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Abstract.  This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, 

buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to 

capture both the nonlocal parameter and the shear deformation effect without employing shear correction 

factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such 

as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion 

of the nanoscale-beam are obtained using Hamilton’s principle. The effect of the surrounding elastic medium 

on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-

type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the 

surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and 

the obtained results compare well with those predicted by the other nonlocal theories available in literature. 
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1. Introduction 
 

The great advancement in the application of nanostructures in nano-engineering industries, 
mainly MEMS/NEMS devices, because of their higher physical properties, rendered a sudden 
momentum in modeling the structures of nano length scale. It has been remarked that there is a 
significant difference in the structural response of material at nano-scale when compared to their 
bulk counterpart. The problem in employing the classical theory is that this one is not able to 
capture the size influences. The classical theory overpredicts the behavior of nanoscale structures. 
In addition, in the classical model, the particles influence one another by contact forces. Thus, at 
nanoscale the size influences cannot be neglected. Therefore size-dependent continuum based 
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theories (Zhou and Li 2001, Fleck and Hutchinson 1997, Yang et al. 2002) are becoming popular 
in modeling small sized structures as it provides much faster solutions than molecular dynamics 
simulations for various engineering problems. Furthermore, the nonlocal size-dependent 
continuum mechanics models are used because at small length scales, the material microstructures 
(such as lattice spacing between individual atoms) become increasingly important and its effect 
can no longer be neglected. 

The most widely used theory for investigating small scale structures is the nonlocal elasticity 

theory initiated by Eringen (1972, 1983). In nonlocal elasticity model the small-scale influences 

are introduced by considering that the stress at a point as a function not only of the strain at that 

point but also a function of the strains at all other points of the continuum domain. Such 

constitutive theories account for the forces between atoms and the internal length scale. Based on 

the nonlocal constitutive relation of Eringen, a number of papers have been reported attempting to 

develop nonlocal beam theories and use them to investigate the bending (Wang and Liew 2007, 

Pijaudier-Cabot and Bazant 1987, Reddy and Pang 2008, Larbi Chaht et al. 2015), buckling 

(Zhang et al. 2004, Zhang et al. 2006, Wang et al. 2006, Murmu and Pradhan 2009a, Amara et al. 

2010, Narendar and Gopalakrishnan 2011a, Tounsi et al. 2013a,b, Zidour et al. 2014, Benguediab 

et al. 2014a, Berrabah et al. 2013, Eltaher et al. 2014, Adda Bedia et al. 2015), vibration (Zhang et 

al. 2005, Benzair et al. 2008, Murmu and Pradhan 2009b, 2010, Eltaher et al. 2012, 2013, 

Belkorissat et al. 2015, Besseghier et al. 2015, Zemri et al. 2015), wave propagation (Lu et al. 

2007, Tounsi et al. 2008, Heireche et al. 2008a, b, Song et al. 2010, Narendar and Gopalakrishnan 

2011b), and thermo-mechanical (Mustapha and Zhong 2010, Zidour et al. 2012) responses of 

nanobeams.        

Mechanical response of the nanobeams combined with the effect of the surrounding elastic 

medium is of practical importance. Recently, considerable attention has been turned to the 

mechanical behavior of carbon nanotubes embedded in polymer or metal matrix (Ru 2001, 

Kuzumaki et al. 1998, Schadler et al. 1998, Wagner et al. 1998, Bower et al. 1999, Qian et al. 

2000, Besseghier et al. 2011). Besseghier et al. (2011) employed Winkler-type model for wave 

propagation analysis of double-walled carbon nanotubes embedded in an elastic medium. Further, 

Pradhan and Murmu (2009a) investigated vibration analysis of beam embedded by elastic medium 

by employing nonlocal beam theory and Winkler foundation model. It should be noted that these 

works were based on nonlocal Euler–Bernoulli beam model. However, the Winkler-type model is 

regarded as a crude approximation of the real mechanical response of the elastic material, and this 

is due to the inability of the model to consider the continuity or cohesion of the medium. A more 

realistic representation of the elastic medium can be reached by considering a two-parameter 

foundation model. One such mechanical foundation model is the Pasternak-type foundation model 

(Pasternak 1954) which is often called as two-parameter foundation model. The first parameter of 

this model considers the normal pressure, while the second parameter introduces the transverse 

shear stress due to interaction of shear deformation of the surrounding elastic medium (Bouderba 

et al. 2013). Winkler and Pasternak foundation models were reported by Pradhan and Murmu 

(2009b) for the vibration investigation of single-walled carbon nanotubes embedded in polymer 

matrix. In this work, authors used only the nonlocal Timoshenko beam model. It is clear from the 

literature investigation that the employ of two-parameter foundation model for modelling the 

surrounding elastic medium are limited in literature. 

