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Abstract.  A three-dimensional (3-D) method of analysis is presented for determining the free vibration 

frequencies of hyperboloidal shells free at the top edge and clamped at the bottom edge like a hyperboloidal 

cooling tower by the Ritz method based upon the circular cylindrical coordinate system instead of related 3-

D shell coordinates which are normal and tangent to the shell midsurface. The Legendre polynomials are 

used as admissible displacements. Convergence to four-digit exactitude is demonstrated. Natural frequencies 

from the present 3-D analysis are also compared with those of straight beams with circular cross section, 

complete (not truncated) conical shells, and circular cylindrical shells as special cases of hyperboloidal shells 

from the classical beam theory, 2-D thin shell theory, and other 3-D methods. 
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1. Introduction 
 

Hyperboloidal shell types of structures have been used widespread both in industrial and public 

buildings; for example, cooling towers, water towers, TV towers, supports of electric power 

transmission lines, reinforced concrete water vessels, high factory chimneys, and so forth, since 

they give rise to optimum conditions for good aerodynamics, strength, and stability. 

A vast published literature exists for free vibrations of shells. The monograph of Leissa (1993) 

summarized approximately 1000 relevant publications world-wide through the 1960’s. Almost all 

of these dealt with shells of revolution (e.g., circular cylindrical, conical, spherical). Among them 

were three references (Anon 1965, Neal 1967, Carter et al. 1968) considering hyperboloidal shells. 

A review article by Krivoshapko (2002) describes some additional research on free vibrations of 

hyperboloidal shells of revolution for the period 1975-2000. Recently, hyperbolic shells are 

investigated by Viladkar et al. (2006), Ghoneim (2008), Díaz and Sanchez-Palencia (2009), Zhang 

et al. (2011), Ghoneim and Noor (2013), and Jia (2013).  

However, these above analyses were all based upon shell theory, which is mathematically two-

dimensional (2-D). That is, for thin shells one assumes the Kirchhoff hypothesis that normals to 

the shell middle surface remain normal to it during deformations (vibratory, in this case), and 

unstretched in length. This yields an eighth order set of partial differential equations of motion. For 

hyperboloidal shells they involve variable coefficients, making them quite difficult to solve. Even 

so, conventional shell theory is only applicable to thin shells. A higher order shell theory (Artioli et  
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Fig. 1 A representative cross-section of a hyperboloidal shell of revolution free at top edge and 

clamped at the bottom edge (F-C) with the cylindrical coordinate system (r, θ, z) 

 

 

al. 2005) could be derived which considers the effects of shear deformation and rotary inertia, and 

would be useful for the low frequency modes of moderately thick shells. Such a theory would also 

be 2-D. But for hyperboloidal shells the resulting equations would be very complicated. The 

Generalized coordinate methods is very efficient for finding the natural frequencies of similar 

structures and for solving boundary value problem in general (Viola et al. 2013). 

Three-dimensional (3-D) analysis of structural elements has long been a goal of those who 

work in the field. With the current availability of computers of increased speed and capacity, it is 

now possible to perform 3-D structural analyses of bodies to obtain accurate values of static 

displacements, free vibration frequencies and mode shapes, and buckling loads and mode shapes. 

Kang and Leissa (2005) investigated vibrations of hyperboloidal shells based on 3-D analysis, but 

they presented results only for completely free boundary conditions. 

In the present work hyperboloidal shells are analyzed by a 3-D approach. Instead of attempting 

to solve equations of motion, an energy approach is followed which, as sufficient freedom is given 

to the three displacement components, yields frequency values as close to the exact ones as 

desired. The Ritz method is applied using the Legendre polynomials as an admissible displacement 

function. To evaluate the energy integrations over the shell volume, displacements and strains are 

expressed in terms of the circular cylindrical coordinates, instead of related 3-D shell coordinates 

which are normal and tangent to the shell midsurface. Results are obtained for hyperboloidal shells 

free at the top edge and clamped at the bottom edge (F-C) like a hyperbolic cooling tower. These 

data serve as benchmarks against which other approximate methods (e.g., finite elements, finite 

differences) and other, improved 2-D shell theories may be tested. Natural frequencies from the 

present 3-D analysis are also compared with those of straight beams with circular cross section, 

complete (not truncated) conical shells, and circular cylindrical shells as special cases of  
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Table 1 Convergence of frequencies Ga   of a hyperboloidal shell free at the top edge and clamped at  

the bottom edge (F-C) and for the five lowest bending modes (n=2) with b/a=3, h/a=0.4, Hb/a=4, and 

