
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 56, No. 1 (2015) 107-121 

DOI: http://dx.doi.org/10.12989/sem.2015.56.1.107                                           107 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Sizing, shape and topology optimization of trusses 
with energy approach 

 

Xuan-Hoang Nguyena and Jaehong Lee

 

 
Department of Architectural Engineering, Sejong University, 98 Gunja Dong, Gwangjin Gu, 

Seoul 143-747, Republic of Korea 

 
(Received August 18, 2014, Revised October 2, 2015, Accepted October 5, 2015) 

 
Abstract.  The main objective of this research is to present the procedures of combining topology, shape 

& sizing optimization for truss structure by employing strain energy as objective function under the 

constraints of volume fractions which yield more general solution than that of total weight approach. 

Genetic Algorithm (GA) is used as searching engine for the convergence solution. A number of algorithms 

from previous research are used for evaluating the feasibility and stability of candidate to accelerate 

convergence and reduce the computational effort. It is followed by solving problem for topology & shape 

optimization and topology, shape & sizing optimization of truss structure to illustrate the feasibility of 

applying the objective function of strain energy throughout optimization stages. 
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1. Introduction 
 

In recent decades, the field of structural optimization has received much attention from 

researchers. It is considered as an inverse procedure of mechanical law (Maute et al. 1999). 

Structural optimization is mainly categorized into sizing, shape and topology optimization. While 

sizing and shape optimization is to choose the most appropriate cross-sectional area and nodal 

locations yielding the optimal structure in term of minimizing the objective function, topology 

optimization relates eliminating of the unnecessary member from the ground structure without 

concerning element's cross-section area and node coordination. For truss structure optimization 

problem, it can be a pure topology optimization (Kawamura et al. 2002, Richardson et al. 2012, 

Hajela and Lee 1995, Ohsaki 1995, Ruiyi et al. 2009) or sizing and shape optimization (Wei et al. 

2005) or even sizing, shape and topology simultaneously (Rajan 1995, Deb and Gulati 2001). 

Most of the researchers, however, have just employed total weight as objective function and stress, 

displacement, buckling or frequency of structure as constraints for the problem of truss 

optimization (Rajeev and Krishnamoorthy 1992, Hajela and Lee 1995, Jenkins 1991, Lin and 

Hajela 1992, Wang et al. 2004). In practical concept design procedure at which some constraints of 

stress, displacement or buckling have not indicated, the designers usually expect a number of 
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candidate designs based on initial requirements of boundary conditions (constrained node and 

external loads). The total weight optimization approach may not work well for this case since it 

always yields a unique solution. 

In this study, the truss optimization problem will be defined by employing strain energy and 

volume fraction of the truss structure as objective function and constraint, respectively (Sigmund 

2001). This approach yields more general solutions which are different with respect to each range 

of given volume fraction. As consequence, the designer can choose one solution among them with 

desired volume fraction as the concept design. In the procedure of optimizing truss system, the 

evaluation of candidate for feasibility and stability in GA process is al so applied. Follow that, 

unless the candidate is evaluated to be feasible and stable, it would be assigned a very low amount 

of GA's fitness function without proceeding with analyser. This will reduce the computational cost. 

GA was developed by John Holland and his co-workers from 1960s (Holland 1995). This 

algorithm which was a search heuristic that mimicked the process of natural selection and 

chromosomal processing in nature genetics was inspired by Charles Darwin’s Theory of Evolution. 

GA generates the initial population whose each individual represents a candidate solution which, 

in this current study, corresponds a possible truss structure, and its chromosome consists of the 

information of topology, node coordinate and cross-sectional area. The fitness rating which reflects 

the objective function is used to evaluate the quality of individual. It determines the candidate 

design to be eliminated or selected as the parents for the next generation. From the chosen ones, 

the new set of population will be created using gene crossover and gene mutation operators. This 

process is repeated for many iterations in order to obtain the convergence optimal solution. For its 

advantages, GA has become a widely used tool and proved the effectiveness especially for discrete 

optimization problem such as truss optimization (Rajan 1995, Kawamura et al. 2002, Wei et al. 