In the present work, a new nonlocal hyperbolic shear deformation beam theory is developed for 

the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The most 

interesting feature of this theory is that it accounts for a hyperbolic variation of the transverse 
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shear strains across the thickness and satisfies the zero traction boundary conditions on the top and 

bottom surfaces of the nanobeam without using shear correction factors. Contrary to the 

hyperbolic shear deformation theory proposed by Benguediab et al. (2014b), it is noted that the 

present theory uses a new and different hyperbolic function to that presented by Benguediab et al. 

(2014b). In addition, the present nonlocal hyperbolic shear deformation theory is based on the 

partition of the transverse displacement into the bending and shear parts. Both Winkler-type and 

Pasternak-type models are used to simulate the interaction of the nanobeams with a surrounding 

elastic medium. Based on the nonlocal constitutive relations of Eringen, equations of motion of 

nanoscale beams are obtained by employing Hamilton’s principle. Effect of the nonlocal 

parameter, Winkler modulus parameter, Pasternak shear modulus parameter, and aspect ratio of 

the nanoscale beam on deflection, critical buckling load and frequency of the nanobeam are 

investigated and discussed. It is hoped that the present analysis will be useful to researchers and 

engineers working on nanostructures. 

 

 

2. Mathematical formulations 
 

2.1 Kinematics 
 

Based on work presented by Berrabah et al. (2013), Ould Larbi et al. (2013) and Al-Basyouni 

et al. (2015), the displacement field of the present theory can be obtained as 
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where wb and ws are the bending and shear components of transverse displacement along the mid-

plane of the beam. In this work, a novel shape function f(z) is proposed based on a hyperbolic 
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2.2 Constitutive relations 
 

Behavior of materials at the nanoscale is different from those of their bulk counterparts. In the 

model of nonlocal elasticity (Eringen 1972, 1983), the stress at a reference point x is assumed to 

be a functional of the strain field at every point in the body. For example, in the non-local 

elasticity, the uniaxial constitutive law is expressed as (Eringen 1972, 1983, Heireche et al. 2008)  

       
x

x

x E
dx

d
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
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2

2

 (4a) 
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where E and G are the elastic modulus and shear modulus of the nanobeam, respectively; μ=(e0a)
2

 
 

is the nonlocal parameter, e0 is a constant appropriate to each material and a  is an internal 

characteristic length. 

 

2.3 Equations of motion 
 

In this section, Hamilton’s principle is employed to derive the equations of motion (Ait Yahia 

et al. 2015, Bourada et al. 2015, Mahi et al. 2015, Nedri et al. 2014, Hebali et al. 2014, Belabed et 

al. 2014, Draiche et al. 2014, Benachour et al. 2011, Bessaim et al. 2013, Bourada et al. 2012) 
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where δU is the virtual variation of the strain energy; δV is the virtual variation of the potential 

energy; and δK is the virtual variation of the kinetic energy. The variation of the strain energy of 

the beam can be stated as 
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where Mb, Ms and Q are the stress resultants defined as 
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The variation of the potential energy by the applied loads can be written as 
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where q and N0 are the transverse and axial loads, respectively. The Winkler-type and Pasternak-

type models are utilized to simulate the interaction of the nanobeams with a surrounding elastic 
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medium as follows (Ait Atmane et al. 2010, Bouderba et al. 2013, Zidi et al. 2014, Khalfi et al. 

2014, Ait Amar Meziane et al. 2014) 
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with kw and kg are the Winkler and the Pasternak moduli of the surrounding elastic medium, 

respectively. 

