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Abstract.  A first-order moment method (FORM) reliability analysis is commonly used for structural 

stability analysis. It requires the values and partial derivatives of the performance to function with respect to 

the random variables for the design. These calculations can be cumbersome when the performance functions 

are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the 

limit state function. By using a trained GP model, a large number of values and partial derivatives of the 

performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing 

the number of stability analysis calculations. This dynamic renewed knowledge source can provide great 

assistance in improving the predictive capacity of GP during the iterative process, particularly from the view 

of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP 

approximation around the design point by constantly adding new design points to the initial training set. 

Examples are provided to illustrate the GP-based response surface for both structural and non-structural 

reliability analyses. The results show that the proposed approach is applicable to structural reliability 

analyses that involve implicit performance functions and structural response evaluations that entail time-

consuming finite element analyses. 
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1. Introduction 

 
In a structural reliability analysis, the fundamental task is finding a solution to the multi-fold 

integral representing the probability of failure, denoted as Pf, and defined by 
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f  0                           (1) 

where f(X) is the joint probability density function of the vector of basic random variables X, 

which represent uncertain quantities such as material properties, loads, material parameters and 

geometry. The limit state function g(X)=0 divides the design space into two regions: a safe region 

for which g(X)>0 and a failure region for which g(X)<0. Commonly used probabilistic analysis 
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methods are based on either simulation techniques such as Monte Carlo simulations (MCS) or 
moment-based methods such as the first-order reliability methods (FORM) or second-order 
reliability methods (SORM).  

An MCS can be used to solve any complex problem of implicit or explicit form for which 
accurate solutions are either impossible or extremely difficult to obtain through an analytical 
technique. For example, a limit state involving multiple random variables that is evaluated by a 
finite element method (FEM) can be easily set up for solution with the Monte Carlo Simulation 
technique. However, this becomes computationally excessive when the probability of failure Pf is 
extremely low. An MCS is typically used as a benchmark for verifying the accuracy and 
comparing the efficiency of other methods that use approximation concepts. 

Moment-based methods such as FORM and SORM can drastically reduce computational costs 
compared to an MCS. Unfortunately, these methods require the evaluation of the derivatives of 
performance functions with respect to the random variables. However, the performance functions 
are usually implicit in practical problems, which results in derivatives of the performance 
functions that are not readily available.  

Response surface approximations (RSM) (Bucher and Bourgund 1990, Malur and Bruce 1993, 
Kim and Na 1997, Guan and Melchers 2001, Zhao et al. 2013, Jiang et al. 2014) can be used to 
obtain a closed-form approximation to the limit state function to facilitate a reliability analysis. 
Response surface approximations typically fit low-order polynomials to the structural response in 
terms of random variables. The probability of failure can then be inexpensively calculated through 
a Monte Carlo simulation or FORM and SORM using the fitted polynomials. Therefore, an RSM 
is a particularly attractive option for computationally expensive problems such as those requiring 
complex FEM analyses. The most popularly used response surface function is the quadratic 
polynomial function. However, the quadratic polynomial cannot provide sufficiently accurate 
approximations of performance functions in cases with high nonlinearity (Christian and Thomas 
2008). 

Due to recent developments in artificial intelligence research, artificial neural networks (ANNs) 
and support vector machines (SVMs) are now used to approximate limit state functions. Various 
studies have shown that ANN-based and SVM-based RSMs are more efficient and accurate than 
polynomial-based RSMs (Rocco and Moreno 2002, Luc and Dionys 2005, Deng et al. 2005, Li 
and Yue 2006, Hurtado 2007, Cheng and Xia 2008, Zhao 2008). However, ANNs exhibit 
difficulties in determining appropriate network topologies and sizes, while SVMs cannot avoid the 
common phenomenon of blindness in the man-made choices in the hyperparameters of kernel 
function (Vapnik 1998).. This demonstrates a considerable need to develop efficient frameworks 
for reliability analyses. 

