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Abstract.  This paper proposes a novel reliability analysis method which computes reliability index, most 

probable point and probability of failure of uncertain systems more efficiently and accurately with compared 

to Monte Carlo, first-order reliability and response surface methods. It consists of Initial and Simulation 

steps. In Initial step, a number of space-filling designs are selected throughout the variables space, and then 

in Simulation step, performances of most of samples are estimated via interpolation using the space-filling 

designs, and only for a small number of the samples actual performance function is used for evaluation. In 

better words, doing so, we use a simple interpolation function called “reduced” function instead of the actual 

expensive-to-evaluate performance function of the system to evaluate most of samples. By using such a 

reduced function, total number of evaluations of actual performance is significantly reduced; hence, the 

method can be called Reduced Function Evaluations method. Reliabilities of six examples including series 

and parallel systems with multiple failure modes with truncated and/or non-truncated random variables are 

analyzed to demonstrate efficiency, accuracy and robustness of proposed method. In addition, a reliability-

based design optimization algorithm is proposed and an example is solved to show its good performance. 
 

Keywords:  uncertainty; reliability; failure probability; Monte-Carlo simulation; reduced function 

evaluation 

 
 
1. Introduction 
 

In the current analysis, design and optimization of structural/mechanical systems, variables are 

assumed to be deterministic, however, uncertainty exists in their values and they are in reality non-

deterministic random variables. Taking not into account these uncertainties simplifies the 

computation significantly, decreasing computational cost. On contrary to its simplicity, it may 

result in likely to fail designs. The probability of failure will be significant especially for minimum 

weight/cost designs. To take in hand both the safety and minimum cost we should take the aleatory 

or epistemic uncertainties (Kiureghian and Ditlevsen 2009) into account. This type of optimal 

design approach is called reliability-based design optimization (RBDO).  

Reliability of a system can be defined as the distance of origin of random variables standard 

space from the nearest point of failure region to the origin (called most probable point, MPP), i.e., 

as reliability index. However, it can best be defined through the probability of failure (Pf) of the 
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system. The more the Pf of the system is, the less its reliability is.  
There are two main groups of methods for estimating the Pf of a system: approximate methods 

like first- and second-order reliability (FORM/SORM) methods, and simulation methods like 
Monte-Carlo Simulation (MCS). The former estimates Pf by approximating the limit-state surface 
around MPP, while, the latter simulates the problem by evaluating the various possible cases 
(samples).  

Up to now, various reliability analysis methods have been proposed. Among these methods 
Importance Sampling (Melchers 1990) and Subset Simulation (Au and Beck 2001) have attracted 
attention of reliability analysis community. Zhang et al. (2013) proposed an interval quasi-Monte 
Carlo method using pseudo-random number generation and probability-box modeling for 
structural reliability analysis. Shi et al. (2014) used maximum entropy method in reliability 
analysis for probabilistic modeling of structural response. Zhang et al. (2014) used evidence 
theory and response surface approach for the analysis of structural reliability. Recently, Xiao et al. 
(2014a) proposed a method based on back-propagation neural network for reliability analysis of 
systems with truncated random variables. In another work, Xiao et al. (2014b) extended the 
saddlepoint approximation-based approach for the reliability analysis of structural systems with 
parameter uncertainties using probability-box models. Basaga et al. (2012) presented an improved 
response surface method (RSM) for structural reliability analysis. Their three-stage algorithm uses 
FORM, vector projected and SORM methods to approximate reliability index and probability of 
failure of systems. Moreover, Zhao et al. (2013) proposed an efficient response surface method for 
reliability analysis of structures with highly nonlinear limit-state functions based on direct MCS. 
In their method, in order to approximate the actual limit-state more accurately, experimental points 
are selected judiciously. In addition to these works, more valuable details regarding RSM can be 
found in the works of Jiang et al. (2014b), Li et al. (2013), wherein, stochastic-RSM (SRSM) with 
RSM and three collocation point methods for odd order SRSM with each other are compared, 
respectively. Furthermore, an iterative hybrid random-interval method is proposed by Fang et al. 
(2014) for reliability analysis of structures by strength degradation accounted for. Their method 
uses first-order second-moment (FOSM) approach based on stress-strength inference theory. 
Piliounis and Lagaros (2014) used meta-heuristics in combined with FORM to analyze the 
reliability of geostructures.  

On the other hand, as it was stated above, the RBDO provides a cost-safety balance with the 
design of systems. In literature there are valuable works on the RBDO. Among these works are the 
works of Jensen and Sepulveda (2014), Jensen and Kusanovic (2014) wherein the RBDO of 
controlled structures are investigated. Beaurepaire et al. (2013) proposed an efficient method for 
RBDO using importance sampling approach. The use of meta-heuristic optimization algorithms in 
the RBDO problems can be found in the works of Dimou and Komousis (2009), Yang and Hsieh 
(2011), wherein, particle swarm optimization (PSO) is used and improved for RBDO of structures. 
In more details, in Dimou and Komousis (2009) an improved binary-PSO is introduced and used 
for reliability-based shape and size optimization of truss structures on the basis of reliability index 
approach, whereas, Yang and Hsieh (2011) proposed an auto-tuning boundary-approaching PSO 
for solving RBDO problems with discrete design variables and non-smooth performance functions 
using subset simulation. Reliability-based design approaches have been successfully used in 
different fields of civil engineering; recently, Kim et al. (2014) developed reliability-based design 
limit-states of AASHTO LRFD code for the case of integral abutment bridges considering 
variability of abutment support conditions and thermal loading. Also, the application of stochastic 
finite element, RSM and SRSM methods in reliability analysis of slopes can best be found in Jiang 
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et al. (2014a), Li et al. (2011, 2015). 
In this paper, a novel simulation method is proposed for reliability analysis and RBDO of 