The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; ρ 

is the mass density; and (I0, I2, J2, K2) are the mass inertias expressed as 
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By introducing Eqs. (6), (8), and (10) into Eq. (5) and integrating by parts versus both space 

and time variables, and collecting the coefficients of δu0, δwb, and δws, the following equations of 

motion of the nanobeam are obtained 
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and the boundary conditions of the present model are 
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       specify 
dx

dws
  or  sM  (12f) 

when the shear deformation effect is omitted (ws=0), the equilibrium equations in Eq. (12) become 

those derived from the Euler–Bernoulli beam theory. 

By substituting the stress-strain relations expressed by Eq. (4) into the definitions of force and 

moment resultants given in Eq. (7) the following constitutive equations are obtained 
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By substituting Eq. (13) into Eq. (12), the nonlocal equations of motion can be written in terms 
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The equations of motion of local beam theory can be determined from Eq. (14) by taking the 

scale parameter μ equal to zero.  

 

 

3. Analytical solutions 
 

In this section, explicit solutions of deflection, critical buckling and frequency as a function of 

geometrical parameters, material constants, Winkler modulus parameter, Pasternak shear modulus 

parameter, and nonlocal scale parameter are presented. The assumed displacement field in the case 
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of simply-supported beams can be described by the following harmonic functions that satisfy the 

boundary conditions 
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 are arbitrary parameters to be determined, ω is the eigenfrequency associated 

with n th eigenmode, and α=nπ/L. It is known that the boundary bending moment and/or shear 

force conditions for nonlocal beam models are different from those for their classical counterpart 

beam theories as discussed by Lu (2007). The simply supported boundary conditions are specified 
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The transverse load q is also expanded in the Fourier sine series as 
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The Fourier coefficients Qn associated with some typical loads are given 
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Substituting the expansions of wb, ws, and q from Eqs. (15) and (16) into Eq. (14), the closed-

form solutions can be obtained from the following equations 
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3.1 Bending 
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The static deflection is obtained from Eq. (18) by setting N0 and all time derivatives to zero 

         



 




1
2

122211

122211  sin
)(

)2(
)(

n

n xQ
SSS

SSS
xw   (20) 

 

3.2 Buckling 
 

The buckling load is obtained from Eq. (18) by setting q and all time derivatives to zero 

          221211

2

2

122211

0
2 SSS

SSS
N







 (21) 

 

3.3 Vibration 
 

By setting q and N0 in Eq. (18) equal to zero, the natural frequency can be obtained from the 

following equation 

               02 2

122211

2

112222111212

422

122211  SSSmSmSmSmmm   (22) 

 

 

4. Numerical results 
 

Numerical results illustrated in this section demonstrate the influence of shear deformation 

functions, nonlocal parameter, the foundation parameters, and slenderness ratio on deflections, 

critical buckling loads and frequencies of nanobeams. For all calculations, the Poisson’s ratio is 

taken as 0.3. However, for calculation carried out using Timoshenko beam theory (TBT), the shear 

correction factor is taken as 5/6. It can be noted that, since the TBT violates the conditions of zero 

transverse shear stresses on the top and bottom surfaces of the beam, a shear correction factor 

which depends on many parameters is required to compensate for the error due to a constant shear 

strain assumption through the thickness. The higher-order shear deformation theories (HSDTs) 

such as the present nonlocal hyperbolic shear deformation theory account for the shear 

deformation effects, and satisfy the zero transverse shear stresses on the top and bottom surfaces of 

the beam, thus, a shear correction factor is not required. The side of nanobeam L is assumed to be 

10 nm. For convenience, the following nondimensional quantities are employed in the current 

study: 

• 
4

0

100
Lq

EI
ww     for uniform load; 

• 
EI

L
NN cr

2

   critical buckling load parameter; 

• 
EI

I
L 0     frequency parameter; 

• 
EI

Lk
K w

w

4

  Winkler parameter; 
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• 
EI

Lk
K s

s

4

  Pasternak parameter. 

 

4.1 Validation of the results 
 

To show the validity and the accuracy of the present formulations, results for static, buckling 

and free vibration using the present new theory, have been performed out with the results of the 

available published works. 

The results for deflections of nanobeam under uniform load are documented in Table 1. Results 

are computed by utilizing 100 terms in the series Eq. (20). The obtained results are compared with 

those of Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT) and Reddy beam 

theory (RBT). It can be observed that the present results are in good agreement with those 

predicted by TBT and RBT for all values of slenderness L/h and nonlocal scale parameter μ. 