A Gaussian process (GP) is a newly developed machine learning technology based on strict 
theoretical fundamentals and Bayesian theory (MacKay 1998). In recent years, GPs have attracted 
significant attention in the machine learning community (Williams 1998, Rasmusen and Williams 
2006, Su et al. 2007, Chen and Martin 2007, Hensman et al. 2010). Similar to an ANN and an 
SVM, a GP can approximate any function. Its major advantage over an ANN is its simplicity: no 
network size or topology need be selected. In contrast to the weights of an ANN, the 
hyperparameters of a GP have intrinsic meaning. A further advantage of a GP over an ANN and 
SVM is that it possesses a theoretical framework for obtaining the optimum hyperparameters in a 
self-adaptive manner. 

This paper proposes a GP-based RSM method of reliability analysis that combines a GP with 
the frameworks of a FORM and an RSM. Section 2 reviews the FORM method for structural  
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Fig. 1 Location of training datasets for a two-variable problem 
 
 

reliability analysis and presents the theories and procedure of the proposed method. Section 3 
utilizes four numerical examples to illustrate the application and effectiveness of the proposed 
method. Section 4 discusses several important parameters in the proposed method. Conclusions are 
drawn in Section 5. 
 
 
2. The proposed method 
 

2.1 Numerical simulation procedure 
 

This study initially prepares a set of input and output data for establishing the GP model. 
According to the experimental plan of RSM developed by Bucher and Bourgand (1990), these 
training datasets are generated along the axis x with coordinates of xi =μi±fσi, where μi and σi are 
the mean and standard deviation of the random variable xi (see Fig. 1). The values of the 
performance function y(x1, x2,…,xn) and y(x1,x2,…,xi±fσi,…,xn) are obtained by using a structural 
analysis code. The initial number of training datasets m is 2n×s+1, where f=[1,4] and s is the 
number of selected f. This paper adopts f=2, s =1, and m=2n+1 as default values. The initial 
training datasets D of m observations are thus obtained as D={(xi, yi) | i=1,...m}, where xi denotes 
an input vector and yi denotes a scalar output or target. The column vector inputs for all m cases 
are aggregated in the n×m design matrix X, and the targets are collected in the vector y. 
 

2.2 Processing of training data 
 

To improve the stability of the GP training process and the degree of generalization accuracy, 
all of the training datasets must be scaled before presenting them to the model. The following 
scaling equation is used 

 
Xσ

x
x s                                  (2) 

y
s μyy                                  (3) 

where x s and y s are the scaled values of the training set, σX is the standard deviation of the random 
variables, and μy is the mean of the training dataset outputs. 
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2.3 Approximation of the limit state function by trained GP 
 

2.3.1 Training a GP 
A GP specifies a probabilistic model over a given set of data points and is constructed so that 

the likelihood of the function value, given the decision variable values, is maximized for all data 
points. This model can then be extended to predict the mean and standard deviation of the function 
value at new data points. GPs have a small number of hyperparameters that can be optimized 
through a maximum likelihood approach. In the following, we present the mail equation for a GP; 
for more details, refer to the works of Rasmussen and Williams (2006). 

A GP is a collection of random variables for which any finite set has a joint Gaussian 
distribution. A Gaussian Process is completely specified by its mean function m(x) and covariance 
function ),( xxk   

)),(),((~)( xxxx kmGPf                         (4) 

The goal of Bayesian forecasting is to compute the distribution p(y*|x*, D) of output y* given a  
test input x* and a training dataset  miys

i
s
i ,1|),(  xD . The posterior distribution for the  

Gaussian Process outputs y* can be obtained by using a Bayesian rule. Through conditioning the 
observed targets in the training dataset, the predictive distribution is thus Gaussian 

))(ˆ),(ˆ(~ **** xxyX,,x yNy                          (5) 

where the mean and variance are given by 

 yIKkx 2
n
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2 )(),()(ˆ kIKkxxx                         (7) 

where compact forms of the notation setting for the matrix of the covariance functions are:  
k*=K(X, x*), K=K(X, X); 2

n  is the unknown variance of the Gaussian noise.   
Assuming that   yIKα

12 
 n , Eq. (6) can be used to display a linear combination of m  

covariance functions, each one centered on a training point, by writing  

 *
1

* ,)(ˆ xxkαx j

m

j

y 


                               (8) 