Ht/Hb=1 (ν=0.3) using the Legendre polynomials 

TR TZ DET 1 2 3 4 5 

4 

4 

4 

4 

4 

4 

2 

4 

6 

8 

10 

12 

24 

48 

72 

96 

120 

144 

0.3988 

0.2562 

0.2509 

0.2499 

0.2497 

0.2497 

0.6385 

0.4798 

0.4608 

0.4575 

0.4571 

0.4569 

1.525 

0.6731 

0.5423 

0.5236 

0.5199 

0.5194 

2.024 

1.094 

0.8284 

0.7368 

0.7254 

0.7231 

2.489 

1.439 

1.317 

0.9958 

0.9706 

0.9592 

5 

5 

5 

5 

5 

5 

5 

2 

4 

6 

8 

10 

11 

12 

30 

60 

90 

120 

150 

165 

180 

0.3985 

0.2558 

0.2506 

0.2498 

0.2497 

0.2496 

0.2496 

0.6378 

0.4765 

0.4599 

0.4571 

0.4568 

0.4567 

0.4567 

1.525 

0.6677 

0.5385 

0.5222 

0.5195 

0.5193 

0.5192 

2.024 

1.077 

0.8144 

0.7316 

0.7243 

0.7232 

0.7227 

2.489 

1.438 

1.305 

0.9823 

0.9652 

0.9610 

0.9582 

6 

6 

6 

6 

6 

6 

6 

2 

4 

6 

8 

10 

11 

12 

36 

72 

108 

144 

180 

198 

216 

0.3984 

0.2558 

0.2506 

0.2498 

0.2496 

0.2496 

0.2496 

0.6373 

0.4760 

0.4598 

0.4570 

0.4568 

0.4567 

0.4567 

1.525 

0.6671 

0.5379 

0.5220 

0.5194 

0.5192 

0.5192 

2.024 

1.076 

0.8133 

0.7306 

0.7239 

0.7229 

0.7227 

2.489 

1.437 

1.303 

0.9775 

0.9630 

0.9597 

0.9577 

TR=Total numbers of the Legendre polynomial terms used in the r (or ψ) direction 

TZ=Total numbers of the Legendre polynomial terms used in the z (or ζ) direction 

DET=Frequency determinant order 

 

 

hyperboloidal shells of revolution from the classical beam theory, 2-D thin shell theory, and other 

3-D methods 

 
 
2. Method of analysis 

 

A representative cross-section of hyperboloidal shells of constant thickness (h) in the radial 

direction (r), and height H(=Ht+Hb) of the shell in the axial direction (z), where Ht and Hb are the 

lengths from the r-axis to the top and bottom ends of the shell, respectively, is shown in Fig. 1. The 

lengths of major and minor axes of the mid-surface of the hyperboloidal shell are 2a and 2b, 

respectively, and so slopes of asymptotes are ±b/a. The cylindrical coordinate system (r, θ, z), also 

shown in the figure, is used in the analysis, where θ is the circumferential angle. The equation of 

the hyperboloidal mid-surface is (r/a)
2
−(z/b)

2
=1. Thus the domain (Ω) of the shell is given by 

22

2222 h
bz

b

a
r

h
bz

b

a
 ,   20 ,  bt HzH  .  (1) 

Utilizing tensor analysis, the three equations of motion in the cylindrical coordinate system (r, 

θ, z) are found to be (Sokolnikoff 1956) 
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Table 2 Convergence of frequencies Ga   of a hyperboloidal shell free at the top edge and clamped at  

the bottom edge (F-C) and for the five lowest bending modes (n=2) with b/a=3, h/a=0.4, Hb/a=4, and 