2005). 

The outline of this study as follow: The evaluation of candidate topology is described in 

Section 2. It is followed by presenting the procedure of optimization of trusses in Section 3. Some 

numerical examples of the stages of pure topology & shape optimization and topology, shape & 

sizing optimization are conducted in Section 4. Finally, Section 5 shows the conclusions of this 

study. 

 

 

2. Evaluation of candidate topology 
 

This section presents an effective procedure which completely checks the feasibility and 

stability of a candidate topology before proceeding with analyzer. The proposed procedure is 

based on the assumption that all essential (geometry) and natural (force) boundary conditions 

would be fixed which means they must be existed in all qualified candidate. The truss shown in 

Fig. 1 is considered as ground structure to all demonstrations in this section. 

 

2.1 Necessary conditions 
 

A set of three necessary conditions which is used to assess the candidate topology will be 

presented in this subsection.  

Once one of necessary condition is not satisfied, the candidate topology will be indicated as 

unfeasible or unstable system. If it is the case, this kind of structure will not be analyzed and 

immediately assigned a very low amount of fitness function when GA is used. The major  
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Fig. 1 Ground structure system 

 

 

Fig. 2 Unfeasible topology due to necessary condition 1 

 

 

Fig. 3 Unfeasible topology due to necessary condition 2 

 

 

advantages of these necessary conditions are to early point out an unfeasible or unstable candidate 

topology. This candidate will not be evaluated by sufficient conditions which take more to assess. 

As consequence, it saves time and computing effort and faster convergent solutions would be 

obtained. 

If all three necessary conditions are satisfied, the sufficient condition will be employed to 

verify the feasibility and stability of the candidate topology. 

 

2.1.1 The presence of load-applied node (necessary condition 1) 
In this condition, the nodes at which external loads apply are checked for the presence. The 

candidate topology will be indicated as unfeasible system if one of load-applied node does not 

exist (Deb and Gulati 2001). 

Although it assemblies a stable truss, the topology shown in Fig. 2, follow the necessary 

condition 1, is unfeasible because of the absence of the load-applied node number 2. 

 
2.1.2 The number of elements connected to a node (necessary condition 2) 
By employing this condition, all given nodes are checked by counting the number of elements 
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connected to. The candidate topology will be indicated as unstable system if there are less than 

two elements, for plane truss structure, or less than three elements, for spatial truss structure, 

connected to specific unconstrained node. 

The topology shown in Fig. 3 is unstable, due to the necessary condition 2, since there is just 

one element connected to unconstrained node number 1. 

 
2.1.3 The relation between connectivity and constraints (necessary condition 3) 
Being a stable structure, all degree of freedom of the system would be treated by the elements 

and constraints (Deb and Gulati 2001, Ghosh and Mallik 1998). Consequently, it can be drawn 

another necessary condition to check the stability of the candidate topology which is 

 𝑠 − 𝑚 = 𝑏 + 𝑐 − 𝑑𝑛 ≥ 0 (1) 

Where 𝑏 is the number of elements, 𝑐 represents the number of constraints, 𝑑𝑛 refer to the 

number of degree of freedoms of the system which is the product of the number of degrees of 

freedom of each node and the total number of nodes, 𝑠 is the degree of statically indeterminacy, 

𝑚 is the degree of kinematically indeterminacy. 

The candidate topology will be indicated as unstable if its parameters violate the Eq. (1). 

Consider the system shown in Fig. 4, by employing the Eq. (1) with the set of parameter of 𝑏=6, 

𝑐= 4 and 𝑑𝑛=2×6=12, it is readily got the result of -2 which is smaller than 0. Therefore, the 

candidate topology is unstable due to the necessary condition 3. 