We initially train the GP model by learning the training datasets D. We then make predictions 
of the performance function on the design point x* and obtain the predictions ŷ(x*) according Eq. 
(8). Recall that the training outputs were scaled; we must therefore adjust the predictions of the 
performance function to approximate the limit state function g(x*) 

yj

m

j
jyyyg   



),()(ˆ)()( *

1

*** xxkαxxx                 (9) 

There are numerous choices for prior covariance functions. From a modeling point of view, the 
objective is to specify prior covariances that contain our prior beliefs about the structure of the 
function that we are modeling. A Gaussian Process procedure can handle varied models by simply 
using the following general covariance functions: 

(1) Squared exponential covariance function 
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(2) Linear covariance function 
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(3) Matérn covariance function 
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where l is the characteristic length-scale, 2
f  is the signal variance, and δpq is a Kronecker delta.  

It is noted that the squared exponential covariance function and the linear covariance are both 
covariance functions within an Automatic Relevance Determination (ARD) (Rasmusen et al. 2006) 
distance measure. The component of l in different dimensions is not same; thus, the 
hyperparameters of the squared exponential covariance function are θ=(l1, l2, …, ln, σf, σn) and the 
hyperparameters of the linear covariance function are θ=(l1, l2, …, ln, σn). The Matérn covariance 
function is a covariance function that utilizes an isotropic distance measure; the component of l in 
different dimensions is the same, and the hyperparameters of the Matérn covariance function are 
θ=(l, σf, σn).  

The hyperparameters θ can be optimized, based on the following log-likelihood framework 
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The log-likelihood and its derivative with respect to θ can be expressed as 
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where IKC 2
nσ . 

The hyperparameters θ are initialized to random values in a reasonable range and then use an 
iterative method such as a conjugate gradient to search for the optimal values. We found that this 
approach can be susceptible to local minima. To overcome this drawback, we randomly selected a 
number of starting positions within a hyperparameter space. 
 

2.3.2 Evaluation of the GP performance 
Once the GP model is trained, the relationship between the limit state function and the various 

design variables can be readily retrieved by using the model. The next step involves validating and 
evaluating the trained model, which can be achieved by using common error metrics such as 
maximum absolute error (MAE) or root-mean-squared error (RMSE) methods. These two error 
functions can be expressed as 

mity ii ,,1maxMAE                           (15) 
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m
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2)(
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where t is the value of true limit state function. 
 

2.3.3 Explicit formation of reliability index using trained GP 
A limit state surface is given as  

  0 XgZ                                (17) 

where X represents the random variables with μX mean and σX standard deviations. This assumes 
there is an initial design point x*=(x*

1, x
*
2,…,x*

n)
T of the limit state surface. While g(X) is generally 

a nonlinear function, it can be linearized at x* by neglecting second order terms 
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We can then compute the mean 
iX  and standard deviation 

iX  at the point x* of the  
equivalent normal distribution for those variables that are non-normal by using the Rackwitz and 
Fiessler method (1976).  
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where Ф-1 is the inverse cumulative distribution function (CDF) of the standard normal variable,  
)( *

iX xF
i

 is the CDF of the original non-normal variables, φ and )( *
iX xf

i
 are the probability density  

functions (PDFs) of the equivalent standard normal and the original non-normal random variable, 
respectively. 

Assuming that X is statistically uncorrelated, the reliability index is given as 
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According to the FORM method, a tangent hyperplane is fitted to the limit state surface at its 
“most probable failure point”, i.e., the design point. Accordingly, the reliability index β can be 
defined by the minimum distance from the origin to the design point; the coordinate of design 
point x * is denoted as 

nix
iii xxxi ,,2,1,cos*                         (22) 

where 
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In the reliability analysis of complex structures, the limit state function is usually implicit and 
must be evaluated by a numerical method such as FEM, which is a time-consuming computational 
process. This creates difficulties during the calculation of the partial derivatives of the 
performance function in reliability analyses that use FORM. The GP model with the performance 
functions in explicit form is used in this paper to approximate the original complex and/or implicit 
limit state function. The partial derivatives of the performance functions can thus be easily 
obtained. 