Ht/Hb=1 (ν=0.3) using the simple polynomials 

TR TZ DET 1 2 3 4 5 

4 

4 

4 

4 

4 

4 

2 

4 

6 

8 

10 

12 

24 

48 

72 

96 

120 

144 

0.4221 

0.2562 

0.2509 

0.2499 

0.2497 

0.2498 

0.6422 

0.4798 

0.4608 

0.4575 

0.4571 

0.4573* 

1.425 

0.6731 

0.5423 

0.5236 

0.5199 

0.5198 

2.221 

1.094 

0.8284 

0.7368 

0.7254 

0.7231 

2.377 

1.439 

1.317 

0.9958 

0.9706 

0.9590 

5 

5 

5 

5 

5 

5 

5 

2 

4 

6 

8 

10 

11 

12 

30 

60 

90 

120 

150 

165 

180 

0.4139 

0.2558 

0.2506 

0.2498 

0.2497 

0.2496 

0.2497* 

0.6398 

0.4765 

0.4599 

0.4571 

0.4568 

0.4567 

0.4569* 

1.321 

0.6677 

0.5385 

0.5222 

0.5195 

0.5193 

0.5194* 

2.014 

1.077 

0.8144 

0.7316 

0.7243 

0.7232 

0.7243* 

2.321 

1.438 

1.305 

0.9823 

0.9652 

0.9610 

0.9682* 

6 

6 

6 

6 

6 

6 

6 

2 

4 

6 

8 

10 

11 

12 

36 

72 

108 

144 

180 

198 

216 

0.3991 

0.2558 

0.2506 

0.2498 

0.2496 

0.2497* 

0.2489 

0.6312 

0.4760 

0.4598 

0.4570 

0.4568 

0.4568* 

0.4569* 

1.310 

0.6671 

0.5379 

0.5220 

0.5194 

0.5193 

0.5194* 

2.008 

1.076 

0.8133 

0.7306 

0.7239 

0.7229 

0.7220 

2.288 

1.437 

1.303 

0.9775 

0.9630 

0.9597 

0.9689* 

TR=Total numbers of the algebraic simple polynomial terms used in the r (or ψ) direction 

TZ=Total numbers of the algebraic simple polynomial terms used in the z (or ζ) direction  

DET=Frequency determinant order 
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where the ζij are the normal (i=j) and shear (i≠j) stress components; ur, uθ, and uz are the 

displacement components in the r, θ, and z directions, respectively; ρ is mass density per unit 

volume; the commas indicate spatial derivatives; and the dots denote time derivatives. The well-

known relationships between the tensorial stresses (ζij) and strains (εij) of isotropic, linear elasticity 

are 

ijijij G 2                               (3) 

where λ and G are the Lamé parameters, expressed in terms of Young’s modulus (E) and Poisson’s 

ratio (ν) for an isotropic solid as 

)21)(1( 




E
, 

)1(2 


E
G                         (4) 
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ε≡εrr+εθθ+εzz 
is the trace of the strain tensor, and δij is Kronecker’s delta. The 3-D tensorial strains 

(εij) are found to be related to the three displacements ur, uθ, and uz, by (Sokolnikoff 1956). 

rrrr u , , 
r

uu r
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, zzzz u , , 
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r

uu
u

r
rr

,
,

2

1
, )(

2

1
,, rzzrrz uu  , 













r

u
u

z
zz

,
,

2

1
.         (5) 

Substituting Eqs. (3) and (5) into (2), one obtains a set of second-order partial differential 

equation in ur, uθ, and uz governing free vibrations. However, in the case of hyperboloidal shells, 

exact solutions are intractable because of the variable coefficients that appear in many terms. 

Alternatively, one may approach the problem from an energy perspective. 

During vibratory deformation of the body, its strain (potential) energy (V) is the integral over 

the domain (Ω) 

dzddrrV zzrzrzrrzzzzrrrr


  )222(
2

1
.   (6) 

Substituting Eqs. (3) and (5) into (6) results in the strain energy in terms of the three 

displacements 

dzddrrGV zrzrzzrrzzrr  


 )}](2{2)([
2

1 2222222

    

(7) 

where the tensorial strains εij are expressed in terms of the three displacements by equations (5). 