However, the small differences between the results obtained by the present theory and RBT are 

due to the used function. This may be explained by the fact that the hyperbolic function is very 

much richer than the cubic function used in RBT. This point is also discussed by Idlbi et al. (1997) 

for the sinusoidal function. Our results are also in good agreement with those obtained by 

Berrabah et al. (2013). For all theories, it is seen that the deflection increases as the nonlocal scale 

parameter increases at a specified slenderness ratio. Moreover, for high slenderness (L/h=100) 

ratio, all theories are approximately identical in predicting the deflection, which confirms the 

accuracy of the Euler-Bernoulli theory in the case of thin nanobeams. However, it is noted that for 

very thin beams the shear locking problem is often found when the numerical approaches are used.  

 

 
Table 1 Comparison of dimensionless maximum center deflection under uniform load for simply supported 

nanobeams (Kw=Ks=0) 

μ L/h EBT TBT RBT Present 

0 

5 

10 

20 

100 

1.302083332 

1.302083332 

1.302083332 

1.302083332 

1.432083343 

1.334583333 

1.310208335 

1.310208332 

1.43195457 

1.33457528 

1.31020782 

1.30240832 

1.428485570 

1.333693217 

1.309986384 

1.302399463 

1 

5 

10 

20 

100 

1.427083338 

1.427083338 

1.427083338 

1.427083338 

1.567516123 

1.462191536 

1.435860392 

1.427434425 

1.56735522 

1.46217859 

1.43585833 

1.42743441 

1.563603269 

1.461223604 

1.435619542 

1.427424835 

2 

5 

10 

20 

100 

1.552083348 

1.552083348 

1.552083348 

1.552083348 

1.702948909 

1.589799737 

1.561512444 

1.552460510 

1.70275587 

1.58977651 

1.56150884 

1.55246049 

1.698720972 

1.588753993 

1.561252708 

1.552450205 

3 

5 

10 

20 

100 

1.677083354 

1.677083354 

1.677083354 

1.677083354 

1.838381690 

1.717407940 

1.687164510 

1.677486600 

1.83815652 

1.71737713 

1.68715934 

1.67748656 

1.833838667 

1.716284376 

1.686885860 

1.677475585 

4 

5 

10 

20 

100 

1.802083363 

1.802083363 

1.802083363 

1.802083363 

1.973814474 

1.845016141 

1.821816558 

1.802512690 

1.97355717 

1.84497774 

1.81280985 

1.80251265 

1.968956364 

1.843814764 

1.812519017 

1.802500960 
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Table 2 Comparison of dimensionless critical buckling load for simply supported nanobeams (Kw=Ks=0) 

μ L/h EBT TBT RBT Present 

0 

5 

10 

20 

100 

9.869604404 

9.869604404 

9.869604404 

9.869604404 

8.950853970 

9.622677158 

9.806692087 

9.867072414 

8.951871004 

9.622750681 

9.806696870 

9.867072422 

8.974047798 

9.629280748 

9.808400323 

9.867141506 

1 

5 

10 

20 

100 

8.983016238 

8.983016238 

8.983016238 

8.983016238 

8.146797307 

8.758270509 

8.925755354 

8.980711698 

8.147722982 

8.758337429 

8.925759696 

8.980711706 

8.167907631 

8.764280898 

8.927310132 

8.980774586 

2 

5 

10 

20 

100 

8.242583614 

8.242583614 

8.242583614 

8.242583614 

7.475290722 

8.036362732 

8.190042498 

8.240469024 

7.476140097 

8.036424136 

8.190046485 

8.240469030 

7.494661010 

8.041877711 

8.191469124 

8.240526726 

3 

5 

10 

20 

100 

7.614917659 

7.614917659 

7.614917659 

7.614917659 

6.906053489 

7.424400328 

7.566377508 

7.612964091 

6.906838185 

7.424457054 

7.566381185 

7.612964099 

6.923948745 

7.429495345 

7.567695495 

7.613017402 

4 

5 

10 

20 

100 

7.076079994 

7.076079994 

7.076079994 

7.076079994 

6.417375620 

6.899043823 

7.030974581 

7.074264665 

6.418104790 

6.899096537 

7.030978001 

7.074264671 

6.434004594 

6.903778313 

7.032199309 

7.074314201 

 
Table 3 Comparison of dimensionless frequency for simply supported nanobeams (Kw=Ks=0) 