Although the three necessary conditions covers almost all unfeasible or unstable case of the 

candidate topology, there still has some topology is truly unstable in spite of satisfying all three 

necessary conditions which can be seen in the Fig. 5. Since all the nodes at which external loads 

apply are available, it satisfies the necessary condition 1. It also does not violate the necessary 

condition 2 because all unconstrained nodes are connected by at least two separate elements and 

all constrained nodes are connected by at least one element. It can be seen to be satisfied the third  

 
 

 

Fig. 4 Unfeasible topology due to necessary condition 3 

 

 
Fig. 5 Unstable topology in spite of satisfying all three necessary conditions 
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necessary condition since the candidate topology contains the set of value of 𝑏=8, 𝑐=4 and 

𝑑𝑛=12 which gives the result of 0 after substituting into the left hand term of the Eq. (1). As 

consequence, this candidate satisfies all three necessary conditions. Nevertheless, as can be seen, 

the candidate topology shown in Fig. 5 is not a stable truss. 

For completely checking the feasibility and stability of the candidate topology when using GA, 

a sufficient condition which is based on Force Method needs to be developed. 

 
2.2 Sufficient condition 
 

By investigating equilibrium matrix of structural assembly, some problem of static, kinematic 

which can be indicate the kinematic stability status of candidate truss topology would be solve 

(Pellegrino 1993). This advantage of the equilibrium matrix's property is employed as a sufficient 

condition for the procedure of candidate evaluation. 

In the force method, the equilibrium equations (Tran and Lee 2010) of the nodes in each 

direction of a general pin-jointed structure which includes truss structure can be stated as 

 𝑨𝒇 = 𝒑 (2) 

Where 𝒑 is the vector of external loads applied at the free nodes, and 𝑨 is known as the 

equilibrium direction-cosine matrix that transforms the vector of member forces 𝒇 of the system 

to the vector of external loads 𝒑 of the free nodes, defined by 

 𝑨 = (

𝑪𝑇𝑳𝑥

𝑪𝑇𝑳𝑦

𝑪𝑇𝑳𝑧

)𝑳−1 (3) 

Where 𝑪 is connectivity matrix which describes the connectivity of the members to the nodes; 

𝑳𝑥, 𝑳𝑦, 𝑳𝑧, 𝑳 are the diagonal square matrices of coordinate difference vector in x-, y-, z- 

directions and the member length vector, respectively (Tran and Lee 2010). 

The degree of kinematic indeterminacy 𝑚, can be calculated by employing the left hand side 

term of the Eq. (1) where 𝑠 = 𝑏 −   𝑛  𝑨  and   𝑛  𝑨  is mathematical rank of 𝑨 matrix. 

The structures whose degree of kinematic indeterminacy 𝑚 is equal to 0 are kinematically 

determinate (Pellegrino 1993). Consequently, this condition of 𝑚 could be sufficient condition 

for a candidate topology to be a stable truss. 

 

 

3. Trusses optimization procedure 
 

3.1 Terminology definition and expression 
 

For the ease of understanding some terminologies which are used in the next section, this   

section will explain it in detail before going ahead with the problem formulation section. Some 

important terminologies can be expressed as follow 

   presents topology optimization variable which indicates the presence (value of 1) or 

absence (value of 0) of element from the ground structure; 𝑐  and   refer to shape and sizing 

optimization variable which indicate the coordinate of nodes and cross-sectional area of elements, 

respectively. 
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   is the material volume of ground structure with original input value of node coordinate and 

cross-sectional area;  𝑥
𝑇   , 𝑥

𝑇    𝑐  and  𝑥
𝑇     𝑐    present the material volume of truss 

candidate for updated pure topology, updated topology & shape and updated topology, shape & 

sizing, respectively;   
𝑇   ,   

𝑇    𝑐  and   
𝑇     𝑐    are the volume fraction of truss 

candidate for updated pure topology, updated topology & shape and topology, updated shape & 

sizing structure, respectively. 

  is upper bound volume fraction which is assigned by user receiving the value from 0 to 1. 