According to Eq. (9), the first-order partial derivatives of the approximate function can be 
calculated as follows 
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When we substitute Eqs. (9) and (24) into Eq. (21), the reliability index β is given as a GP 
formulation 
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When we substitute Eqs. (9) and (24) into Eq. (23), Eq. (23) can then be rewritten as 
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In addition, if we substitute Eqs. (25) and (26) into Eq. (22), we can obtain the coordinates of 
design point x * by using a GP approximation. 
 

2.4 Procedure of the proposed method 
 
The GP-based RSM differentiates itself from the classic RSM by employing the GP to 

simultaneously approximate the performance function and its first-order partial derivatives. 
The procedure of the proposed method is as follows: 
Step 1 Assume initial values of the design point x*=(x1,x2,…,xn). We typically select the mean 

value of the random variables as the coordinates of design point x*.  
Step 2 Build training datasets and scale the datasets.  
Step 3 Train the GP model through the training datasets and self-adaptively obtain the optimum 

hyperparameters. The default of the covariance function in this paper is the squared 
exponential covariance function. 

Step 4 Extract the explicit formulation of the approximate performance function through use of 
the well-trained GP model. 

Step 5 Compute the reliability index β(k)of the kth iteration step by using Eq. (25). 
Step 6 Compute the values of the new design point according to Eq. (22). 
Step 7 Check the convergence criterion for |β(k)-β(k-1)|≤ε(ε=0.001 in this paper).  

(1) If convergence criteria are not satisfied, then Go to Step 3 and repeat Steps 3-6 until 
convergence are satisfied. To constantly improve the reconstructing precision at the 
region that significantly contributes to the failure probability, the new design point and 
its value of actual performance function, taken as a new training sample, is added into 
the training datasets.  
(2) If convergence criteria are satisfied, then Go to Step 8.  

Step 8 Calculate the probability of failure pf=Ф(−β). 
A MATLAB-based program was developed to apply the aforementioned methods into a 

structural reliability analysis.  
 
 
3. Numerical examples 
 

3.1 Example 1: a hypothetical nonlinear performance function 
 

This example comes from Kim and Na (1997), in which the limit state is defined as 

     0.547.0exp262.0exp 21  x.xXg                     (27) 

where X is assumed to be independent and has a standard normal distribution with a zero mean and 
a unit standard deviation. 

The training set consisting of 5 points was generated according to the method mentioned above, 
where f=2. The calculated values of the performance function are listed in Table 1. The optimum 
hyperparameters of the trained GP were θ=(2.4282, 1.4534, 7.0508，-6.8937). 

The predicted performance values of the trained GP are also listed in Table 1. The small 
prediction error of MAE=0.0002 from the GP indicates that the training was successful. If a vector 
from the basic random variables is input, the GP can generate an adequately accurate value of the 
corresponding performance function. Therefore, the GP can be employed to represent the true  
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Table 1 Initial training datasets and the predicted outputs from GP for Example 1 

No. x1 x2 y ŷ |y−ŷ| 

1 -2 0 181.8864 181.8863 0.0001 

2 0 -2 434.7747 434.7747 0.0000 

3 2 0 586.6820 586.6820 0.0000 

4 0 2 112.8141 112.8142 0.0001 

5 0 0 344.3359 344.3361 0.0002 

 
Table 2 Calculation process of the design point using FORM and proposed method for Example 1 

No. of iterations I II III IV V VI VII 

Design point 
x*

1 0.0000 -1.679 -0.887 -0.847 -0.957 -0.900 -0.920

x*
2 0.0000 1.392 2.367 2.046 2.146 2.170 2.162

First order 
derivative 

*
1x

g


  Analytical 98.550 70.436 82.537 83.201 81.384 82.314 - 

Predictive 121.544 36.851 47.452 82.713 79.503 82.335 - 

*
2x

g


  Analytical -69.754 -134.178 -212.167 -182.429 -191.289 -193.386 - 

Predictive -100.744 -98.369 -114.665 -185.530 -191.624 -193.412 - 

Reliability index β 2.181 2.527 2.214 2.350 2.349 2.349 2.349

 
 

performance function.  
The GP approximation of the performance function on the points of training set is defined as 

0987.332),()(
5

1
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j

jiii xxkxg                         (28) 

where the values of α and covariance function K of the trained GP model are as follows:  
α=[0, -0.0023,0.0117, -0.0103, 0.0004] 
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Table 2 shows the values of the design points and their first order derivatives, as well as the 
reliability indices of all iteration steps using the proposed method. It clearly illustrates that the 
errors of the predictive values of the first order derivatives of the performance function become 
ever smaller with the increase of iteration steps. 