structural systems. The method is well suited for systems with expensive-to-evaluate performance 
functions. It consists of two main steps: Initial step and Simulation step. In the Initial step, a 
number of uniformly distributed space-filling designs are selected throughout the entire variables 
space or its important region, for systems with truncated and non-truncated random variables, 
respectively. Then, in Simulation step, performance measures of samples are computed by making 
use of an interpolation function on the basis of samples evaluated exactly in initial step. This 
interpolation function is called “reduced” performance function herein, which gives an estimation 
of performance measure without need to evaluate its exact value using actual performance 
function. After this simple estimation, we can guess that the sample under evaluation locates at 
which of regions of failure or safety. Since this estimation can not exactly determine the failure or 
safety of samples close to limit-state surface, these samples are evaluated using actual performance 
function and will be used as an exact point for interpolation in the evaluation of remainder of 
samples during simulation. In addition, for non-truncated random variables we can select an 
important region, in which most of samples will locate, and then, use actual performance function 
for the evaluation of rest of samples those locate outside this region. The proposed method can be 
called Reduced Function Evaluation (RFE) method, since in which the number of required 
evaluations of performance function is reduced using a “reduced” performance function instead of 
actual one. 

The RFE method can also be used in RBDO of systems. In this paper, we use RFE in combined 
with recently proposed optimization algorithm, namely HS-PSO, for RBDO problems. The HS-
PSO algorithm, introduced by Hadidi and Rafiee (2014), is an efficient and robust algorithm, 
which performs better than standard harmony search (HS), particle swarm optimization (PSO) and 
big bang-big crunch (BB-BC) algorithms (Rafiee et al. 2013). The proposed RBDO approach is 
not restricted to HS-PSO and other efficient algorithms like the algorithm proposed by Hadidi and 
Rafiee (2015) can be used instead, as well. Six numerical examples are used in this work to 
demonstrate the efficiency, robustness and accuracy of the proposed reliability method in 
estimating Pf. Moreover, the examples show the ability of RFE method in finding reliability index 
and MPP. 
 
 
2. Proposed reliability analysis method 
 

This section of the paper presents proposed reliability analysis method in four subsections as 
follows: In the first subsection, general concepts regarding reliability measures are briefly 
reviewed. In next subsection the truncation procedure for random variables is presented. Then, the 
proposed method is described in subsections 2.3 and 2.4 for reliability analysis of systems with 
truncated and non-truncated random variables, respectively. Finally, the method is illuminated by 
providing with a flowchart. 
 

2.1 General remarks 
 
Reliability of a system can be measured by its reliability index or its probability of failure. 

Reliability index (β) is the minimum distance of failure region from the origin in the standard 
Gaussian space (U-space). The nearest point of failure region to the origin is called design or most  
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Fig. 1 Isoprobabilistic transformation and reliability measures 

 

Fig. 2 The CDF of standard normal distribution and its truncated form 
 
 

probable point (MPP). These are illustrated in Fig. 1 for two-dimensional case. In this figure, blue 
curves are contours of joint probability density function (JPDF). 

On the other hand, the probability of failure (Pf) of a system can be defined as 

    
F

jpdff dXXfXgP 0Pr                        (1) 

where, g(X) is performance of system design X, which is negative for a failed design and fjpdf is its 
probability of occurrence. The integral of Eq. (1) is computed throughout Failure region. It is hard 
and impossible in most cases to solve this integral analytically. Then, simulation methods like 
direct Monte Carlo estimate this integral as 

   f

N

i
ff IEiI

N
P  

1

1
                           (2) 

where, N is total number of samples and If(i) denotes value of Indicator function for i-th sample. 
This value is equal to zero and one for safe and failed samples, respectively. E( ) is mathematical 
expectation. In this general way, there is no need for isoprobabilistic transformation. However, 
large number of samples is required for accurate estimation especially in the case of estimation of 
small failure probability, which is common in engineering problems. Other efficient simulation 
methods like importance sampling (IS), although need small number of samples, have their 
disadvantages. For example, the IS is a dangerous method, since all the results are computed based 
on MPP, and then, an error in finding true MPP results in an unacceptable error in estimation of Pf. 
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Such an error in search for global MPP is not avoidable in many engineering systems having 
multiple failure modes. 
 

2.2 Truncated random variables 
 
In most of engineering reliability problems, we deal with random variables whose values 

cannot cover the range (−∞, +∞). This property of existing random variables forms rational basis 
for the use of truncated random variables whose values cover a practical range. In this sense, upper 
and lower bounds are defined for common non-truncated random distributions based on 
experimental judgment regarding uncertain variables.  

Such a truncation changes the cumulative distribution function (CDF) as follows 

             aCDFbCDFaCDFxCDFxCDF nt
X

nt
X

nt
X

nt
X

tr
X             (3) 

where, superscripts tr and nt are abbreviations for truncated and non-truncated, respectively. 
Lower and upper bounds of truncation are denoted by a and b, respectively, while the relationship 
−∞<a≤x≤b<+∞ holds. In Fig. 2, standard normal CDF is truncated at range [−2, 2] using above 
procedure. In this truncated form, random number can simply be generated by making use of 
uniform random generation approach as shown in Fig. 2, as well. 
 

