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Abstract.  A method based on derivatives of eigen-parameters is presented for damage detection in 

discrete systems with dampers. The damage is simulated by decrease on the stiffness coefficient and increase 

of the damping coefficient. In the forward analysis, the derivatives of eigen-parameters are derived for the 

discrete system. In the inverse analysis, a derivative of eigen-parameters based model updating approach is 

used to identify damages in frequency domain. Two numerical examples are investigated to illustrate 

efficiency and accuracy of the proposed method. Studies in this paper indicate that the proposed method is 

efficient and robust for both single and multiple damages and is insensitive to measurement noise. And 

satisfactory identified results can be obtained from few numbers of iterations. 
 

Keywords:  damage detection; stiffness; damping; derivatives of eigen-parameters; model updating; 

discrete system 

 
 
1. Introduction 
 

Some forms of damage (such as corrosion, fatigue induced crack and creep, etc.) cause a 

change in the structural physical parameters (stiffness or damping, etc.). And the change of 

stiffness or damping would affect the modal parameters of a structure. So estimation of the modal 

parameters can find such localized damages. Among the numerous researches of damage 

detection, the techniques based on damage-induced changes in the modal parameters have gained 

increasing attention in the last few years (Cawley and Adams 1979, Salawu 1997, Pandey et al. 

1991, Nobahari and Seyedpoor 2013).  

Hassiotis (1999) presented a method to find the location and magnitude of damage in a 

structure using data from dynamic tests. The method uses the sensitivity of the flexibility matrix to 

changes in the natural frequencies of the structure to identify the damage. A statistical damage 

identification algorithm based on frequency changes is developed to account for the effects of 

random noise in both the vibration data and finite element model by Xia and Hao (2003). Liu and 

Yang (2006) proposed a three-step (number of damaged elements, damage localization and 
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quantification) damage identification method, which makes use of a subset of measured 

eigenvalues and eigenvectors. The system matrices of a frame element are decomposed into their 

static eigenvalues and eigenvectors and their inspection is used to derive the damages by Wu and 

Law (2007). Frequency shifts for the first few fundamental modes is used to generate the Fourier 

coefficients of stiffness variation caused by damage, in a rod and beam element by Morassi (2008). 

Raghuprasad et al. (2008) presented the eigenvalue sensitivity equations, derived from first-order 

perturbation technique for typical infra-structural systems. Gopalakrishnan et al. (2010) proposed 

two methodologies for damage identification from measured natural frequencies of a contiguously 

damaged reinforced concrete beam, idealised with distributed damage model. 

Eigen-pair derivatives have also been used in damage detection. Method of this kind can detect 

structural damage by directly using the incomplete modal parameters without any eigenvector 

expansion or model reduction, such as the eigenvalue sensitivity and the eigenvector sensitivity. 

Wong et al. (1995) proposed a perturbation method to detect damage of a multi-storey building by 

combining the eigenvalue sensitivity with the eigenvector sensitivity. Zhao and DeWolf (1999) 

investigated the sensitivity coefficient of the natural frequencies, mode shapes and modal 

flexibilities with respect to the elements of the stiffness matrix. Li et al. (2007) derived sensitivity 

coefficient expressions of modal parameters of shear-type frame structures for damage detection. 

Yang (2009) presented a mixed sensitivity method to identify structural damage by combining the 

eigenvalue sensitivity with the flexibility sensitivity. 

Real vibration structures are approximately modeled as discrete systems. Discrete vibration 

systems are common in structural dynamics. In lots of situations, finite element method is used to 

model the dynamic behavior of the continuous system. Zhu et al. (2011) developed a method to 

identify damage in shear buildings using the change in the first mode shape slopes. Dilena and 

Morassi (2006) dealt with the identification of a single defect in a discrete spring-mass or 

beam-like system. The dynamics of a discrete structural system is characterized by its eigen-pairs, 

i.e., eigenvalues and eigenvectors. Parameter changes in the system will result in variations in its 

dynamic characteristics. The effective calculation of eigen-pair derivatives is essential in 

determining the impact of parameter changes upon the system’s dynamic behavior. 

To the best knowledge of the authors, most of the damage detection in frequency domain 

assume that the damages only caused by the changes in stiffness but neglecting the increase of 

damping. It often remains considerable doubt on how the damping behavior should be represented. 

In this paper, an eigen-pair derivatives based method is presented for damage detection. The 

advantage of the method is that it can consider the changes in stiffness and damping both and is 

very sensitive to damage. Two discrete systems are used in evaluating the proposed method. And 

the method has also been applied to the systems with dampers in which damage is represented by 

changes in both stiffness and damping coefficients. The effects of artificial measurement noise on 

the identified results are investigated. The proposed method is computationally efficient and 

numerically robust. 