Some expressions can be drawn as follow 

   
𝑇   =

 𝑥
𝑇   

  
 (4) 

   
𝑇    𝑐 =

 𝑥
𝑇    𝑐 

  
 (5) 

   
𝑇     𝑐   =

 𝑥
𝑇     𝑐   

  
 (6) 

 

3.2 Problem formulation 
 

By employing the objective function of strain energy, the formulation for pure topology, 

topology & shape and topology, shape & sizing optimization of truss can be posed as follow 

Minimize 

 𝒰 =
1

2
𝐔T𝐊𝐔 (7) 

Subjected to 

   
𝑇   ≤   (8) 

or 

 Vf
TS   c ≤ Vf

T   ≤ f (9) 

or 

 Vf
TSS   c A ≤ Vf

T   ≤ f (10) 

Where  𝒰 refers to the strain energy of the system, 𝐔 presents the global displacement 

vector, 𝐊 is global stiffness matrix; the constrained Equations (8), (9) and (10) are used for pure 

topology, topology & shape and topology, shape & sizing truss optimization problem, 

respectively. 

By using the strain energy and volume fractions as objective function and constraints, we have 

accepted an assumption that the yield stress of the elements and the constraint of displacement of 

nodes are large enough for the availability of the truss structure under the external loads. 

To be applied in GA process, the above constrained problem formulation should be transferred 

to unconstrained problem which can be expressed as 

Minimize 
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 𝐿1   𝑐 𝛾 = 𝒰 + 𝛾1   
𝑇 −   2 (11) 

 𝐿2   𝑐 𝛾 = 𝒰 + 𝛾2[   
𝑇 −   2 +    

𝑇 −   
𝑇 2] (12) 

 L3   c A γ = 𝒰 + γ3[ Vf
T − f 2 +  Vf

TSS − Vf
T 2] (13) 

Where γ1 𝛾2 𝛾3  is penalty parameters for optimization problems and 𝐿  refers to the 

combination of objective function and penalty function; Eqs. (11), (12) and (13) are used for pure 

topology, topology & shape and topology, shape & sizing truss optimization problem, 

respectively. 

In case of unfeasible or unstable candidate topology which had been assessed by candidate 

evaluation procedure, their fitness would be automatically assigned a very low value of fitness 

function without running the analyzer or computing the objective functions as well as concerning 

the penalty function. Otherwise, it is proceed with analyzing and assessing process. This process 

will significantly reduce the computational cost. The flowchart of main procedures in a generation 

is shown in Fig. 6. 

 

 

4. Numerical examples & discussion 
 

In this section, three different runs for 6-node truss with 13-bar ground structure optimization 

problem which shown in Fig. 7 will be executed. In the first run, the problem of pure topology 

 

 

 

Fig. 6 The flowchart of main procedures in a generation 
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Fig. 7 13-bar truss ground structure 

 
Table 1 Input data for 6-node truss topology optimization problem 

Item Value 

Constant cross-sectional area 7419.34 mm
2
 (11.5 in

2
) 

Young’s modulus 68947.59 N/mm
2
 (10

7
 psi) 

External load P 444822.162 N (10
5
 pound) 

 

 

optimization will be presented. After that, the problem of topology & shape optimization will be 

investigated. At last, we will consider the topology, shape & sizing optimization simultaneously. It 

is followed by a big picture showing the effectiveness of the presented problem definition and 

algorithms throughout three stages of truss optimization which are pure topology, topology & 

shape and topology, shape & sizing optimization. 

 

4.1 Topology optimization 
 

In this stage, the pure topology optimization of truss will be considered. The formulation of the 

problem is presented in the Eqs. (7), (8) and (11). The result plot shown in the Fig. 8 indicated that 

for different ranges of the upper bound volume fraction  , which is from 0 to 1, there had different 

solutions with chromosome string attached or even no solution. For the range of   which is 

smaller than 0.32, there was no solution due to the lack of feasible and stable candidate topology 

whose volume fraction Vf satisfied the constraint of  . It also could be seen, the unique solution 

which was connected to black dot (•) could be found in the ranges of   of [0.55,0.61], 

[0.61,0.66], [0.66,0.72], [0.72,0.77], [0.77,0.80] and [0.80,0.85]. There were two solutions with the 

same strain energy and volume fraction in the range of   of [0.39,0.42]. In the ranges of   of 

[0.32,0.39], [0.42,0.55], [0.85,0.94] and [0.94,1.00], there were various topology solutions which 

connected to black dot (•) and white triangle (Δ). 