2.3 Illustration of proposed method: Initial and Simulation steps 
 
The proposed method analyzes the reliability of a system within two steps, namely Initial and 

Simulation steps. In this subsection, RFE method is described for reliability analysis of systems 
with truncated random variables and its capability for solving systems with non-truncated 
variables will be illuminated in next subsection.  

In the Initial step, a number of space-filling designs (called SFDs) are created throughout the 
entire variables space to cover it properly. The SFDs should be equally-spaced as far as possible. 
These designs can be created by two ways: (1) By generating equally-spaced grids (meshes) on the 
variables space or (2) By using pseudo-random generation tools (e.g., Halton or Faure sequences) 
which are available in most of programming languages as built-in. The first procedure is suitable 
for problems with low number of random variables, whereas, the second procedure is well suited 
for problems with high number of random variables. Then, performances of all the SFDs are 
evaluated exactly using actual performance function. The evaluated performances are then 
normalized as follows 

       origin
X

computed
X

normalized
X gxgxg                      (4) 

where,  xgcomputed
X  is the computed performance for design x and  origin

Xg  is absolute value of  
the actual performance measure for the origin of variables space (design corresponding to mean 
values of variables). By doing so, all the performances are converted to normalized dimensionless 
values which are now appropriate to be used for interpolation. After this normalization, the space-
filling designs and their normalized performances are stored in a memory for use in Simulation 
step. This memory having NSFD (total number of space-filling designs) designs will be called 
SFDs memory in this paper, to be concise.  

In the Simulation step of the method, on the other hand, direct-MCS is used for reliability 
analysis. For each sample, first an estimation of normalized performance is computed via 
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interpolation using SFDs memory. In this paper, we do this radial basis interpolation by 
introducing reduced performance function as follows 

      





















NSFD

i

n

i

NSFD

i
i

normalized
X

n

i

normalized
X

r

r
xg

r

r
sampleg

1
2

2
min

1
2

2
min~           (5) 

where,  sampleg normalized
X

~  is the estimated value of normalized performance for the sample under 
evaluation; xi is i-th design in the SFDs memory among total number of NSFD designs; 

 i
normalized
X xg  is the exact value of normalized performance for xi; n is an arbitrarily chosen 

positive value adopted to be integer herein; ri
2 is square value of Euclidean distance of the sample 

from xi and rmin
2 is their minimum as 

  ....,2,1),(min 22
min NSFDirr i                       (6) 

After this simple evaluation, we can guess that in which of regions of failure or safety the 
sample design locates. Since, this guess cannot be exactly true especially for samples close to 
limit-state, we determine a “critical region” near the limit-state surface (symmetrically in its both 
sides), wherein, exact performance measure of samples should be evaluated using actual 
performance function. The critical region can simply be defined by normalized performance 
measure, such that, a sample is in this region when absolute value of its estimated performance is 
smaller than a threshold. This threshold for critical region is called TCR, here, for convenience. 
After exact evaluation of samples that belong to this region, these performances are normalized 
(using Eq. (4)) and obtained data are stored in SFDs memory for use in future interpolations for 
the rest of samples. In Fig. 3, the variables space is shown for two random variables x1 (with µ1 
and σ1) and x2 (with µ2 and σ2), truncated at [a1, b1] and [a2, b2] intervals (i.e., the space inside 
blue rectangle), respectively. The limit-state surface is shown by solid curve, while dashed curves 
are contours of normalized performance function. It should be noted that the critical region 
(between g=−TCR and g=TCR) is defined by reduced performance function, whereas, the limit-
state is detected by actual performance function. In this figure, the shadowy part is the critical 
region and space-filling designs are depicted by stars. Moreover, red and green circles are failed 
and safe samples, respectively. 

 
 

Fig. 3 Details of concepts of the proposed method for truncated random variables 
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In addition, during Simulation step, SFDs memory will be enriched by adding those samples 
which are evaluated exactly (i.e., those were in critical region in previous estimations as discussed 
above). This will improve our next estimations for the rest of samples especially for those which 
locate near limit-state. So, in this work, to reduce further the need for exact performance 
evaluations, we suggest an auto-tuning scheme for TCR as follows 

      )....~(1 scgscgsignTCRTCR normalized
X

normalized
X

currentnew              (7) 

where, ε is TCR auto-tuning parameter (a positive value in the range (0,1)); sign( ) is the sign 
function having −1, 0 or 1 values;  ..~ scg normalized

X  and  ..scgnormalized
X  are estimated and actual 

values of normalized performance for the critical sample (c.s.). In better words, doing so, the 
current critical region will be shrunk or expanded if our guess turns out true or false for the current 
sample, respectively. However, in rare cases (when sign( )=0) it is not changed.  

 
2.4 Reliability analysis of systems with non-truncated random variables 
 
In most of engineering reliability problems, we deal with truncated random variables. However, 

the proposed method possesses the capability of solving problems with non-truncated variables. In 
this case, only a simple additional task is required. For these problems we can define an important 
region, wherein, most of samples may locate. This region is defined herein based on the PDF of 
the variables by eliminating their tails in points where their PDF values are small enough. This 
small value can be chosen arbitrarily. After defining such a region, space-filling designs are 
selected throughout this part of variables space and SFDs memory is constructed analogous to 
subsection 2.3. Then in Simulation step, actual performance function is used for samples which 
locate outside the important region, whereas samples which locate inside are evaluated using the 
procedure described in previous subsection. In Fig. 4, important region is the part inside red 
rectangle (within ranges [c1, d1] for x1 and [c2, d2] for x2) while other details are similar to Fig. 3. 
 