The failure probabilities and the reliability indices obtained through the various methods are 
summarized in Table 3. An exact reliability index is obtained by using a direct MCS at 2.9024. It 
can be seen that the reliability index from RSM (f=2) and the GP-based RSM are very similar to 
the results from FORM and RSM (Herbert and Armando 2004). The present method, using GP 
based-RSM, required 7 function evaluations (Fig. 2), while the RSM required 25 function 
evaluations. Moreover, as seen in Fig. 2, the GP approximation based on the final training datasets  
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Table 3 Results of Example 1 using different methods 

Method Probability of failure (×10-3) Reliability index Function calls 

FORM 9.4036 2.3493 - 

RSM (Herbert and Armando 2004) 9.41 2.349 - 

RSM (f=2) 9.3980 2.3496 25 

GP-based RSM 9.4037 2.3493 10 
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Fig. 2 An approximate limit state function from GP based on (a) initial training datasets and (b) final 
training datasets; (c) enlarged figure (b) in the range of -1≤x1≤-0.8 
 
 

provided better performance on the approximation of the limit state function than that based on the 
initial training datasets. This indicates that the dynamic updating scheme of the training datasets 
played a significant role in improving the accuracy of the GP approximation. 

 
3.2 Example 2: a highly non-linear performance function 
 
This example analyzes the reliability of a cantilever beam with a rectangular cross section, 

distributed uniform load and linear elastic behavior (Gayton et al. 2003). The limit state function is 
designated as the maximum vertical displacement at the free end of the beam. The displacement 
must not exceed the serviceability limit of L/325, where L is the length of the beam. The length L  
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Table 4 Statistical data for Example 2 

Variables Mean value Standard deviation Unit Distribution 

x1 1000.0 200.0 MPa Normal 

x2 250 37.5 mm Normal 

 
Table 5 Initial training datasets and the predicted outputs from GP for Example 2 

No. x1 x2 y ŷ |y−ŷ| 

1 1400 250 11.7622 11.7622 0.0000 

2 1000 325 16.2835 16.2835 0.0000 

3 600 250 15.5904 15.5905 0.0001 
4 1000 175 4.5104 4.5102 0.0002 

5 1000 250 13.6763 13.6764 0.0001 

 
 

and the Young’s modulus E of the beam are assumed to be deterministic variables with values of 
L=600 mm and E=2.6×104 MPa. The limit state function is explicitly provided as 

3
2

176923.7401846154.0)(
x

x
Xg                          (29) 

where x1 is the load w (MPa) and x2 is the height h (mm). These two variables have statistical 
characteristics as shown in Table 4 and are taken as non-correlated variables with a Gaussian 
probability distribution. 

The training samples consisted of 5 points, and their calculated values of the performance 
function and the predicted values of the trained GP are listed in Table 5. The small prediction error 
from the GP indicates that the training was successful. The optimal hyperparameters of the trained 
GP were θ=(3.49, -2.46, 5.43, 4.49, -13.21). The formulation of the GP approximation of the 
performance function based on the training datasets can be written as  

3646.21),()(
5

1

 
j

jiii xxkxg                        (30) 

where the covariance function ),( ji xxk is the column of the matrix K; the values of vector α and 

matrix K, based on the initial training datasets, are as follows: 
α=[-0.2533, 0.0969, 1.3305, -0.1941, -1.0284] 

























40.4610

040.4610sym

39.8427040.4610

00040.4610

39.8427039.8427040.4610

K  

All of the results from the different methods are summarized in Table 6. The probability of 
failure, the reliability index and number of actual performance function evaluations are compared. 
These results concur with those provided by RYFES/COMREL (Gayton et al. 2003), FORM and  
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Table 6 Results of Example 2 using different methods 

Method Reliability index β Probability of failure Pf (×10-3) Function calls
RYFES/COMREL 