The kinetic energy (T) is 

dzddrruuuT zr  


 )(
2

1 222  .                      (8) 

For mathematical convenience, the radial r and axial z coordinates are made dimensionless as 

ψ≡r/h and ζ≡z/H. Thus the ranges of the nondimensional cylindrical coordinates (ψ, θ,
 
ζ) are given 

by 

)()( 21  ,  20 , 
H

H

H

H bt                   (9) 

where 

2

1)(
)(

*

22*

1 
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kh

kH
,   

2

1)(
)(

*

22*

2 



kh

kH

             
(10) 

and H*(≡H/a) and h*(≡h/a) are the nondimensional height and thickness of the shell, respectively, 

and k(≡b/a) is the axis ratio (and asymptote slope). For the free, undamped vibration, the time (t) 

response of the three displacements is sinusoidal and, moreover, the circular symmetry of the body 

allows the displacements to be expressed by 

)sin(cos),(),,,(  tnUtu rr , 
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Table 3 Comparisons of non-dimensional frequencies EIAl /2   of a beam with circular cross-section  

with l/r=500 from the classical beam theory and nearly straight beam with circular cross-section from the 

present 3-D method with b/a=1000, h/a=1.98, Hb/a=500, and Ht/Hb=1 for n=1 (ν =0.3) 

Mode Method 
Boundary Conditions 

F-F C-F C-C 

1 
Present 21.89 3.522 22.53 

Young and Felgar 22.37 3.516 22.37 

2 
Present 61.51 22.37 61.88 

Young and Felgar 61.67 22.03 61.67 

3 
Present 121.0 61.73 121.3 

Young and Felgar 120.9 61.70 120.9 

Note: F=Free, C=Clamped 

 

 

)sin(sin),(),,,(   tnUtu , 

)sin(cos),(),,,(  tnUtu zz                     
(11) 

where Ur, Uθ, and Uz are displacement functions of ψ and ζ, ω is a natural frequency, and α is an 

arbitrary phase angle determined by the initial conditions. The circumferential wave number is 

taken to be an integer (n=0, 1, 2, 3, …, ∞), to ensure periodicity in θ. Then Eq. (11) account for all 

free vibration modes except for the torsional ones. These modes arise from an alternative set of 

solutions which are the same as Eq. (11), except that cosnθ and sinnθ are interchanged. For n>0, 

this set duplicates the solutions of Eq. (11), with the symmetry axes of the mode shapes being 

rotated. But for n=0 the alternative set reduces to ur=uz=0, uθ )sin(),(*   tzrU , which 

corresponds to the torsional modes. The displacements uncouple by circumferential wave number 

(n), leaving only coupling in r and z. 

The Ritz method uses the maximum potential (strain) energy (Vmax) and the maximum kinetic 

energy (Tmax) functionals in a cycle of vibratory motion. The functionals are obtained by setting 

sin
2
(ωt+α) and cos

2
(ωt+α) equal to unity in Eqs. (7) and (8) after the displacements (11) are 

substituted, and by using the nondimensional coordinates ψ and ζ as follows 
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and Γ1 and Γ2 are constants, defined by 
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
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From Eq. (4) it is seen that the nondimensional constant λ/G in (12) involves only ν; i.e. 

 







21

2

G
.                               (16) 

According to Mikhlin (1964) and Mikhlin and Smolitskiy (1967), a set of algebraic polynomial 

functions is not minimal, and numerical instability of the Ritz system may occur even within a 

relatively small number of terms of polynomial functions. They suggested the use of strongly 

minimal or orthonormal set of functions in DA or other space similar to DA if those functions are 

available, where DA is a Hillbert space or energy space defined by the differential operators in the 

governing equations of motion. Using the orthogonal polynomials instead of ordinary ones as 

admissible functions permits one to use higher degrees before encountering ill-conditioning, 

thereby obtaining more accurate frequencies. In practice, the orthonormalized sets of admissible 

functions in the energy space or its similar space may be pursued by the use of either the classified 

orthogonal functions such as Bessel, Legendre, Hermite, Laguerre, Chebyshev, Jacobi, and so 

forth, or the Gram-Schmidt orthogonalization. In particular, the Gram-Schmidt procedure by 

means of recurrence formula (Beckmann 1973) may provide an efficient tool to produce 

orthonormal admissible functions numerically.  