 

 
Fig. 4 Details of concepts of the proposed method for non-truncated random variables 
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Fig. 5 The flowchart of the proposed reliability analysis method 

 
 

The flowchart of Fig. 5 provides a better illumination of the proposed method. Using this 
method one can compute all the reliability measures, i.e., probability of failure (Pf), reliability 
index (β) and most probable to fail point (MPP). The former is computed using If of samples, 
whereas, two latter measures are computed based on the standard distances of failed samples from  
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Fig. 6 The flowchart of the proposed RBDO algorithm using HS-PSO and RFE 

 
 

the origin. In better words, the failed sample which is closest to the origin in the standard space is 
MPP and its distance from the origin is reliability index (see Fig. 1). 
 
 
3. Proposed reliability-based design optimization algorithm 
 

The proposed reliability analysis method can also be used in combined with efficient 
optimization methods for reliability-based design optimization (RBDO) of systems. In this 
contribution, we use recently proposed harmony search-based, improved particle swarm 
optimization (HS-PSO) algorithm, which is an efficient optimization method and has proved to 
perform better than standard big bang-big crunch (BB-BC), harmony search (HS) and particle 
swarm optimization (PSO) algorithms (Rafiee and coworkers 2013, 2014). The proposed RBDO 
algorithm can be illustrated by the self-explanatory flowchart of Fig. 6, wherein, sufficient details 
regarding HS, PSO and HS-PSO algorithms can best be found in Hadidi and Rafiee (2014). In 
addition, in this flowchart, the optimization loop is the same HS-PSO optimization algorithm, 
while, the inner loop of reliability analyses is the proposed reliability analysis method. The 
proposed RBDO algorithm is not limited to HS-PSO and other efficient optimization methods 
(e.g., the algorithm proposed by Hadidi and Rafiee 2015) can also be used. 

 
 
4. Numerical examples 

 
In this study, six numerical examples are solved to demonstrate the accuracy, efficiency and 

robustness of proposed reliability analysis and RBDO methods. The examples are selected such 
that to include parallel and series systems with multiple failure modes with truncated and/or non-
truncated random variables. In addition, in the examples different structural systems with 
uncertainties in loads and structural parameters are included and different reliability measures are 
computed via proposed method and other available methods.  
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Table 1 Results of reliability analysis for Example 1 

Method Pf 
Number of 

samples 
Number of evaluations 
of actual performance 

2nd-order SRSM (Jiang et al. 2014b) 0.0490 - 6 
3rd-order SRSM (Jiang et al. 2014b) 0.0060 - 10 

RSMncross (Jiang et al. 2014b) 0.0040 - 120 
RSMcross (Jiang et al. 2014b) 0.0056 - 324 

MCS (this work) 0.0058 1,000,000 1,000,000 
Proposed method (TCR=0.0005; ε=0.2; n=4) 0.0058 1,000,000 25+62+10=97 

Proposed method (TCR=0; n=4) 0.0060 1,000,000 25+0+10=35 
 

 
4.1 Example 1: a nonlinear performance function 
 
A 2D problem is solved in this example, and the results of proposed method are compared with 

those of direct-Monte Carlo (MCS), Response Surface (RSM) and Stochastic Response Surface 
(SRSM) methods. The performance function of this example, obtained from literature, is expressed 
as 

    18, 3
22

2
1

3
121  xxxxxxgX                          (8) 

 Both x1 and x2 follow the Normal distribution. The means of x1 and x2 are 10 and 9.9, 
respectively, and the standard deviation is 5 for both. The results of reliability analyses for this 
example are listed in Table 1. In this Table RSMncross is the RSM based on a quadratic 
polynomial chaos expansion (PCE) without cross-terms using the vector projection sampling 
technique. For more information see Jiang et al. (2014b). 

For this example, important region is defined as the region constructed by the range μi−4.5σi 
to 

μi+4.5σi 
for i=1,2. In addition, SFDs are created using the first procedure described in part 2.3, 

with 5 equally spaced points in each of ranges of variables in the important region, i.e., as [μi−4.5σi 

μi−2.25σi  μi  μi+2.25σi  μi+4.5σi] for 2,1i . 
In Table 1, the number of evaluations of actual performance function in the proposed method is 

sum of three terms: first term is the number of SFDs evaluated at Initial step (52=25 evaluations); 
second term shows the number of samples fallen in critical region; and third term is the number of 
samples which locate outside important region (about 0.001% of total samples). The superiority of 
the proposed method over the RSM is evident from the results of Table 1, while it gives Pf with the 
same accuracy of 3rd-order SRSM by 35 evaluations. 
 