μ L/h EBT TBT RBT Present 

0 

5 

10 

20 

100 

9.711154959 

9.829265945 

9.859473249 

9.869198561 

9.274039718 

9.707477241 

9.828127157 

9.867932739 

9.274524576 

9.707513458 

9.828129833 

9.867932748 

9.285413206 

9.710755916 

9.828979632 

9.867967287 

1 

5 

10 

20 

100 

9.264715845 

9.377397054 

9.406215678 

9.415493897 

8.847695570 

9.261207197 

9.376310614 

9.414286272 

8.848158141 

9.261241753 

9.376312881 

9.414286280 

8.858546197 

9.264335148 

9.377123898 

9.414319232 

2 

5 

10 

20 

100 

8.874679788 

8.982617220 

9.010222607 

9.019110221 

8.475215682 

8.871318852 

8.981576525 

9.017953440 

8.475658783 

8.871351954 

8.981578701 

9.017953449 

8.485609512 

8.874315118 

8.982355570 

9.017985006 

3 

5 

10 

20 

100 

8.530090071 

8.633836471 

8.660369980 

8.668912503 

8.146136526 

8.526859633 

9.632836179 

8.667800637 

8.146562422 

8.526891455 

8.632838264 

8.667800645 

8.156126778 

8.529739564 

8.633584980 

8.667830981 

4 

5 

10 

20 

100 

8.222755525 

8.322763999 

8.348341519 

8.356576261 

7.852635618 

8.219641480 

8.321799749 

8.355504449 

7.853046169 

8.219672150 

8.321801759 

8.355504457 

7.862265926 

8.222417645 

8.322521570 

8.355533705 

 

 

This problem is solved by several researchers such as Reddy (1997).  

Tables 2 and 3 present respectively the variation of critical buckling load and frequency with  
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Table 4 Comparison of the first three nondimensional frequencies   of simply supported nanobeam (L/h=5, 

Kw=Kw=0) 

Modes (n) μ EBT TBT RBT Present 

1 

0 

1 

2 

3 

4 

9.711154958 

9.264715840 

8.874679787 

8.530090070 

8.222755528 

9.274039718 

8.847695570 

8.475215682 

8.146136526 

7.852635618 

9.274524576 

8.848158141 

8.475658783 

8.146562422 

7.853046169 

9.285413206 

8.858546197 

8.485609512 

8.156126778 

7.862265926 

2 

0 

1 

2 

3 

4 

37.11199316 

31.42394991 

27.74215119 

25.11035858 

23.10878430 

32.16650095 

27.23643837 

24.04527099 

21.76418739 

20.02934007 

32.18471414 

27.25186007 

24.05888581 

21.77651062 

20.04068100 

32.28600171 

27.33762361 

24.13460082 

21.84504284 

20.10375044 

3 

0 

1 

2 

3 

4 

78.02342092 

56.77976434 

46.82458071 

40.75681631 

36.56566000 

61.45806331 

44.72470331 

36.88313089 

32.10362950 

28.80230858 

61.57462785 

44.80953050 

36.95308533 

32.16451890 

28.85693653 

61.84593057 

45.00696486 

37.11590358 

32.30623834 

28.98408249 

 

 

respect to nonlocal parameter and slenderness ratios. The obtained results are also compared with 

those of EBT, TBT and RBT. It can be noticed from this investigation that the present results are 

in good agreement with other theories. For all theories, it is seen that at a specified slenderness 

ratio both the buckling load and frequency decrease as the nonlocal parameter increases. However, 

for high slenderness (L/h=100) ratio, all theories are approximately identical in predicting both the 

buckling load and frequency, which confirms the accuracy of the Euler-Bernoulli theory in the 

case of thin nanobeams. Again, our results are in good agreement with those obtained by Berrabah 

et al. (2013). 

Table 4 illustrates the variation of the three first frequencies with respect to nonlocal scale 

parameter and proposed theories. For all theories, it is noted that the frequency decreases as the 

nonlocal parameter increases at a specified mode of vibration. However, the effect of nonlocal 

parameter is more significant at higher modes. 