The Legendre polynomials Pn(x) are defined by Rodrigues’ formula (Lebedev 1972) 

n

n

n

nn x
dx

d

n
xP )1(

!2

1
)( 2  ,  (n=0,1,2,...)                    (17) 

for arbitrary real or complex values of the variable x. The general expression for the nth Legendre 

polynomial is obtained from Eq. (17) by using the familiar binomial expansion 
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which implies 
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(19) 

where the symbol [μ] denotes the largest integer ≤μ. Alternatively, we can produce the Legendre 

polynomials from the recursion formula given by Courant and Hillbert (1953)  

   ,...)2,1,0()()()12(
1

1
)( 11 


  nxnPnPxn

n
xP nnn .               (20) 

Thus from Eqs. (17, (19), or (20) the first few Legendre polynomials are 

 1)(0 xP , xxP )(1 , )13(
2

1
)( 2

2  xxP , )35(
2

1
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3 xxxP  ,... .        (21) 
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Table 4 Comparisons of non-dimensional frequencies  2222 cos/ ER  for axisymmetric mode  

(n=0
A
) of a complete conical shell with α=45° and h/R=0.01478 (K=100,000) from 2-D thin shell theory and 

nearly complete conical shell with b/a=1, h/a=1.98, Hb/a=134.0, and Ht/Hb 
=0 from the present 3-D method 

(ν=0.3) 

Mode Method 
Boundary Conditions 

Completely Free Clamped 

1 
Present 1.155 1.741 

Dreher and Leissa 1.251 1.802 

2 
Present 1.686 2.302 

Dreher and Leissa 1.977 2.431 

3 
Present 2.622 3.121 

Dreher and Leissa 2.973 3.449 

 

 

The orthogonality condition is given by 
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The displacement functions Ur, Uθ, and Uz in Eq. (11) are further assumed as the Legendre 

polynomials 
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(23) 

and similarly for *
U , where i, j, k, l, m, and n are integers; I, J, K, L, M, and N are the highest 

degrees taken in the polynomial terms; Aij, Bkl and Cmn are arbitrary coefficients to be  

determined, and the η are functions depending upon the geometric boundary conditions to be 

enforced. For example: 

1. ηr=ηz=ηθ=ζ−Hb/H (free at the top edge and clamped at the bottom edge, F-C)  

2. ηr=ηz=ηθ=ζ+Ht/H (clamped at the top edge and free at the bottom edge, C-F)   

3. ηr=ηz=ηθ=(ζ+Ht/H)(ζ−Hb/H) (clamped at both edges, C-C)   

The functions of η shown above, impose only the necessary geometric constraints. Together 

with the Legendre polynomials in Eq. (23), they form function sets which are mathematically 

complete (Kantorovich and Krylov 1958). Thus, the function sets are capable of representing any 

3-D motion of the body with increasing accuracy as the indices I, J,…, N are increased. In the 

limit, as sufficient terms are taken, all internal kinematic constraints vanish, and the functions (23) 

will approach the exact solution as closely as desired. 

The eigenvalue problem is formulated by minimizing the free vibration frequencies with 

respect to the arbitrary coefficients Aij, Bkl and Cmn, thereby minimizing the effects of the internal  
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Table 5 Comparisons of non-dimensional frequencies Ea /)1( 2   of clamped-clamped (C-C) circular 

cylindrical shells with h/a=1 and v=0.3 

h/H Method 
n 

0
A 

1 2 

0.1 
Present 0.2076 0.1272 0.5888 

Loy and Lam 0.2076 0.1273 0.5888 

0.4 
Present 0.8301 0.7306 0.9183 

Loy and Lam 0.8301 0.7308 0.9184 

0.8 
Present 1.660 1.554 1.6428 

Loy and Lam 1.660 1.555 1.6428 

n=circumferential mode number 

A=Axisymmetric mode 

 

 

constraints present, when the function sets are finite. This corresponds to the equations (Leissa 