 

Fig. 7 Cross section of RC beam 
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Table 2 Random variables of RC beam 

Variable Distribution type Mean value Standard deviation 

As in
2 (cm2) Normal 4.08 (26.32) 0.08 (0.516) 

fy ksi (MPa) Normal 44 (303.38) 4.62 (31.85) 
f′c ksi (MPa) Normal 3.12 (21.51) 0.44 (3.034) 

Q k-in (kN.m) Normal 2052 (231.88) 246 (27.80) 
 
Table 3 Results of reliability analysis for RC beam 

Method MPP β Pf 
Number of 

samples
Number of evaluations of 

actual performance 

FORM (Nowak and 
Collins 2000) 

- 2.350 0.0094 - - 

MCS (this work) [4.05, 36.83, 2.93, 2465] 2.349 0.0110 100,000 100,000 
 [4.05, 36.83, 2.93, 2465] 2.349 0.0110 200,000 200,000 
 [4.06, 36.34, 3.07, 2457] 2.346 0.0111 500,000 500,000 
 [4.06, 36.34, 3.07, 2457] 2.346 0.0111 1,000,000 1,000,000 

Proposed method [4.05, 36.83, 2.93, 2465] 2.349 0.0105 100,000 625+5,429+29=6,083
 [4.05, 36.83, 2.93, 2465] 2.349 0.0106 200,000 625+8,471+61=9,157
 [4.06, 36.34, 3.07, 2457] 2.346 0.0106 500,000 625+14,836+128=15,589
 [4.06, 36.34, 3.07, 2457] 2.346 0.0106 1,000,000 625+21,671+252=22,548

 
 
4.2 Example 2: a reinforced concrete beam 

 
In this example, obtained from literature, reliability of a reinforced concrete (RC) beam, shown 

in Fig. 7, is analyzed. The limit-state of the beam capacity in bending would be 

     
Q

bf

fA
dfAQffAg

c

ys
yscysX 




2

59.0,,,                    (9) 

where, As is the area of steel; fy is the yield strength of the steel; f′c is the compressive strength of 
the concrete; b is the width of the section and d is its depth. Moreover, Q is the moment (load 
effect) due to the applied loads. The random variables of the problem are listed in Table 2, 
whereas, b and d values are assumed to be deterministic. 

This example has been previously solved in Nowak and Collins (2000) using FORM. The 
reliability results of this example are shown in Table 3. In this example, we use TCR=0.45, 
ε=0.0002 and n=3, while important region is defined as the region constructed by the range μi−4σi 
to μi+4σi for i=1,2,3,4 i.e., for four random variables of Table 2. In addition, SFDs are created 
using the first procedure described in part 2.3, with 5 equally spaced points in each of ranges of 
variables in the important region, i.e., as [μi−4σi  μi−2σi  μi  μi+2σi  μi+4σi] for i=1,2,3,4.  

In Table 3, the number of evaluations of actual performance function in the proposed method is 
sum of the number of SFDs evaluated at Initial step (54=625 evaluations), the number of samples 
fallen in critical region (second term) and the number of samples which locate outside important 
region (third term). As it is seen from the results, the proposed method gives reliability measures 
close to those of FORM and MCS, while the number of required actual performance evaluations is  
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Fig. 8 A composite beam 

 
 

reduced by more than 97% compared to MCS. It is also seen that 500,000 samples is sufficient for 
MCS while with this number of samples only 15,589 evaluations are needed with proposed 
method. It is obvious that for MCS with 15,589 samples, different reliability results will be found 
for different seeds of random sets. In better words, the results of MCS with same number of 
evaluations will be very sensitive to random generation seed, whereas, the proposed method is 
much less sensitive and is a reliable method for analysis of reliability. 

On the other hand, by choosing optimum values for parameters of method better results can be 
obtained. This latter will be examined for Example 4. 

 
4.3 Example 3: a composite beam (a high-dimensional problem with highly nonlinear 

limit-state function and small failure probability) 
 
A composite beam with twenty independent random variables, as shown in Fig. 8, is employed 

to demonstrate the efficiency and accuracy of the proposed method in reliability analysis of high 
dimensional problems with highly nonlinear limit-states. This example is modified from Huang 
and Du (2008) to show the high performance of RFE in estimating the small failure probabilities. 

The maximum stress of the beam is calculated in the middle cross-section M-M as 
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where, A, B, C and D are dimensions of cross-section; L1, L2, … L6 and L are corresponding length 
from left support; P1, P2, … P6 are concentrated loads applied at six different points along the 
beam; Ew and Ea are corresponding Young’s modulus values. In order to have a safe design, the 
maximum stress of the beam should not exceed its allowable strength, hence, the limit-state is 

    max621621 ,,,,,,,,,,,  SSEEPPPLLLLDCBAg waX             (11) 
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Table 4 Random variables of composite beam 

Variable Distribution type Mean value Standard deviation Important range 

A Normal 100 0.2 [99, 101] 

B Normal 200 0.2 [199, 201] 

C Normal 80 0.2 [79, 81] 

D Normal 20 0.2 [19, 21] 

L1 Normal 200 1 [195, 205] 

L2 Normal 400 1 [395, 405] 

L3 Normal 600 1 [595, 605] 

L4 Normal 800 1 [795, 805] 

L5 Normal 1000 1 [995, 1005] 

L6 Normal 1200 1 [1195, 1205]
L Normal 1400 2 [1390, 1410]
P1 Gumbel 15 1.5 [0, 20] 

P2 Gumbel 15 1.5 [0, 20] 

P3 Gumbel 15 1.5 [0, 20] 

P4 Gumbel 15 1.5 [0, 20] 

P5 Gumbel 15 1.5 [0, 20] 

P6 Gumbel 15 1.5 [0, 20] 

Ea Normal 70 7 [35, 105] 

Ew Normal 8.75 0.875 [4.375, 13.125]
S Gumbel 50 3 [12, 60] 

 
Table 5 Results of reliability analysis for the composite beam 

Method Pf Number of samples
Number of evaluations 
of actual performance 

MCS (this work) 0.0000240 1,000,000 1,000,000 
 0.0000219 10,000,000 10,000,000 

Proposed method 0.0000230 1,000,000 1,000+78+288= 1,366 
 0.0000203 10,000,000 1,000+190+2,848= 4,038 

 
 
where, S is the allowable strength of the beam. 

