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Abstract.  The dual-phase lag heat transfer model is employed to study the problem of isotropic 

generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the 

exact expressions for displacement components, force stress and temperature distribution. The variations of 

the considered variables through the horizontal distance are illustrated graphically. The results are discussed 

and depicted graphically. 
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1. Introduction 
 

Thermoelasticity theories which involve finite speed of thermal signals (second sound) have 

created much interset during the last three decades. The conventional coupled dynamic 

thermoelasticity theory (CTE) based on the mixed parabolic-hyperbolic governing equations of 

(Biot 1956, Chadwick 1960) predicts an infinite speed of propagation of thermoelastic disturbance. 

To remove the paradox of infinite speed for propagation of thermoelastic disturbance, several 

generalized thermoelasticity theories have been developed, which involve hyperbolic governing 

equations. Among these generalized theories, the extended thermoelasticity theory (ETE) proposed 

by Lord and Shulman (1967) involving one relaxation time (called single-phase-lag-model) and the 

temperature-rate-dependent theory of thermoelasticity (TRDTE) proposed by Green and Lindsay 

(1972) involving two relaxation times are two important models of generalized theory of 

thermoelasticity. Experimental studies (Kaminski 1990, Mitra et al. 1995, Tzou 1995a, b) indicate 

that the relaxation times can be of relevance in the cases involving a rapidly propagating crack tip, a 

localized moving heat source with high intensity, shock wave propagation, laser technique etc. 

Because of the experimental evidence in support of finiteness of heat propagation speed, the 

generalized thermoelasticity theories are considered to be more realistic than the conventional 

theory in dealing with practical problems involving very large heat fluxes at short intervals like 

those occurring in laser units and energy channels. For a review of the relevant literature, see 

(Chandrasekharaiah 1986, Ignaczak 1989). 

                                                   
Corresponding author, Professor, E-mail: praveen_2117@rediffmail.com 



 

 

 

 

 

 

Praveen Ailawalia and Amit Singla 

Green and Naghdi (1977, 1992, 1993) formulated three different models of thermoelasticity 

among which, in one of these models, there is no dissipation of thermoelastic energy. This model is 

referred to as the G-N model of thermoelasticity without energy dissipation (TEWOED). Problems 

concerning generalized thermoelasticity theories and G-N theory have been studied by many authors 

(Roy Choudhuri and Debnath 1983, Roy Choudhuri 1984, 1985, 1987, Dhaliwal and Rokne 1988, 

1989, RoyChoudhuri 1990, Chandrasekharaiah and Murthy 1993, Chandrasekharaiah and Srinath 

1996, RoyChoudhuri and Banerjee 2004, RoyChoudhuri and Bandyopadhyay 2005, RoyChoudhuri 

and Dutta 2005). Tzou (1995a, b), Ozisik and Tzou (1994) have developed a new model called 

dual-phase-lag model for heat transport mechanism in which Fourier’s law is replaced by an 

approximation to a modification of Fourier’s law with two different time translations for the heat  

flux and the temperature gradient. According to this model, classical Fourier’s law TKq 


  has 

been generalized as ),( ),(   tPTKTPq q


, where the temperature gradient T


 at a  

point P of the material at time t+τθ corresponds to the heat flux vector q


 at the same point at the  

time t+τq. Here K is the thermal conductivity of the material. The delay time  τθ  is interpreted as 

that caused by the microstructural interactions (small-scale heat transport mechanisms occurring in 

microscale) and is called the phase-lag-of the temperature gradient. The other delay time is τq 

interpreted as the relaxation time due to the fast transient effects of thermal inertia(small scale 

effects of heat transport in time) and is called the phase-lag of the heat flux. If τq=τ and τθ=0, Tzou 

(1995a, b) refers to the model as the single phase-lag model. The case τθ τq (≠0) corresponds to the 

dual phase-lag model of the constitutive equation connecting the heat flux vector and the 

temperature gradient. The case τq=τθ (≠0) becomes identical with the classical Fourier’s law. Further 

for materials with τq τθ, the heat flux vector is the result of a temperature gradient and for materials 

with τθ τq, the temperature gradient is the result of a heat flux vector. For a review of the relevant 

literature, see (Chandrasekharaiah (1998)). A hyperbolic thermoelastic model was developed in this 

same reference, taking into account the phase-lag of both temperature gradient and heat flux vector 

and also the second order term in τq in Taylor’s expansion of the heat flux vector and the first order 

term in τθ in Taylor’s expansion of the temperature gradient in the generalization of classical 

Fourier’s law. It may be pointed out that ETE was formulated by taking into account the thermal 

relaxation time, which is in fact the phase-lag of the heat flux vector (single-phase-lag model). 

Chakravorty and Chakravorty (1998) discussed the transient disturbances in a relaxing 

thermoelastic half space due to moving stable internal heat source. Kumar and Devi (2008) studied 

thermomechanical interactions in porous generalized thermoelastic material permeated with heat 

source. Lotfy (2010) have studied the transient disturbance in a half-space under generalized 

magneto-thermoelasticity with a stable internal heat source. Lotfy (2011) discussed the transient 

thermo-elastic disturbances in a visco-elastic semi-space due to moving internal heat source. 