(Gayton et al. 2003) 
2.331 - - 

FORM 2.3309 9.879 9 
RSM (f=2) 2.3312 9.870 31 

GP-based RSM 2.3309 9.879 17 
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Fig. 3 An approximate limit state function from GP and RSM based on initial training datasets 
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Fig. 4 A portal frame for reliability analysis 
 
 

RSM (f=2). However, fewer function evaluations are required by the GP-based RSM than the 
RSM (f=2). Moreover, as shown in Fig. 3, the GP-based RSM can capture the entire shape of the 
performance function, while the RSM (f=2) can only adequately approximate the performance 
function around the design points, which indicates that the GP-based RSM is more suitable for 
highly non-linear problems than the RSM. 

 
3.3 Example 3: a portal frame 
 
The performance function for the portal frame shown in Fig. 4 can be defined as follows 
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Table 7 Statistical data for Example 3 

Variables Mean value Unit Standard deviation Type of Distribution Coefficient αi 

A1 0.36 m2 0.036 lognormal 0.0833 

A2 0.18 m2 0.018 lognormal 0.1667 

P 20 kN 5.0 Type 1 largest - 

 
Table 8 Initial training datasets and the predicted outputs from GP for Example 3 

No. A1 A2 P y ŷ |y−ŷ| 

1 0.288 0.180 20.000 0.0041 0.0041 0.0000 

2 0.360 0.144 20.000 0.0050 0.0050 0.0000 

3 0.360 0.180 10.000 0.0078 0.0078 0.0000 

4 0.432 0.180 20.000 0.0066 0.0066 0.0000 

5 0.360 0.216 20.000 0.0061 0.0062 0.0001 

6 0.360 0.180 30.000 0.0035 0.0035 0.0000 

7 0.360 0.180 20.000 0.0057 0.0056 0.0001 

 
Table 9 Results of Example 3 using different methods  

Method Reliability index β Probability of failure Pf (×10-3) Number of FEM analysis

ISM (Zhao 1996) 2.8307 2.322 2000 

RSM (Zhao 1996) 2.8405 2.250 41 
ANN-based RSM 
(Deng et al. 2005) 

- 2.3 33 

GP-based RSM 2.8317 2.3152 14 

 
 

  )(001.0 3 Xug x                             (31) 

where u3(X) denotes the horizontal displacement (in meters) at node 3 as a function of basic 
random variables.  

The three basic random variables include the column cross-section area A1, the beam cross-
section area A2 and the wind load P. The statistical parameters of these basic random variables are 
listed in Table 7. All of the variables are assumed to be uncorrelated. The Young’s modulus of the 
members is assumed to be deterministic and is equal to 2.0 ×106 kN/ m2. The moments of inertia  
for the beam and the columns are related to the cross-section areas as 2

iii AI  (i=1 or 2), where Ii  
are the moments of inertia and γi are the coefficients for the column (i = 1) and the beam (i = 2). 

The performance function of this problem is implicit. The response variable u3 is dependent on 
both the random variables and the deterministic variables; it can be evaluated through an FEM. 
The training datasets are composed of 7 samples, as listed in Table 8. The values of the 
performance function from the FEM and the GP are also shown in Table 8. It is evident that the 
GP can be employed to represent the actual performance function through an FEM analysis. 

The results shown in Table 9 indicate that a GP-based RSM can achieve better results as 
compared to an RSM when an exact solution is obtained by using an ISM with 2,000 simulations 
(Zhao 1996). A significantly lower number of FEM analyses were required from the GP-based  
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Table 10 Statistical data for Example 4 

Variables Mean value Standard deviation Type of Distribution Coefficient αi

A1 0.25 m2 0.025 lognormal 0.0833 
A2 0.16 m2 0.016 lognormal 0.0833 

A3 0.36 m2 0.036 lognormal 0.0833 

A4 0.20 m2 0.020 lognormal 0.2667 

A5 0.15 m2 0.015 lognormal 0.2 

P 30.0 kN 7.5 Type 1 largest  

 
 

ISM when compared with the RSM and ANN-RSM (Deng et al. 2005). This indicates that the 
proposed method is significantly more economical than either an RSM or an ANN-RSM in 
achieving reasonable accuracy.  