The distribution information of the random variables is given in Table 4. The reliability results 
of this example are shown in Table 5. For this example, TCR=0.5, ε=0.05 and n=3 are used, while 
important region is constructed based on the important ranges defined for the random variables (as 
given in Table 4). In addition, 1000 SFDs are created using the second procedure described in part 
2.3. As it is seen from the results, the proposed method can estimate small failure probabilities of 
high dimensional problems with highly nonlinear limit-state functions. 

 
4.4 Example 4: a parallel system 
 
This example considers a parallel system with two failure modes, for which following limit-

states are defined 
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where, X1 through X3 are truncated random variables described in Table 6, whereas X4 is a 
deterministic constant. 

The reliability results obtained for this system, in three cases of X4=3, 5 and 7 are shown in 
Tables 7 and 8. This example has recently been solved by Xiao et al. (2014a) using back 
propagation-neural network (BP-NN) with 250 evaluations of actual performance function,  

 
 

Table 6 Random variables of parallel system 

Variable Distribution type Mean value Standard deviation Truncation range 

X1 Normal 2 1 [0, 5] 

X2 Normal 5 1 [2, 8] 

X3 Normal 10 1 [7, 13] 

 
Table 7 Results of reliability analysis for parallel system with different parameters (X4=3) 

Method TCR ε n Pf 
Number of 
 samples 

Number of evaluations 
of actual performance 

MCS (this work) - - - 0.0131 100,000 100,000 
Proposed method 0.5 10-4 1 0.0131 100,000 8,580 

 0.25 10-4 1 0.0131 100,000 6,396 
 0.1 10-4 1 0.0125 100,000 3,978 
 0.5 10-3 1 0.0141 100,000 2,736 
 0.5 10-5 1 0.0131 100,000 20,251 
 0.1 10-4 2 0.0132 100,000 2,349 
 0.1 10-4 3 0.0132 100,000 2,094 
 0.1 10-3 3 0.0132 100,000 1,187 
 0.1 0.01 3 0.0133 100,000 443 
 0.05 0.05 3 0.0130 100,000 221 
 0.02 0.2 3 0.0129 100,000 149 

 
Table 8 Results of reliability analysis for parallel system 

Method X4 Pf 
Number of 

samples 
Number of evaluations of 

actual performance 

Using BP-NN (Xiao et al. 
2014a) 

3 0.0141 - 250 
5 0.0539 - 250 
7 0.1158 - 250 

MCS (this work) 
3 0.0131 100,000 100,000 
5 0.0540 100,000 100,000 
7 0.1113 100,000 100,000 

Proposed method 
3 0.0129 100,000 149 
5 0.0549 100,000 152 
7 0.1152 100,000 148 
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(a) Shear building structural model (b) Elcentro, Imperial Valley, 1940 earthquake 

Fig. 9 Seismically excited building 
 
 
wherein, 250 uniformly distributed random points are selected throughout the variables space and 
then used for training of network. Their results are not far from those of MCS, however, it seems 
that their results are sensitive to seed of random sets used for selection of the points, whereas, RFE 
uses 100,000 points and then the sensitivity to the random seed will be very low. In addition, the 
method proposed herein needs no surrogate network model. It should be noted that the results of 
Table 8 are based on TCR=0.02, ε=0.2 and n=3, which seems to be optimum ones based on results 
of investigation on these parameters. Such an investigation is accomplished and results are listed 
in Table 7. Furthermore, SFDs are created using the first procedure described in subsection 2.3, by 
selecting 5 equally spaced points in each of ranges of variables (i.e., 53=125 SFDs). 
 

4.5 Example 5: a seismically excited building (a series system) 
 
In this example, reliability of a series system with expensive-to-evaluate performance function 

is analyzed. Consider the five-storey building shown in Fig. 9, which is excited by the north-south 
component of earthquake record of Elcentro, Imperial Valley, 1940. The first 20 seconds of this 
record is shown in Fig. 9, as well, wherein the peak ground acceleration is equal to −0.319g. In 
this study, the stiffness values of stories and modal damping ratios of the structure are taken as ten 
independent truncated random variables of the problem (see Table 9), whereas the mass values of 
all the stories are assumed to be deterministic and equal to 26.35 kN.sec2/m. Time history analysis 
of shear building model is accomplished by preparing a home-made computer program written 
based on modal analysis and linear acceleration form of Newark's method for first ten seconds of 
excitation with time steps equal to 0.02 sec. More information on these methods can best be found 
in Chopra (2007). This system with five failure modes for five stories, has following limit-states 

    .5,2,1,3001,,, 5151   ihdkkg iii                   (13) 

where, hi and di values are, respectively, storey height and inter-storey drift values for i-th storey. 
This limitation is chosen based on AISC (2010) specifications.  
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Table 9 Random variables of the building 

Variable Distribution type Mean value Standard deviation Truncation range 

k1, k2...k5 (kN/m)
 

Normal 6,762 1,352 [4,057, 8,114]
ζ1, ζ2... ζ5 Normal 0.05 0.02 [0.02, 0.10]