Othman (2011) studied the generalized thermoelastic problem with temperature-dependent elastic 

moduli and internal heat sources. Kothari and Mukhopadhyay (2013) presented some theorems in 

the linear theory of thermoelasticity with dual-phase lags for an anisotropic medium. El-Karamany 

and Ezzat (2014) proved uniqueness and reciprocal theorems for dual-phase-lag thermoelasticity 

theory without using Laplace transforms. Banerjee (2015) studied the potential of dual phase 

microstructures of extra low carbon steel. 

In the present paper, the effect of dual phase-lag is studied on isotropic generalized thermoelastic 

medium with internal heat source. The normal mode method is used to obtain the exact expressions 

for the considered variables. The distributions of the considered variables are represented 

graphically. 
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2. Formulation of the problem and fundamental equations 
 

An isotropic homogeneous thermally conducting elastic solid, at uniform absolute temperature  

T0, in the undistributed state is considered. 

We consider a fixed rectangular cartesian coordinate system (x,y,t) having origin on the surface 

y=0 and negative y-axis pointing normally into the medium, which is thus represented by y=0.  

The field equations and constitutive relations for a homogeneous, generalized thermoelastic solid 

in the absence of incremental body forces and heat sources are given by 

ijijjiijij Tuuut   )()(div ,,


                      (1) 

)(
2

1
,, ijjiij uue                                (2) 

2

2
2 )(grad))(div(grad)(
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u
Tuu
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

                   (3) 

Then the heat conduction equation in the context of dual phase lag thermoelasticity proposed by 

Tzou in this case takes the form 
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In the above equations, ui are the components of displacement, eij is the strain tensor, tij is the 

stress tensor, λ and μ are Lame’s elastic constants, T is the absolute temperature. T0 is the reference 

temperature, ρ is the mass density, Ce is the specific heat at constant strain. αt is the coefficient of 

linear thermal expansion of the material, τq and τθ are the phase-lag of the temperature gradient and 

of the heat flux respectively, often referred to as the delay times. e is the dilatation. 

In addition, Δ=divu


 and v=(3λ+2μ)αt. 

 

 

3. Solution of the problem 
 

If we restrict our analysis parallel to xy plane and ∂/∂z≡0, the displacement components have 

the following form 

ux=u(x,y,t), vy=v(x,y,t), wz=0(5) 

From Eqs. (2) and (5), we obtain the strain components  
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To facilitate the solution, following dimensionless quantities are introduced 
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Eq. (3), with the help of Eqs. (1) and (5)-(7) may be recast into the dimensionless form after 

suppressing the primes as 
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The heat conduction equation is given by 
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Using the expression relating displacement components u(x,y,t), v(x,y,t) to the scalar potential 

functions φ(x,y,t) and ψ(x,y,t)  
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in Eqs. (8)-(10), we obtain 
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where 
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4. Normal mode analysis 
 

The solution of the considered physical variable can be decomposed in terms of normal modes 

as the following form  
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where [ ijT  ,,, ] are the magnitude of the functions, ω is the complex time constant and a is the  

wave number in x-direction and Q0 is the magnitude of stable internal heat source.  

Using (15)-(16), in Eqs. (12)-(14) we obtain 
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The solution of Eq. (20) is given by 
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In a similar way, we get  
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The solution of Eq. (19) is given by 
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and Sj(a,ω), Rj(a,ω) are some parameters depending on a and ω. 
2
jk (j=1,2) are the roots of the  

characteristic Eq. (20).  

 

 

5. Applications 
 

The boundary conditions at the interface y=0 subjected to an arbitrary normal force P1 are 

(i) t22(x,0
+
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-
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where P1 is the magnitude of mechanical force. Using Eqs. (1) and (7) on the non-dimensional 

boundary conditions and then using (21)-(23), we get the expressions of displacement, force stress 

and temperature distributions for isotropic generalized thermoelastic medium as 
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Invoking the boundary conditions (25) at the surface y=0, we obtain a system of six equations, 

and applying the inverse of matrix method, we obtain the values of six constants Sj and Rj, j=1,2,3, as 
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where Δ, Δi, i=1,2,3,...,6 are defined in appendix A. 

 

 

6. Numerical results 
 

For computational work, to illustrate the analytical procedure presented earlier, we consider 

now a numerical example. The results depict the variations of displacements, force stress and 

temperature distribution. For this purpose, sand stone is considered as the thermoelastic material 

body for which we use the physical constants as follows: 

ρ=2.30×10
3
 Kg/m

3
, α0=0.4×10

-5
/°C, λ=μ=0.8×10

10
 N/m

2
, 

K=2.512 J/m sec °C, CE=0.9629×10
3
 J/Kg °C, T0=23 °C. 

