal values for displacements of the cells defined in the slabs domain represent new 

independent values. The performance of the proposed formulation has been confirmed by 

comparing the results with a well-known finite element code. 
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