 
Table 10 Results of reliability analysis for the building 

Method Pf 
Number 

of samples 
Number of evaluations 
of actual performance 

MCS (this work) 0.0310 10,000 10,000 
 0.0328 20,000 20,000 
 0.0330 30,000 30,000 
 0.0339 40,000 40,000 
 0.0333 50,000 50,000 

Proposed method 0.0307 10,000 2,833 
 0.0319 20,000 4,290 
 0.0316 30,000 5,456 
 0.0322 40,000 6,515 
 0.0313 50,000 7,411 

 
Table 11 Random variables of 3D truss structure 

Variable Distribution type Mean value Standard deviation Truncation range 

FV (kN) Normal 360 30 [240, 420] 

FH (kN) Normal 180 40 [100, 260] 

θ (rad) Normal /2 /18 [/3, 2/3] 

 
 

The reliability results of this example using MCS and proposed method (with TCR=0.45, 
ε=0.0002, n=3 and 1000 SFDs produced by making use of the second procedure described in 
subsection 2.3), are listed in Table 10. As it is seen from this Table, the proposed method finds Pf 
with 6% error compared to MCS, however, needs only 15% of actual performance evaluations 
which are required in MCS. If one solves this problem via MCS with only 7,411 samples, would 
find different probabilities of failure for different seeds of random sets. For example, for two 
different seeds we found 0.0301 and 0.0383 with −11% and 13% error, respectively. This is due to 
the fact that the proposed method is not sensitive to seed of random generation. Moreover, as it 
was shown in previous example by tuning the parameters of proposed method one can find 
optimal balance between accuracy and efficiency of the method. 

 
4.6 Example 6: a 3-dimensional 39-bar truss (a RBDO problem) 
 
In this example, a RBDO problem is solved using the RBDO algorithm proposed in Section 3. 

Consider the truss structure of Fig. 10, which supports an elevated cylindrical reservoir. The total 
weight of reservoir and its content, denoted as FV, is assumed to be equally carried by three top 
nodes of the truss (i.e., FV/3 for each node). In addition to FV, it is assumed that the speed of wind 
and its direction be non-deterministic variables. The uncertainty in the speed of wind, herein, is 
seen as variations of wind load denoted by FH, which is assumed to be carried by the top nodes  
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(a) 3D view (b) Side view (c) Top view 

Fig. 10 Three-dimensional 39-bar truss 
 

Table 12 Standard Pipe sections list of AISC 

Section no. AISC_Label w (kg/m) Ag (mm2) r (mm) 

1 Pipe8XXS 108 12900 70.6 
2 Pipe12XS 97.4 11300 110 
3 Pipe10XS 81.5 9740 92.5 
4 Pipe6XXS 79.1 9480 52.8 
5 Pipe12STD 73.8 8840 112 
6 Pipe8XS 64.5 7680 73.4 
7 Pipe10STD 60.2 7420 93.5 
8 Pipe5XXS 57.4 6900 44.2 
9 Pipe8STD 42.5 5060 74.9 

10 Pipe6XS 42.5 5050 55.9 
11 Pipe4XXS 41.0 4940 35.3 
12 Pipe5XS 30.9 3700 47.0 
13 Pipe6STD 28.3 3350 57.2 
14 Pipe3XXS 27.7 3340 26.9 
15 Pipe4XS 22.3 2670 37.6 
16 Pipe5STD 21.7 2590 47.8 
17 Pipe2-1/2XXS 20.4 2470 21.7 
18 Pipe3-1/2XS 18.6 2210 33.3 
19 Pipe4STD 16.1 1910 38.4 
20 Pipe3XS 15.3 1830 29.0 
21 Pipe2XXS 13.4 1620 18.1 
22 Pipe3-1/2STD 13.6 1610 34.0 
23 Pipe2-1/2XS 11.4 1350 23.6 
24 Pipe3STD 11.3 1340 29.7 
25 Pipe2-1/2STD 8.62 1040 24.2 
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equally (i.e., each one carries FH/3). Moreover, the direction of wind is specified by the angle θ, 
measured from positive part of x-axis in counter-clock-wise (C.C.W.) manner (see Fig. 10). More 
details on these truncated random variables can be observed from Table 11. 

Then, the problem can be formulated as follows: Minimize the weight of the structure by 
selecting suitable sections for its members, such that, its probability of failure remains smaller than 
an allowable value, i.e., 01.0 allowable

f
structure
f PP . In this problem, design variables are the cross- 

sections of members of the structure. For ease in construction, these 39 cross sections are grouped 
into four groups with 9 (for group numbers 1, 2 and 3), and 12 (group 4) members. During 
optimization, these sections are chosen among AISC standard Pipe sections list, which are 
presented in Table 12. 

The weight of the truss can simply be computed as 

  



39

1i
iistructure wLW                              (14) 

where, Li and wi are, respectively, length of i-th member and its weight in unit length (presented in 
Table 12). This weight will be multiplied by the penalty function value as follows 

   ],0max1[ allowable
f

structure
fstructure

penalized
structure PPCWW              (15) 

where, C is a penalty constant taken equal to 100 in this example. Doing so, the weight value is 
increased for those designs in which optimization constraints are violated. In this way, the 
constrained optimization problem is converted to an unconstrained one. 