The computations are carried out in the range 0≤x≤10 and on the surface y=1.0. The numerical 

values for normal displacement u2, normal force stress t22 and temperature distribution T are shown 

in Figs. 1-6 for mechanical force with ω=ω0+iζ, ω0=2.3, a=2.1 for an  

(a) Isotropic generalized thermoelastic medium with internal heat source (τq=0.1 and τθ=0.05) 

by solid line i.e., Dual phase lag (DPL) model. 

(b) Isotropic generalized thermoelastic medium with internal heat source (τq=0.1 and τθ=0) by 

dashed line i.e., Single phase lag (SPL) model. 

(c) Isotropic generalized thermoelastic medium with internal heat source (τq=τθ=0.1) by solid 

line with centered symbol (*) i.e., Classical Fourier’s law (CFL). 

(d) Isotropic generalized thermoelastic medium with internal heat source (τq=0.05 and τθ=0.1) 

by solid line i.e., Dual phase lag (DPL) model. 

(e) Isotropic generalized thermoelastic medium with internal heat source (τq=0.1 and τθ=0) by 

dashed line. i.e., Single phase lag (SPL) model. 
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Fig. 1 Variation of normal displacement u2 with distance x for τq>τθ 

 

 

Fig. 2 Variation of normal force stress t22 with distance x for τq>τθ 

 

 

(f) Isotropic generalized thermoelastic medium with internal heat source (τq=τθ=0.1) by solid 

line with centered symbol (*) i.e., Classical Fourier’s law (CFL). 

 

 

7. Discussions  
 
7.1 Effect of phase lag of heat flux (τq) and temperature gradient (τθ) when τq>τθ 
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Figs. 1 to 3 shows the effect of the phase-lag of the heat flux τq and Temperature gradient for 

τq>τθ 

Fig. 1 depicts the variations of normal displacement u2 with distance x. The variations of 

normal displacement for DPL model and SPL model show similar patterns with different degree of 

sharpness. i.e., the values for DPL model and SPL model increases and decreases alternately with 

distance x. Further normal displacement u2 shows small variations close to zero value in the whole 

range for CFL. 

 

 

 

Fig. 3 Variation of temperature distribution T
 
with distance x for τq>τθ 

 

 

Fig. 4 Variation of normal displacement u2 with distance x for τθ>τq 
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The variations of normal force stress t22 with distance x is depicted in Fig. 2. The pattern 

observed for DPL model and CFL are opposite in nature with fluctuating values which clearly 

reveals the effect of phase lag of the heat flux (τq) and temperature gradient (τθ). The value of 

normal force stress are very less in magnitude for SPL model. 

Fig. 3 shows the variations of temperature distribution T with distance x. The behaviour of 

variations of temperature distribution T with reference to x is same for i.e., oscillatory for DPL 

model and SPL model with difference in their magnitude. 

 

7.2 Effect of phase lag of heat flux (τq) and temper ature gradient (τθ) when τq>τθ 
 

Figs. 4 to 6 presents the effect of the phase-lag of heat flux and temperature gradient τθ for τθ>τq. 

The variations of normal displacement u2 with distance x is depicted in Fig. 4. Initially the 

value of normal displacement for DPL model decreases in the range 0≤x≤1.5 and then follow an 

oscillatory pattern with reference to x. Also, the variations of normal displacement u2 for CFL lie 

in a very short range. 

Fig. 5 depicts the variations of normal force stress t22 with distance x. The pattern observed for 

DPL model and SPL model are opposite in nature near the point of application of source. The 

values of normal force stress t22 for CFL decreases, then follow an oscillatory pattern with 

decreasing magnitude. 

The variations of temperature distribution T with distance x is depicted in Fig. 6. The pattern 

observed for SPL model and CFL are opposite in nature with fluctuating values which clearly 

reveals the effect of phase lag of heat flux and temperature gradient. The variation of temperature 

distribution T for DPL model is oscillatory to large extent. 

 

 

 

Fig. 5 Variation of normal force stress t22 with distance x for τθ>τq 
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Fig. 6 Variation of temperature distribution T
 
with distance x for τθ>τq 

 
 
8. Conclusions 
 

a. Appreciable effect of dual-phase-lag (DPL) model i.e., effect of phase-lag of heat flux (τq) 

and effect of phase-lag of temperature gradient (τθ) is observed on the components of 

displacement, force stress and temperature distribution.  

b. The variations of normal displacement are similar in nature for DPL model and SPL model 

with difference in magnitude. 

c. The variations of all the quantities is significant with phase lag modl (dual and single) with 

Classical Fourier’s law. 

d. The normal mode analysis used in this article is applicable to wide range of problems in 

different branches. This method gives exact solutions without any assumed restrictions on either 

the temperature or stress distributions.  
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Appendix A. 
 

],)([ )],()[( 2332221211112132131221 aPkklbllaiaNLaaiaNkabkabLL   

)]()()([ )],([ 21122121121311213213112 laliaballiabaaPiaLalliaNklbkPaL   

],)([ )],([ 3132121112521213223224 kPaklblaliaNLalliaNklbkPaL   

)],([)],()()([ 212132121121122121112226 aakkNiakcaiakacLaaPiaalliaballiabL   

).( )],([ 21122131212122 NPPaakkNiakcaiakcaL   
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