 
 
2. Theory 
 

2.1 Mass-spring systems 
 
A mass-spring-damper system consists of n masses mi, (i=1,2,...,n), which are connected 

consecutively by linear elastic springs ki, (i=1,2,...,n) and dampers ci, (i=1,2,...,n), as shown in Fig. 1.  
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Fig. 1 Mass-spring system 

 

 
The equation of motion for the discrete structural system can be expressed as 

  t  Md Cd Kd F                              (1) 

where d , d and d are the acceleration, velocity and displacement response vectors of the  

structure, respectively. F(t) is a vector of applied forces. The symmetrical matrix M is diagonal 

with mass values mi, e.g., M=diag (m1, m2,...,mn). K and C are the tri-diagonal positive 

semi-definite matrices as 

 

1 2 2

2 2 3 3

3 3 4

1

0 0 0

0 0

0 0 0

0 0 0

0 0 0

n n n

n n

k k k

k k k k

k k k

k k k

k k



  
 
   

  
  
 
  
   

K                 (2) 

 

1 2 2

2 2 3 3

3 3 4

1

0 0 0

0 0

0 0 0

0 0 0

0 0 0

n n n

n n

c c c

c c c c

c c c

c c c

c c



  
 
   

  
  
 
  
   

C                  (3) 

Let the state vector be 
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Eq. (1) can be rewritten as 

  x Ax BF                                (6) 
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2.2 Eigen-pair derivatives of the discrete structural system 
 

For the simplicity, we assume the eigenvalues are distinctive. The situation of repeated 

eigenvalues can be found in Liu (2013). For the ith eigen-pair {λi, ϕi} equation of the matrix A, we 

have 

 i i iA  . (7) 

By differentiating Eq. (7) with respect to a system parameter α 
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For a proportionally damped system, we have 
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where W is a weighting matrix, which is taken as a unit matrix in this study. 

Combing Eqs. (8)-(9), we have 
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From the above equation, the first-order eigen-pair derivatives can be obtained 
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2.3 Inverse problem 
 
In the forward analysis, the eigen-pair derivatives of a discrete structural system can be 

calculated by Eq. (11). In the inverse problem, the system parameters are required to be identified 

from the measured modal parameters. In other words, the parameters are chosen to best fit the 

experiment data. 

Penalty function method is generally used for modal sensitivity with a truncated Taylor series 

expansion in terms of the unknown parameters (Friswell and Mottershead 1995). In this paper, the 

truncated series of the dynamic responses in terms of the system parameter α are used to derive the 

sensitivity-based formulation. In the penalty function method, the identification problem can be 

shown as follows 

    S E , (12) 

where {Δα} is the perturbation in the parameters, S is the two-dimensional sensitivity matrix. 
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When writing in full, ΔE can be expressed as  
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where ΔE is the error vector in the measured output. 

And Eq. (12) means finding the {Δα}, which the calculated modal parameters best match the 

measured ones. It can be solved by simple least-squares method as follows 

  
1

T T


    S S S E . (15) 

Like many other inverse problems, Eq. (15) is an ill-conditioned problem. In order to provide 

bounds to the solution, the damped least-squares method (DLS) (Tikhonov 1963) is used and 

singular-value decomposition is used in the pseudo-inverse calculation. Eq. (15) can be written in 

the following form in the DLS method 

    
1

T T 


   S S I S E . (16) 

where β is the non-negative damping coefficient governing the participation of least-squares error 

in the solution. The solution of Eq. (16) is equivalent to minimizing the function 

   
2 2

,J          S E  (17) 

with the second term in Eq. (17) provides bounds to the solution. When the parameter β 

approaches zero, the estimated vector {Δα} approaches to the solution obtained from the simple 

least-squares method. L-curve method (Hansen 1992) is used in this paper to obtain the optimal 

regularization parameter β. 

Then the updated parameter αi+1 of the ith iteration can be obtained in the next iteration as 

follow 

 1i i i       (18) 
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Fig. 2 6 DOFs mass–spring–damper system 

 

 

The convergence is recognized as accomplished when the following criterion is met 

 
1

Tol
i i

i

 


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In this study, the tolerance Tol is taken as 1×10
-8

. 

 

2.4 Effect of artificial measurement noise 
 

The numerical examples will study the effect of artificial measurement noise on the 

identification. Numerically, white noise is added to the mode shapes to simulate the noisy data 

with 

  noise, p noiseij ij ijE N        (20) 

where ϕnoise,ij and ϕij are the mode shape components of the jth mode at the ith degrees of freedom 

with noise and without noise, respectively; Ep is the percentage noise level, Nnoise is a standard 

normal distribution with zero mean and unit standard deviation, σ(ϕij) is the standard deviation of 

the calculated acceleration response. The effect of artificial measurement noise on the identified 

extent results is studied. 