 

4.2 Results for effect of Winkler modulus parameter 
 

To study the effects of the surrounding elastic medium on the bending, buckling and vibration 

responses of nanobeam, variations of deflection, critical buckling load and frequency ratios with 

foundation parameters are plotted. The quantity ratio serves as an index to assess quantitatively the 

nonlocal scale parameter effect on bending, buckling and vibration solutions of nanobeam. The 

deflection, buckling load and frequency ratios are defined as 

  L

NL

w

w
ratio Deflection ,  

L

NL

N

N
ratio load Buckling , 

L

NL




ratioFrequency  (23) 

where the subscripts NL and L refer to the quantities computed using the nonlocal model and the 

local model, respectively. 

The elastic medium is modeled as both (i) Winkler-type foundation and (ii) Pasternak-type 

foundation. The Winkler-type and Pasternak foundations are characterized by foundation stiffness,  
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Fig. 1 Effect of Winkler modulus parameter on the deflection ratio of nanobeam for various 

nonlocal parameters (Ks=0, L/h=10) 

 

 

Kw and Ks, respectively. 

For the present work, the nonlocal coefficient values of nanobeam are considered as μ=0, 1, 2, 

3, and 4 nm
2
. The Winkler modulus parameter (Kw) values were taken in the range of 0-400.  

Fig. 1 demonstrates the effect of nonlocal scale parameter on the bending response of 

embedded nanobeam with elastic medium modeled as Winkler-type foundation. It can be seen 

from this figure that there is significant effect of small size on the bending response of embedded 

nanobeam. The deflection considering nonlocal model is always higher than the classical model 

(μ=0). This means that the use of the local hyperbolic shear deformation beam theory for 

nanobeam analysis would lead to an under-prediction of the deflection if the small length scale 

effects between the individual atoms of nanobeam are ignored. Further, with increase in μ values, 

the deflections computed by nonlocal hyperbolic shear deformation theory become higher 

compared to classical model (μ=0). Furthermore, it is observed that as the Winkler modulus 

parameter increase the deflection ratio decreases. This increasing trend indicates that the 

nanobeam becomes stiffer with including the elastic medium. With higher values of Winkler 

modulus the rate of decrease of deflection ratio reduces. This implies that the nonlocal scale 

parameter effect in bending response of nanobeam looses its significance as the Winkler modulus 

values increase. Thus the small-scale effect tends to become more considerable without the 

presence of elastic medium. 

Figs. 2 and 3 show the trend of variation of buckling and frequency ratios of embedded 

nanobeam with Winkler-type foundation versus the nonlocal scale parameter. The results show 

that the critical buckling load and frequency considering nonlocal model are always smaller than 

the classical model (μ=0) which highlights the significance of small size on the buckling and 

vibration responses of embedded nanobeam. This means that the use of the local hyperbolic shear  
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Fig. 2 Effect of Winkler modulus parameter on the buckling load ratio of nanobeam for various 

nonlocal parameters (Ks=0, L/h=10) 
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Fig. 3 Effect of Winkler modulus parameter on the frequency ratio of nanobeam for various 

nonlocal parameters (Ks=0, L/h=10) 

 

 

deformation beam theory for nanobeam investigation would lead to an over-prediction of the both 

critical buckling load and frequency if the nonlocal scale parameter effects between the individual 

atoms of nanobeam are not considered. Increasing the nonlocal scale parameter from 0 to 4 results 

in significant decrease in buckling load and frequency. So, it can be concluded that the buckling 

load and frequency are highly decreased with higher values of the nonlocal scale parameter. In 

addition, it is found that the small-scale effect tends to become more considerable without the  
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Fig. 4 Effect of Winkler modulus parameter on the frequency ratio of nanobeam for various 

mode numbers n (Ks=1, L/h=10, μ=2). 

 

 

presence of elastic medium. Indeed, with higher values of Winkler modulus the rate of increase of 

buckling load and frequency ratios reduces. This means that the nonlocal scale parameter effect in 

buckling and vibration response of nanobeam looses its importance as the Winkler modulus values 

increase. Thus the small-scale effect tends to become more considerable without the presence of 

elastic medium.  

Fig. 4 demonstrates the variation of frequency ratio with Winkler modulus parameter. Different 

modes of vibration are considered in this example. It is seen that the small-scale effects on 

vibration behavior are more significant for higher modes of vibration. Furthermore, as the spring 

constant factor increases, the frequency ratios increase marginally for higher modes except for first 

mode of vibration. This means that the there is comparatively less influence of elastic medium on 

higher mode frequency of nanobeam. 