On the other hand, by assuming the structure as a series system, its probability of failure (
structure
fP ) is computed using following limit-states: 

a) The displacement of each node in x, y and z directions must be smaller than 200 mm. 
b) The axial force carried by each member must be smaller than the corresponding axial load-

carrying-capacity for that member. This latter is computed based on AISC (2010) code for tensile 
members as 

  gy AFstrengthTensile 9.0                          (16) 

while, for compressive members following formulae (AISC 2010) are used 

  gcr AFstrengtheCompressiv 9.0                       (17) 
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  22 )(
r

KL
EFe                               (19) 

In Eqs. (16)-(19), Ag is the cross-sectional area of the member; Fy is the yield stress taken as 
248.2 MPa; K is the effective length factor of the member (equal to unity for all the 39 members of  
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Table 13 The convergence history of RBDO problem and the corresponding reliability results 

Iteration no. 
Global best 
sections no. 

Global best
cost (kg) 

Pf (MCS) Pf (RFE) 
Reduction of actual 

performance evaluations
1, 2 [5, 7, 13, 11] 11,007 0.00000 0.00000 97.4% 

3 [6, 6, 13, 12] 10,160 0.00000 0.00000 97.0% 

4 [9, 9, 13, 11] 8,256 0.00000 0.00000 97.4% 

5 [9, 9, 13, 12] 7,720 0.00000 0.00000 96.9% 

6, … 14 [10, 9, 13, 16] 7,232 0.00000 0.00000 94.1% 

15, … 18 [9, 9, 12, 19] 7,060 0.00016 0.00016 92.7% 

19, 20 [10, 9, 13, 19] 6,935 0.00088 0.00088 91.3% 

 
 

this example); E is modulus of elasticity equal to 2.1105 N/mm2; L is unbraced length of the 
member and r is its radius of gyration (available in Table 12).  

In addition to these constraints, according to AISC (2010) specifications, the effective 
slenderness ratio (KL/r) for tensile and compressive members should not exceed 200 and 300, 
respectively. 

To solve the RBDO problem of this example, we use HS-PSO algorithm with HMCR=0.7 and 
PAR=0.4 (Hadidi and Rafiee, 2014). The number of individuals (particles) is taken as 30, while, 
the algorithm is terminated when 20 iterations are performed. Then, during optimization, 
2030=600 points of design space are examined and their probabilities of failure are computed. 
For each of these reliability analyses, 20,000 samples are used for MCS and the proposed method 
(with TCR=0.5, ε=10-4, n=3 and 53=125 SFDs). It is observed from the results that for same seed 
of random sets, the proposed RBDO algorithm gives the same results of RBDO with MCS. This 
optimal design for a seed is obtained as [Pipe6XS, Pipe8STD, Pipe6STD, Pipe4STD] for both of 
methods, whereas, the method based on MCS requires 60020,000=1.2107 evaluations of actual 
performance and our method needs 1,109,572 evaluations. So, it is observed that the proposed 
RBDO algorithm gives same results with only 9.2% of actual performance evaluations needed in 
RBDO based on MCS. This percent can further be reduced by choosing optimal values for the 
parameters of the proposed method. The convergence history of RBDO problem is compared for 
two methods by tabulating details of the global best design (the optimal design up to that iteration) 
of iterations of the optimization in Table 13. In this Table, the reliabilities of global best designs 
are re-analyzed with 50,000 samples to provide better comparison, while, it was seen that 20,000 
samples are sufficient for this RBDO problem with 01.0 allowable

f
structure
f PP  limitation.  

 
 
5. Conclusions 
 

Uncertainty exists in values of parameters of systems in dealing with engineering problems. In 
structural systems, in particular, uncertainties in acting loads and load-carrying-capacity of the 
structure should be taken into account in structural design process, to design a reliable structure. 
Considering these uncertainties is of paramount importance especially in minimum cost design 
problems, where, the designer seeks for a design in which the load-carrying-capacity of the 
structure is used as far as possible. In such a case, the structure may be designed with a significant 
probability of failure. Hence, to keep a cost-safety balance, reliability-based design optimization 
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(RBDO) formulations are given rise. This paper proposes a novel simulation method for reliability 
analysis and RBDO, advantages of which can be summarized as follows 

• It is an accurate method which computes different reliability measures (reliability index, most 
probable point (MPP) and probability of failure) with high accuracy compared to first-order 
reliability (FORM), response surface (RSM) and direct-Monte Carlo simulation (MCS) methods. 

• It is an efficient method in comparison with MCS, such that, the number of required 
evaluations of actual performance function in it, is far less than which is needed in MCS. 

• It can be tuned, so, one can tune its parameters (TCR and ε) to provide a proper balance 
between its accuracy and efficiency. This advantage of the proposed method may also be seen as a 
disadvantage, since this tuning may be time-consuming for real expensive-to-evaluate systems, 
when the user wants to keep both the high accuracy and maximum efficiency in hand.   

• It is a robust method proved to be of high performance in dealing with different problems of 
reliability analysis. 

• It is also a reliable method for analysis of reliability, for two reasons: One reason is the fact 
that the proposed method does not need MPP to be known for simulation, whereas, in many well-
known reliability methods like Importance sampling, the reliability results are computed based on 
MPP, hence, an error in finding MPP will directly result in error in reliability results. The other 
reason refers to the fact that although this method needs small number of samples to be evaluated 
exactly using actual performance function, is not sensitive to seeds of random sets, in comparison 
to the MCS with same number of evaluations. 

• The proposed method for reliability analysis can be used in combined with efficient 
optimization algorithms to solve RBDO problems, as well. 
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