 
3.4 Example 4: a three-bay of twelve-story frame 
 
The performance function for the portal frame structure shown in Fig. 5 may be defined as 

follows 

         XuX A0.096g                              (32) 

where uA(X ) denotes the horizontal displacement (in meters) at node A as the function of basic 
random variables. In this equation, g(X)<0 indicates failure. 

The six basic random variables include the column and beam cross-section areas A1, A2, A3, A4, 
A5 and the wind load P. The Young’s modulus of all of the members is assumed to be 
deterministic and is equal to 2.0×107 kN/m2. The statistical parameters of the basic random  
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Table 11 Initial training datasets and the predicted outputs from GP for Example 4 

No. A1 A2 A3 A4 A5 P y ŷ |y−ŷ| 

1 0.2 0.16 0.36 0.2 0.15 30 0.0215 0.0216 0.0001

2 0.25 0.128 0.36 0.2 0.15 30 0.0267 0.0267 0.0000

3 0.25 0.16 0.288 0.2 0.15 30 0.0240 0.0240 0.0000

4 0.25 0.16 0.36 0.16 0.15 30 0.0162 0.0162 0.0000

5 0.25 0.16 0.36 0.2 0.12 30 0.0253 0.0254 0.0001

6 0.25 0.16 0.36 0.2 0.15 15 0.0626 0.0626 0.0000

7 0.3 0.16 0.36 0.2 0.15 30 0.0340 0.0341 0.0001

8 0.25 0.192 0.36 0.2 0.15 30 0.0309 0.0309 0.0000

9 0.25 0.16 0.432 0.2 0.15 30 0.0324 0.0324 0.0000

10 0.25 0.16 0.36 0.24 0.15 30 0.0373 0.0373 0.0000

11 0.25 0.16 0.36 0.2 0.18 30 0.0320 0.0321 0.0001

12 0.25 0.16 0.36 0.2 0.15 45 -0.0042 -0.0042 0.0000

13 0.25 0.16 0.36 0.2 0.15 30 0.0292 0.0288 0.0004
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Fig. 6 Absolute errors of prediction of design points vs. iterative step 
 
 

variables are listed in Table 10. All of the variables are assumed to be uncorrelated. The moments 
of inertia for the beam and the columns correlate with the cross-section areas as follows: 2

iii AI  , 
where Ii are the moments of inertia and Ai are the coefficients whose values are listed in Table 10. 

The performance function of this problem does not explicitly contain any of the six basic 
random variables. The response variable uA is dependent on the random variables and the 
deterministic variables, which cannot be expressed as a closed-form function—it must be 
evaluated using an FEM. The performance function is implicit. 

The training datasets are composed of 13 samples, which are listed in Table 11. The values of 
the performance function from the FEM and the GP are also shown in Table 11. We can see that 
the GP can be employed to represent the actual performance function through the FEM analysis. 

As shown in Fig. 6, the gaps between the limit state function values of the tentative design  
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Table 12 Results of Example 4 using different methods 

Method Probability of failure Pf Number of FEM analysis 

ISM (Zhao 1996) 0.07506 2000 

RSM (Zhao 1996) 0.07309 41 

RSM ( Das and Zheng 2000) 0.05316 26 

GP-based RSM 0.07339 19 

 
Table 13 Results obtained by applying number of initial training datasets for Example 1 

f Number of initial training datasets Reliability index Probability of failure Pf (×10-3) 

1 5 2.3493 9.4036 

1, 2 9 2.3494 9.4026 

1, 2, 3 13 2.3493 9.4036 

1, 2, 3, 4 17 2.3493 9.4050 

1, 2, 3, 4, 5 21 2.3493 9.4036 

 
 

points from the GP prediction and the FEM quickly become very small with increasing iterative 
steps. This indicates that the strategy of dynamically updating training datasets in the proposed 
method is effective at improving the accuracy of the GP model approximation.  

The results for the ISM, RSM and GP-based RSM are shown in Table 12. The results indicate 
that the accuracy of the GP-based RSM is slightly better than that of the classic RSM (Zhao 1996, 
Das and Zheng 2000) when an exact solution is obtained by using an ISM with 2,000 simulations 
(Zhao1996), but the number of FEM analysis inquiries of the GP-based RSM is obviously less 
than that of the classic RSM. A lower number of FEM analysis calls indicates a higher level of 
efficiency for the proposed method as compared to the classic RSM.  
 