 

4.3 Results for effect of Pasternak modulus parameter 
 

For the present study, the nonlocal coefficient values of nanobeam are considered as μ=0, 1, 2, 

3, and 4 nm
2
. The Pasternak shear modulus parameter (Ks) values were taken in the range of 0–10. 

The Winkler modulus parameter is assumed as Kw=100. 

Fig. 5 illustrates the influence of nonlocal scale parameter on the bending response of 

nanobeam with elastic medium modeled as Pasternak-type foundation. As the shear modulus 

parameter increases, the deflection ratio increases. However, the deflection considering the 

nonlocal model is always higher than the classical model (μ=0). With higher μ values the 

deflections are comparatively high. Contrary to the variation of deflection ratio with Winkler 

modulus, which is nonlinear, the variation of deflection ratio considering Pasternak-type 

foundation is almost linear in nature. 

Figs. 6 and 7 illustrate the trend of variation of buckling and frequency ratios of nanobeam with  

756



 

 

 

 

 

 

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium 

 

0 2 4 6 8 10

0,90

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

1,14

1,16

1,18

1,20

D
e

fl
e

c
ti
o

n
 r

a
ti
o

 

Shear modulus parameter, K
s

=0 nm
2

 =1 nm
2

 =2 nm
2

 =3 nm
2

 =4 nm
2

 

Fig. 5 Effect of Pasternak shear modulus parameter on the deflection ratio of nanobeam for 

various nonlocal parameters (Kw=100, L/h=10) 
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Fig. 6 Effect of Pasternak shear modulus parameter on the buckling load ratio of nanobeam for 

various nonlocal parameters (Kw=100, L/h=10) 

 

 

Pasternak-type foundation versus the nonlocal scale parameter. Increasing the Pasternak shearing 

layer modulus parameter leads to an increase of the buckling load and frequency ratios. The 

buckling load and frequency considering nonlocal model are always smaller than the classical 

model (μ=0). With higher μ values the buckling loads and frequencies are comparatively less. 

Contrary to the variation of buckling load and frequency ratios with Winkler modulus, which is  
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Fig. 7 Effect of Pasternak shear modulus parameter on the frequency ratio of nanobeam for 

various nonlocal parameters (Kw=100, L/h=10) 
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Fig. 8 Effect of Pasternak shear modulus parameter on the frequency ratio of nanobeam for 

various mode numbers n (Kw=100, L/h=10, μ=2) 

 

 

nonlinear, it is observed that these quantities increase almost linearly as the Pasternak shearing 

layer modulus parameter increases. 

Fig. 8 displays the variation of frequency ratio with respect to Pasternak shear modulus 

parameter for different modes of vibration. It is seen from figure that the nonlocality effects on 

vibration response are more considerable for higher modes of vibration. Furthermore, the increase 

in the Pasternak shearing layer modulus parameter yields in higher frequency ratios. The trend of 

increase in frequency ratio is linear in nature for all the modes of vibration considered. 
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5. Conclusions 
 

In this study, the static, buckling and vibration behaviors of nanoscale-beams embedded in an 

elastic medium is investigated by proposing a new nonlocal hyperbolic shear deformation beam 

theory. The nonlocal Eringen’s elasticity model is considered to account for small-scale effects. 

Both Winkler-type and Pasternak-type models are utilized to simulate the interaction of the 

nanobeam with a surrounding elastic medium. The results demonstrate that the nonlocality 

parameter has a notable effect on the bending, buckling and vibration response of nanobeam. 

Deflections, buckling loads and frequencies of the nanobeams vary nonlinearly when the elastic 

medium is modeled as Winkler-type foundation. While, these quantities of the nanobeams vary 

linearly with elastic medium modeled as Pasternak-type foundation. The formulation lends itself 

particularly well to nanostructures studied with advanced shear deformation theories (El Meiche et 

al. 2011, Houari et al. 2013, Saidi et al. 2013, Tounsi et al. 2013c, Bousahla et al. 2014, Fekrar et 

al. 2014, Hamidi et al. 2015, Chattibi et al. 2015, Bouchafa et al. 2015, Bennai et al. 2015), which 

will be considered in the near future. 
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