The reason for this phenomena of getting some different solutions with the same strain energy 

𝒰 within a range of   was those topology solutions connected to white triangle (Δ) contained 

some needless element which resulted in the structure with the same amount of strain energy 𝒰 

but different volume fraction Vf. In addition, those solutions got the same fitness function since 

they did not violate the constraint of upper bound of volume fraction  . As a result, one of them 

could be randomly chosen by GA as optimal topology solution. To avoid the various solution 

phenomena in some range of  , an additional condition of volume fraction Vf were employed. For  
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Fig. 8 Solutions for pure topology optimization for 13-bar truss ground structure 

 

 

those solutions whose strain energy are identical but volume fractions are different, it would be 

resulted in a unique solution with the minimum volume fraction Vf. The solution for the range of 

[0.42,0.55] was similar to unique solution of many previous research (Rajan 1995, Richard et al. 

2012, Rajeev and Krishnamoorthy 1992) which employed weight as objective function with 

suitable constraint of stress or/and displacement. 

Observing the trends plotted in Fig. 8, in the first two solution-available ranges of   and from 

third to the last range, the strain energy of solution fell gradually while the volume fraction rose 

steadily. However, in the range of   from 0.39 to 0.55, there was a plummeted decrease in strain 

energy of the solution, measured 33%, while volume fraction just went up slightly 6%. This was a 

sign of getting the solution which was identical to the one obtained by most of previous research. 

As can be seen, with the input data in Table 2, the graph in Fig. 9 shown result of some GA’s 

result parameters, it was recognized the effectiveness of the candidate evaluation procedure in 

term of the convergence and the number of generated feasible and stable candidate topology over 

the generations in GA. On one hand, the convergence criteria of the solution, represented by the 

best fitness function series, is quite fast, GA obtained the optimal solution just for some first 

generation. On the other hand, the number of feasible and stable candidate topology was raised 
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Table 2 GA parameters for pure topology optimization problem 

Parameter Value 

Upper bound Volume fraction   0.55 

Population size 100 

Max. generation 50 

Penalty Parameter 𝛾 10
10 

Crossover Rate 0.5 

Mutation Rate 0.01 

 

 

Fig. 9 GA convergence history of pure topology optimization problem 

 

 

sharply over iterations which reached 80% of the total candidate within 7 generations and hit 90% 

after 20 generations. This shown the effectiveness of assigning a quite small value of fitness 

function for the candidate topology which was unfeasible or unstable, consequently, those 

topology have a little opportunity to be selected by GA for crossover to produce new individual for 

the next the generation. The average fitness series have got similar trend compared to that of the 

number of feasible and stable candidate series. Besides, the series of worst fitness was always 0 

due to the presence of unfeasible or unstable candidate topology generated by GA in a generation. 

 
4.2 Topology & shape optimization 
 

In this stage, the topology and shape optimization of truss will be performed simultaneously. 

All elements are considered as Boolean topology variables. The coordinate in y-direction of node  
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Fig. 10 Solutions for topology & shape optimization for 13-bar truss ground structure 

 

 

1, 3 and 5 is allowed to vary from -4572 mm (-180 in.) to 16256 mm (640 in.) interval of 254 mm 

(10 in.) with respect to original position which resulted in changing of its coordinate from 4572 

mm (180 in.) to 25400 mm (1000 in.) with a increment of 254 mm (10 in.) These come up with the 

chromosome length of 34 which are 1 for each element topology design variable and 7 for each 

node coordinate in y direction. 