 
4. Sensitivity study of the proposed method 
 

The proposed GP-based RSM method is primarily based on the following parameters: (1) the 
number of initial training datasets; (2) the value of the parameter f, which defines the locations of 
the initial training datasets; and (3) the type of the covariance function. In this section, different 
values are selected for these parameters in order to determine their effects on the final results. In 
the interest of simplicity, only Example 1 in the previous section is considered. 

 
4.1 Sensitivity on the number of initial training datasets  
 
Different numbers of initial training datasets are generated by selecting different values of 

parameter f. In keeping the other parameters unchanged and by only varying the number of 
training samples for the example, the results are then compared in Table 13. The table shows that 
changing the number of initial training samples has only a minor effect on the accuracy of 
estimated values of β. This indicates that the proposed method can perform well even when the 
number of initial training samples is very small.  
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Table 14 Results obtained by applying number of initial training datasets for Example 1 

f Reliability index Probability of failure Pf (×10-3) 

0.01 2.34931 9.40360 

1 2.34932 9.40400 

2 2.34933 9.40367 

3 2.34935 9.40324 

4 2.34933 9.40365 

5 2.34934 9.40337 

10 2.34933 9.40365 

 
Table 15 Results obtained by applying different covariance functions for Example 1 

Method FORM 
GP-based RSM 

Squared Exponential Matérn (v=3/2) Linear 

Probability of failure (Pf×10-3) 9.4036 9.4037 9.4030 3.8392 

Reliability index (β) 2.3493 2.3493 2.3494 2.6659 

 
 
4.2 Sensitivity on the value of parameter f 
 
As discussed in the previous section, the locations of the initial training datasets depend on the 

value of the mean and standard deviations of random variable X and parameter f. Because 
parameter f is arbitrarily chosen, the question then arises as to how to set the value of f. In keeping 
the other parameters unchanged and by only varying the value of f in the example, the results are 
then listed in Table 14. The table shows that changing the value of initial training samples has only 
a minor effect on the accuracy of estimating the probability of failure. However, as a rule of 
thumb, we recommend that f be selected as an integer in the range of 1 to 4.  

 
4.3 Sensitivity on the type of the selected covariance function 
 
Three types of the covariance functions mentioned above are tested in Example 1; the results 

are shown in Table 15. As seen in the table, the squared exponential and Matérn covariance 
functions provide better results than the linear covariance function, and the squared exponential 
and Matérn covariance functions require fewer actual performance function calculations than the 
linear covariance function. Therefore, the squared exponential and Matérn covariance functions 
are recommended for solving reliability problems with highly nonlinear limit state functions. 
 
 
5. Conclusions 
 

A new GP-based RSM was developed for predicting the failure probability of a structure. The 
method involved the selection of training datasets for establishing a GP model through the design 
method of a classic RSM method, the approximation of the limit state function and its first-order 
partial derivative by the trained GP model and an estimation of the failure probability by using 
FORM. In the proposed method, the use of renewed continuously training datasets may improve 
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the performance of a GP model for approximating the limit state function around the design point. 
Thus, the GP dramatically reduced the number of required trained datasets and demonstrated the 
ability to approximate the limit state function and provide an accurate estimation of the probability 
of failure when connected with the FORM. Four numerical examples involving both structural and 
non-structural problems illustrated the application and effectiveness of the proposed method. The 
proposed method is particularly suitable for structural probability problems when a structural 
response evaluation entails a time-consuming finite element analysis. Compared with a 
conventional response surface method, the proposed method is significantly more economical in 
achieving reasonable accuracy for a structural probability analysis. The proposed approach, based 
on the FORM, is a kind of response surface method. The employed powerful GP response surface 
can be used to perform a better approximation to the limit state function when comparing with 
classic quadratic polynomial response surface. Thus, the proposed method is applicable to 
structural reliability analyses that involve highly non-linear implicit performance function that 
entail time-consuming finite element analyses. However, it should be noted that the proposed 
method is not intended as a replacement for the existing classic RSM, but rather as a possible 
complement for this method.  
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