2005) 
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(24) 

where *
max

2
max TT  . Eq. (24) yield a set of (I+1)(J+1)+(K+1)(L+1)+(M+1)(N+1) linear, 

homogeneous, algebraic equations (or Ritz system) in the unknowns Aij, Bkl and Cmn. In the present 

problem, the Ritz system has the following form 
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where Pαβ is defined by Pαβ≡Pα(ψ)Pβ(ζ) (α=i,k,m, β=j,l,n) and 
 ˆˆ

K  and 
 ˆˆ

M  (α=i,k,m,  

β=j,l,n; nljmki ˆ,ˆ,ˆˆ,ˆ,ˆ,ˆˆ   )
 

denote the submatrices of the stiffness and mass matrices,  

respectively. The notation of < , > denotes an inner product defined by 
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For a nontrivial solution, the determinant of the coefficient matrix is set equal to zero, which 

yields the frequencies (eigenvalues); that is to say |K−ΛM|=0, where Λ is a square of non-

dimensional frequency as ω
2
a

2
ρ/G. These frequencies are upper bounds on the exact values.  

 

 

3. Convergence study 
 
To guarantee the accuracy of frequencies obtained by the procedure described above, it is 

necessary to conduct some convergence studies to determine the number of terms required in the 

Legendre polynomials of Eq. (23). A convergence study is based upon the fact that, if the 

displacements are expressed as power series, all the frequencies obtained by the Ritz method 

should converge to their exact values in an upper bound manner. If the results do not converge 

properly, or converge too slowly, it would be likely that the assumed displacement functions 

chosen are poor ones, or be missing some functions from a minimal complete set of polynomials. 

Table 1 is such a study shows the convergence of frequencies Ga   of a hyperboloidal 

shell free at the top edge and clamped at the bottom edge (F-C) for the five lowest bending modes 

(n=2) with b/a=3, h/a=0.4, Hb/a=4, and Ht/Hb=1 for v=0.3. To make the study of convergence less 

complicated, equal numbers of the Legendre polynomial terms were taken in both the r (or ψ) 

coordinate (i.e., I=K=M) and z (or ζ) coordinate (i.e., J=L=N), although some computational 

optimization could be obtained for some configurations and some mode shapes by using unequal  
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Table 6 Non-dimensional frequencies Ga   of hyperboloidal shells free at the top edge free and  

clamped at the bottom (F-C) with h/a=0.4 and Ha/a=4 (v=0.3) 

n s 
b/a=1 b/a=3 

Ht /Hb=0 Ht /Hb=1/4 Ht /Hb=1 Ht /Hb=0 Ht /Hb=1/4 Ht /Hb=1 

0
T 

1 

2 

3 

4 

5 

0.6074 

1.082 

1.631 

2.223 

2.830 

0.4968 

0.7718 

1.292 

1.815 

2.324 

0.07394(3) 

0.6435 

0.8640 

1.169 

1.445 

0.5203(3) 

1.201 

1.960 

2.727 

3.497 

0.4091(2) 

0.9544 

1.567 

2.184 

2.803 

0.1691(2) 

0.6227 

0.9874 

1.368 

1.752 

0
A 

1 

2 

3 

4 

5 

0.4414(5) 

0.5151 

0.7410 

0.9739 

1.241 

0.3943(5) 

0.4884 

0.6929 

0.9565 

1.138 

0.1726 

0.3382 

0.4606 

0.4938 

0.6213 

0.6927 

1.272 

1.438 

1.605 

1.741 

0.5541 

1.271 

1.370 

1.543 

1.600 

0.3085(5) 

0.8951 

1.028 

1.236 

1.275 

1 

1 

2 

3 

4 

5 

0.3308(3) 

0.4651 

0.5577 

0.7960 

0.9846 

0.3065(2) 

0.3268(4) 

0.4904 

0.6738 

0.8992 

0.04641(1) 

0.1885 

0.3396 

0.3796 

0.5221 

0.2866(1) 

0.6377(4) 

1.080 

1.300 

1.630 

0.2012(1) 

0.4925(4) 

0.9063 

1.155 

1.344 

0.06952(1) 

0.2614(4) 

0.5349 

0.7831 

0.9175 

2 

1 

2 

3 

4 

5 

0.2577(1) 

0.4493 

0.6465 

0.9079 

1.156 

0.2652(1) 