 

 

3. Numerical examples 
 

3.1 Example 1: A mass–spring–damper system 
 

As shown in Fig. 2, a mass-spring-damper system with 6 DOFs is studied as an example to 

illustrate the proposed method. The parameters are mi=2 kg, kj=3e5 N/m, cj=0.5 Ns/m (i=1,2,...,6; 

j=1,2,...,5). The first 4 modes are used to identify the damage. Local damage is introduced as 

changes in stiffness and damping coefficients, but the other properties remain unchanged.  

 

Study case 1: Identification of a single damage 
It is assumed that a single damage located at element 4 with parameter k4 perturbed by −30% or 

with parameter c4 perturbed by +20%. The identified result is shown in Figs. 3-4. Even with 5% of 

artificial measurement noise, the results of change of k4 and c4 are −29.87% and +19.89%, 

respectively. It is obvious that the single damage, together with the change of damping, has been 

identified accurately. 

 
Study case 2: Identification of multiple small damages 
In this case, two damages in the system are studied. These two damages locate at 3rd and 4th 

element with a change in parameters k3 and c4 by -3% and +2%, respectively. The identified  
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Fig. 3 Reduction in stiffness of a single damage 
 

 

Fig. 4 Increase in damping of a single damage 
 

 
Fig. 5 Reduction in stiffness of multiple small damages 

 

 

results are presented in Figs. 5-6. Because it is small damages identification in this case, the 

undamaged elements are identified to have about 0.5% reduction of stiffness parameters when the  
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Fig. 6 Increase in damping of multiple small damages 

 

 

Fig. 7 Damage identification result for each iteration (stiffness parameter) 

 

 

Fig. 8 Damage identification result for each iteration (damping parameter) 
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noise level is 5%. But comparing to the value of damaged element, it still can eliminate the 

undamaged elements and identified the damage extents successfully. After 20 iterations as shown 

in Figs. 7-8, both of stiffness and damping parameters are identified successfully from the 

proposed method. 

 
Study case 3: Identification of multiple large damages 
It is assumed that four damages located at 2nd, 3rd and 4th elements with parameters k2, k4, c3 

and c4 perturbed by −10%, −20%, +30% and +40%, respectively. Comparing with case 2, the 

errors of these identified results are more accurate as shown in Figs. 9-10. With 5% noise level, the 

identified changes of stiffness and damping parameters are −9.66%, −19.85%, +30.18% and 

+39.96%, respectively. In this case, the results are identified accurately from the proposed method 

after 10 iterations as shown in Figs. 11-12. Comparing to the above case, it is easier to identify the 

large damages through the proposed method. 

 

Study case 4: Effect of measurement noise 
In this study case, the assumption of the damages is the same as the case 3, and there are 4 

different noise levels. The identified results are shown in Table 1. It reveals that the proposed 

 

 

 

Fig. 9 Reduction in stiffness of multiple large damages 

 

 

Fig. 10 Increase in damping of multiple large damages 
 

695



 

 

 

 

 

 

H. Li, J.K. Liu and Z.R. Lu 

 

 

Fig. 11 Damage identification result for each iteration (stiffness parameter) 

 

 

Fig. 12 Damage identification result for each iteration (damping parameter) 

 
Table 1 Results for damage identification of multiple damages 

Scenarios Noise 

Identified stiffness parameters Identified damping parameters 

Element No. 2 Element No. 4 Element No. 3 Element No. 4 

Red. (%) Res. (%) Red. (%) Res. (%) Inc. (%) Res. (%) Inc. (%) Res. (%) 

1 Nil 10 0 20 0 30 0 40 0 

2 5% 9.66 0.34 19.85 0.15 30.18 0.18 39.96 0.04 

3 10% 9.41 0.59 19.80 0.20 30.35 0.35 39.93 0.07 

4 15% 9.17 0.83 19.74 0.26 30.52 0.52 39.89 0.11 

Note: “Red.” denotes Reduction, “Inc” denotes Increase, “Res.” denotes Relative errors. 

 

 

method can identify the damages accurately when there is no noise. With the increase of the 

measurement noise level, identification errors become larger. But even with 15% noise level, the 

identified errors are still under 1%. These illustrate the efficiency and accuracy of the proposed 

method. 
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Fig. 13 An eight-storey shear building 

 

 
Fig. 14 Reduction only in stiffness of multiple damages 

 
 

3.2 Example 2: An eight-storey shear building 
 
The second example concerns an eight-storey shear building, as shown in Fig. 13. The column 

masses are considered negligible in comparison with the floor masses, which have been assumed 

equal to mi=8 kg (i=1,2,...,8), the shear stiffness and damping of each story of the undamaged 

system are equal to ki=1.2e6 N/m, and ci=2 Ns/m (i=1,2,...,8), respectively. Local damage is 

introduced as change in stiffness or damping coefficients, but the other properties remain 

unchanged as the first example. 