As can be seen from Fig. 10, there was no solution for range of   smaller than 0.32 which was 

similarly as previous stage of pure topology optimization. For the first solution for range of   of  
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Fig. 11 Solutions for topology, shape & sizing optimization for 13-bar truss ground structure 

 

 

[0.32,0.39], GA yielded exactly same truss system as that of pure topology optimization. It was 

reasonable because by changing the coordinate in y-direction of node 3 up or down, the truss 

would be violate the constraint between volume fraction of truss for pure topology and topology & 

shape which was mentioned in the left part of Eq. (9) or resulting in higher amount of strain energy 

which was objective function, respectively. There was readily seen that the element 5 connected to 

two constrained nodes have not existed in any solution across the whole range of  . This, 

obviously, proved that the element 5 was useless from the ground structure. Observing the trend in 

the graph, for ranges of   which was greater than 0.39, due to the presence or absence of  
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Fig. 12 Solutions over stages of truss optimization with respect to strain energy 

 

 

elements and the variation of nodes coordinate, the strain energy 𝒰 which was objective function 

declined slightly while the volume fraction of updated topology & shape structure grew gradually 

and strain energy hit the bottom at the near ground structure topology whose volume fraction was 

around 0.94. 
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4.3 Topology, shape & sizing optimization 
 

In this stage, topology, shape & sizing optimization will be performed at the same time. The 

same topology and shape design variables were used for this stage as that of previous one. In 

addition, the cross-sectional area of each element was allowed to change by taking the set of 22 

discrete values which are from 645.16 mm
2
 (1.0 in

2
) to 7419.34 mm

2
 (11.5 in

2
) with the increment 

of 322.58 mm
2
 (0.5 in

2
). The sizing variables were required additional a 5-bit string for each 

element. As consequence, the total chromosome length of 99 would represent each individual 

candidate for the problem of 13-bar-ground-structure truss topology, shape & sizing optimization 

simultaneously. 

The plotting in the Fig. 11 showed the set of 12 different solutions instead of 10 as previous 

one. The same manner in term of the decreasing of strain energy over the increasing of volume 

fraction as that of topology & shape optimization is obtained. The values of strain energy which is 

objective function, however, were quite smaller since the sizing design variables had been added. 

By giving the value of upper bound volume fraction   of 0.43, GA yields the third solution in 

Fig. 3 whose volume fraction for updated topology   
𝑇 and updated topology, shape & sizing 

  
𝑇  were both around 0.423. These volume fractions were complied with the constraints 

mentioned in Eq. (10). 

After successfully obtaining solutions for the three different stages of optimization which were 

pure topology, topology & shape optimization and topology, shape & sizing optimization of truss, 

a comparison could be drawn throughout the optimization procedures. As could be seen in Fig. 12, 

four topology solutions were chosen for demonstration. The first, third and fourth one which 

connected by the solid line were appeared throughout three stages of optimization. For the 

demonstration purpose, the second solution in Fig. 12 which similar to the solution obtaining by 

using weight objective function (Rajan 1995, Kawamura et al. 2002, Richardson et al. 2012, 

Hajela and Lee 1995, Ohsaki 1995, Deb and Gulati 2001) has been presented. This solution which 

connected by the dash-dot line was not existed for all three stages of optimization procedure.  

It was seen, for the first topology solution, the same strain energy was obtained for pure 

topology optimization and topology & shape optimization procedure. However, the others fell 

gradually over stages. In general, the solutions showed the decreasing trend of strain energy over 

the stages of optimization procedure. 
 

 
5. Conclusions 
 

This paper has suggested a method of using strain energy as objective function for the problem 

of truss optimization. The full optimization stages of topology, shape and sizing have been applied 

successfully. It yields quite reasonable solutions throughout the stages. The energy approach 

results in more general solutions over the ranges of volume fraction than that of weight approach. 

Additionally, the findings prove that this approach of strain energy and volume fraction could 

also be useful for some optimization problems whose constraints of stress or/and displacement 

have not been indicated at the first steps of the design procedure, e.g. concept design. 

Besides, the candidate evaluation procedure which completely assesses the feasibility and 

stability of a candidate topology reduces the computer effort, prevents the procedure from 

singularity phenomena and significantly reduce the computational cost to reach the convergent 

solution while using GA but still preserve the searching space. 
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