0.4615 

0.5291 

0.6742 

0.9421 

0.05645(2) 

0.2276 

0.2805 

0.4647 

0.5007 

0.4672(2) 

0.6448(5) 

1.082 

1.605 

1.878 

0.4710(3) 

0.5488(5) 

0.8437 

1.247 

1.689 

0.2496(3) 

0.4567 

0.5191 

0.7229 

0.9597 

3 

1 

2 

3 

4 

5 

0.3234(2) 

0.5980 

0.8932 

1.188 

1.439 

0.3260(3) 

0.6078 

0.8914 

0.9532 

1.236 

0.1022(4) 

0.3203 

0.3276 

0.5999 

0.6158 

0.9636 

1.226 

1.459 

1.905 

2.443 

0.9658 

1.214 

1.311 

1.611 

1.998 

0.5908 

0.9666 

0.9885 

1.249 

1.342 

4 

1 

2 

3 

4 

5 

0.4290(4) 

0.7581 

1.116 

1.493 

1.752 

0.4299 

0.7607 

1.122 

1.412 

1.516 

0.1687(5) 

0.4318 

0.4380 

0.7597 

0.7642 

1.496 

1.922 

2.163 

2.451 

2.910 

1.496 

1.927 

2.082 

2.263 

2.560 

1.018 

1.497 

1.552 

1.933 

1.983 

5 

1 

2 

3 

4 

5 

0.5589 

0.9337 

1.333 

1.753 

2.037 

0.5600 

0.9356 

1.336 

1.763 

1.956 

0.2524 

0.5625 

0.5769 

0.9366 

0.9399 

2.067 

2.585 

2.974 

3.183 

3.524 

2.067 

2.586 

2.978 

3.014 

3.295 

1.504 

2.069 

2.147 

2.595 

2.655 

Notes: T=Torsional mode; A=Axisymmetric mode. 

Numbers in parentheses identify frequency sequence. 

 

 

number of the polynomial terms. 

The symbols TR and TZ in the table indicate the total numbers of the Legendre polynomial 

terms used in the r (or ψ) and z (or ζ) directions, respectively. Note that the frequency determinant 
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order DET is related to TR and TZ as follows 



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

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


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





 )1( modes generalfor     3

)0( modes icaxisymmetrfor     2

)0( modes nalfor torsio         

A

T

nTZTR

nTZTR

nTZTR

DET .             (28) 

Table 1 shows the monotonic convergence of all five frequencies as TR (=I+1, K+1 and M+1 in 

Eq. (23)) are increased, as well as TZ (=J+1, L+1 and N+1 in Eq. (23)). One sees, for example, 

that the fundamental (i.e., lowest) nondimensional frequency Ga   converges to four digits 

 (0.2496) when as few as (511) terms are used, which results in DET=165. Moreover, this 

accuracy requires using at least five terms through the radial (TR=5) and 11 terms through the 

axial direction (TZ=11). Underlined, bold-faced values in Table 1 represent the converged results 

(up to four significant figures) achieved with the smallest determinant size. Table 2 shows the 

convergence study using the algebraic simple polynomials to compare with Table 1 using the 

Legendre polynomials. The frequencies with * stand for those encountering the numerical 

instability. When using the Legendre polynomials as admissible functions, the frequencies are 

converged with a smaller size of determinant compared with simple polynomials. 

 

 

4. Comparisons 
 

Nearly straight beams with solid circular cross-section with b/a→∞ and a→h/2
 
and nearly 

complete conical shells with Ht=0 and a→h/2 can be special cases of hyperboloidal shells of 

revolution. Table 3 shows comparisons of the first three non-dimensional frequencies  

EIAl /2 
 

of a straight beam (l/r=500) for bending modes (n=1) from the present analysis and  

the classical beam theory (Young and Felgar 1949), where EI is the flexural rigidity of a beam, I is 

the area moment of inertia, l is beam length, A is area of cross-section, and r is radius of circular 

cross-section. Table 3 shows good agreement in frequencies from the two different methods on the 

whole. But it is strange that most of the results from the present 3-D analysis are a little bit higher 

than those from the study by Young and Felgar (1949), since an accurate 3-D analysis should 

typically yield lower frequencies than the classical beam theory, mainly because shear deformation 

and rotary inertia effects are accounted for in a 3-D analysis, but not in the classical beam theory. 