 
Study case 5: Identification of multiple damages in stiffness 
In this case, only reductions of stiffness parameter will be considered as damages. It is assumed  
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Fig. 15 Increase only in damping of multiple damages 

 

 
Fig. 16 Reduction in stiffness of multiple damages 

 

 

that three damages located at 1st, 4th and 7th elements corresponding to reductions of 20%, 30% 

and 40% of the initial value of stiffness k1, k4 and k7, respectively. The results of identification are 

presented in Fig. 14. When there is no measurement noise, the three damages have been identified 

with good accuracy. And the identified results are still acceptable with 5% noise level. The max 

identified error is 5.6% in the 4th element. 

 

Study case 6: Identification of multiple damages in damping 
In this case, only changes of damping parameter will be considered as damages. Three damages 

located at 2nd, 5th and 7th elements corresponding to increase of 30%, 20% and 40% of the initial 

value of damping c2, c5 and c7, respectively. Fig. 15 shows that the identified results, even with 5% 

noise level, all the damages have been identified accurately. The deviations from the exact severity 

of the damage are negligible for the case considered. 

 
Study case 7: Identification of multiple damages 
To illustrate the effectiveness and accuracy of the proposed method, this case is characterized  
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Fig. 17 Increase in damping of multiple damages 

 

 

Fig. 18 Damage identification result for each iteration (stiffness parameter) 

 

 

Fig. 19 Damage identification result for each iteration (damping parameter) 
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Table 2 Identified results obtained from different number of modal data 

Mode 

number 

Identified stiffness parameters Identified damping parameters 

Element No. 1 Element No. 4 Element No. 7 Element No. 2 Element No. 5 Element No. 7 

Red. 

(%) 

Res. 

(%) 

Red. 

(%) 

Res. 

(%) 

Red. 

(%) 

Res. 

(%) 
Inc. (%) 

Res. 

(%) 
Inc. (%) 

Res. 

(%) 
Inc. (%) 

Res. 

(%) 

2 28.30 8.30 25.93 4.07 27.50 12.50 27.68 2.32 19.42 0.58 28.59 11.41 

4 22.30 2.30 22.86 7.14 39.10 0.90 34.87 4.87 18.57 1.43 39.17 0.83 

6 20.30 0.30 29.49 0.51 39.75 0.25 29.00 1.00 20.18 0.18 39.29 0.71 

Note: “Red.” denotes Reduction, “Inc” denotes Increase, “Res.” denotes Relative errors. 

 

 

by the changes in stiffness and damping simultaneously. It is assumed that five damages located at 

1st, 2nd, 4th, 5th and 7th elements corresponding to reductions of 20%, 30% and 40% of the initial 

value of stiffness k1, k4 and k7, and increase of 30%, 20% and 40% of the initial value of damping 

c2, c5 and c7, respectively. The identified results are shown in Figs. 16-17. Comparing to the 

previous case, errors of identified results are amplified when the numbers of damages increased in 

this case. The 4th element may be considered as a damaged element because the increase of 

damping in this element is identified to be 13.24% as shown in Fig. 17. But except this situation, 

the identified results are acceptable with max identified error 7.14% at 4th element. Figs. 18-19 

show the evolution of the changes in stiffness and damping parameters with iterations for all 8 

elements of the building. One can find that the results begin to converge after 10 iterations. 

 
Study case 8: Comparison of identified results from different number of modal data 
In this case, the assumption of the damages is the same as the case 7. The mode shapes are 

contaminated with 5% noise. The identified results obtained from different number of modal data 

are listed in Table 2. In three different scenarios, when only two modes are used, it is difficult to 

localize the damage site because the undamaged elements also have large change value of stiffness 

or damping. Apparently, more modal data can achieve satisfactory results. In the last scenario, the 

errors of identified results are under 1% with good accuracy. 

 
 
4. Conclusions 
 

An eigen-pair derivatives method for damage detection in a discrete system has been developed 

in this study, which considers the sensitivities of the eigenvalue and eigen vector. Two numerical 

examples are studied to verify the presented method effective in identifying both stiffness and 

damping parameters. Studies in this paper indicate that the proposed method is efficient and robust 

for both single and multiple damages. And ideal identified results can be obtained from few 

numbers of iterations. The results are satisfactory even with measurement noise. And more modal 

data can improve the accuracy of identified results. 
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