Dreher and Leissa (1968) used the exact solution procedure involving expansion of 

thedisplacements in terms of power series to study the axisymmetric (n=0
A
) free vibrations of 

complete (not truncated) conical shells, where the Donnell-Mushtari shell theory was used. They 

used K=12(1−v
2
)R

2
 cos

2
 α/h

2
 sin

4
 α

 
as a shell stiffness parameter, where α is vertex half angle, h is 

shell thickness, and R is the radius of mid-surface of a cone at the bottom face. Table 4 shows  

comparisons of the first three non-dimensional frequencies  2222 cos/ ER for  

axisymmetric mode (n=0
A
) of complete conical shell with α=45° and h/R=0.01478 (K=100,000) 

from 2D thin shell theory (Dreher and Leissa 1968) and nearly complete conical shell with b/a=1, 

h/a=1.98, Hb/a=134.0, and Ht/Hb=0 from the present 3-D Ritz method for v=0.3. All the 

frequencies from the present 3-D Ritz method are smaller than those from 2-D thin shell theory 

(Dreher and Leissa 1968) as expected. 

Loy and Lam (1999) presented an approximate analysis using a layerwise approach to study the 

vibration of thick circular cylindrical shells on the basis of 3-D theory of elasticity. Table 5 shows  
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Fig. 2 Hyperboloidal shells h/a=0.4 and Hb/a=4 

 

 

comparisons of the first non-dimensional frequencies Ea /)1( 2   for n=0
A
, 1, and 2 of  

clamped-clamped (C-C) hollow circular cylindrical shells as a special case of the hyperboloidal 

shells (b/a=1000) with h/a=1 and v=0.3 from the 3-D theory by Loy and Lam (1999) and from the 

present 3-D Ritz method. All the frequencies shows good agreement. 

 
 
5. Numerical results  

 

Table 6 presents the non-dimensional frequencies Ga   of hyperboloidal shells free at the  

top edge and fixed at the bottom edge (F-C) and with h/a=0.4 and Hb/a=4 for ν=0.3. The shell 

configurations for Table 6 are shown in Fig. 2. Thirty five frequencies are given for each shell 

configuration, which arise from seven circumferential wave numbers (n=0
T
, 0

A
, 1, 2, 3, 4, 5) and 
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the first five modes (s=1, 2, 3, 4, 5) for each value of n, where the superscripts T and A indicate 

torsional and axisymmetric modes, respectively. The numbers in parentheses identify the first five 

frequencies for each shell configuration. The zero frequencies of rigid body modes are omitted 

from the tables. It is seen that most of the frequencies become larger as Ht/Hb decreases. It is also 

observed that the torsional (n=0
T
) modes are more important as the values of Ht/Hb and a/b become 

larger. That is, they are among the lowest frequencies of the shells. 

 

 

6. Conclusions 
 

Accurate frequency data determined by the 3-D Ritz analysis using the Legendre as admissible 

functions have been presented for hyperboloidal shells free at the top edge and clamped at the 

bottom edge (F-C) like a cooling tower. The analysis uses the 3-D equations of the theory of 

elasticity in their general forms for isotropic materials. They are only limited to small strains. No 

other constraints are placed upon the displacements. This is in stark contrast with the classical 2-D 

thin shell theories, which make very limiting assumptions about the displacement variation 

through the shell thickness. 

The method is capable of determining frequencies as close to the exact ones as desired. 

Therefore, the data in Table 6 may be regarded as benchmark results against which 3-D results 

obtained by other methods, such as finite elements and finite differences, may be compared to 

determine the accuracy of the latter. Moreover, the frequency determinants required by the present 

method are at least an order of magnitude smaller than those needed by finite element analyses of 

comparable accuracy. This was demonstrated extensively in a paper by McGee and Leissa (1991). 

The Ritz method guarantees upper bound convergence of the frequencies in terms of functions sets 

that are mathematically complete, such as algebraic polynomials. Some finite element methods can 

also accomplish this, but at much greater costs, and others cannot. 
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