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Abstract.  There are so many applications of perforated pates with various penetration patterns. If they are 

penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a 

benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent 

material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary 

to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent 

modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing 

the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to 

the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially 

perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown 

by comparing natural frequencies of perforated and homogeneous solid plates from finite element method 

and analytical method. 
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1. Introduction 
 

The perforated plates are used widely for various applications in the nuclear industry (Chang et 

al. 2013). To verify the design adequacy it is necessary to perform the finite element analyses due 

to various dynamic loads such as pump pulsation, random turbulence and earthquake (Ko and Kim 

2013, Jhung 1997), and the prerequisite of them is to get the modal characteristics, which needs 

the finite element model. But if a component have so many holes and especially it is submerged in 

the fluid, it is time consuming to make a finite element model and it will take a lot of time and 

need a lot of memory space to perform the analysis (Kim et al. 2014, Kerboua et al. 2008). 

Therefore, the concept of equivalent material properties is introduced so that the solid plate is used 

instead of the perforated one. In this case the equivalent material properties must be defined so as 

to show the same characteristics between the solid plate with equivalent material properties and 

perforated plate with original material properties (Cernescu et al. 2014). 
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The effective elastic constants given by O’Donnell (1973) and Slot and O’Donnell (1971) may 

be conservatively used for all loading conditions, which is adopted by ASME PVP Code (2007). 

Using these effective elastic properties, the designer is able to determine the deflections of the 

perforated sheet for any geometry of application and any loading conditions using available elastic 

solutions. However the effective elastic constants given by O’Donnell (1973) are not confirmed 

for the modal analysis of the perforated plate because they are plane stress effective elastic 

constants based on the in-plane loadings. Jhung and Jeong (2015) developed the coefficients of 

polynomials for the normalized effective modulus of elasticity of the perforated plate with a square 

penetration pattern. They also applied them to the partially perforated plate with a square 

penetration pattern and fixed edges, verifying the adequacy of the suggested equivalent properties 

by comparing the natural frequencies between finite element analysis and theoretical method. 

Therefore, in this study to extend the previous study of Jhung and Jeong (2015), the natural 

frequencies of the perforated plate with a triangular penetration pattern are obtained as a function 

of ligament efficiency using finite element analysis. And they are used to extract the effective 

modulus of elasticity, which is applied to modal analysis of a partially perforated rectangular plate 

using a homogeneous finite element model. The natural frequencies and the corresponding mode 

shapes of the homogeneous model are compared with those of the detailed finite element analysis 

model of the partially perforated plate in order to check the validity of the effective modulus of 

elasticity.  

The suggested effective modulus of elasticity can be applicable to the partially perforated plates 

to reduce the finite element model size and provide an effective method for dynamic analysis such 

as modal analysis and seismic analysis based on the finite element method. 

 

 

2. Theoretical development for natural frequency 
 

To apply the Rayleigh-Ritz approach (Cupial 1997, Ilanko and Monterrubio 2014) to the free 

vibration analysis of the perforated structure, each mode shape is approximated by a combination 

of a finite number of admissible functions, Wmn (x,y), and an appropriate unknown coefficient, qmn 
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where the vector q of the unknown parameters is introduced to perform numerical calculations 
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A mathematical model of a partially perforated rectangular plate with perforated and solid 

regions is shown in Fig. 1, where A and B are the width and length of the plate, respectively. The 

width of peripheral solid region is given as G and the width of the central perforated region is L. 

The length of peripheral solid region is given as S and the width of the central perforated region is 

K. The total reference kinetic energy T
*
 of the partially perforated rectangular plate with the 

thickness of h and the density  can be obtained by summation of imperforated peripheral region 

and central perforated region 
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Fig. 1 Partially perforated rectangular plate model 

 

 

where matrices ZO and ZC of Eq. (3) can be defined as 
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Also, the equivalent mass density of the perforated region *
 with a triangular penetration pattern 

can be calculated as 
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The total maximum potential energy V of the plate can be computed by integrating the 

derivatives of the admissible modal functions along the imperforated peripheral region and central 

perforated region 
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where D and D
*
 are the flexural rigidities of the solid and perforated plates, respectively. 

Inserting the admissible functions into Eqs. (7) and (8) gives the total maximum potential 

energy of the partially perforated square plates as a matrix form 
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The apostrophe (’) in Eqs. (12) through (27) also indicates a derivative with respect to the 

corresponding variable. Similarly, minimizing the Rayleigh quotient with respect to the unknown 

parameters q, the Galerkin equation yields 
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3. Determination of equivalent material properties 
 

To extract the equivalent modulus of elasticity as a function of ligament efficiency, a perforated 

square plate with a triangular penetration pattern of holes was examined using the finite element 

analysis. The geometry and physical properties of a fully perforated square plate model are listed 

in Table 1. 

The configuration of the perforated square plate illustrated in Fig. 2 is used to extract the 

equivalent material property or effective modulus of elasticity. The number of circular holes in the 

plate is enough to extract the equivalent properties. The finite element model for the fully 

perforated square plate with a triangular penetration pattern of holes is shown in Fig. 3. The finite 

element analysis was carried out using commercial computer software, ANSYS (2013) with Block 

Lanczos method (Grimes et al. 1994, Li and Zhang 2013). The natural frequencies of the 

perforated plate are normalized with respect to those of imperforated solid plate as a function of 

the ligament efficiency. The ligament efficiency, (=(p–d)/p), is defined as the ligament gap 

divided by the pitch.  

Figs. 4 through 6 show normalized natural frequencies of the perforated plate with fixed, 

simply supported and free edges, respectively. As the flexural rigidity of the plate is reduced  

 

 
Table 1 Geometry and physical properties of a fully perforated square plate model. 

Physical properties  

in solid condition 

Modulus of elasticity E 69 GPa 

Poisson’s ratio  0.33 

Density  2700 kg/m
3
 

Geometry 

Perforated area a 384 mm×384 mm 

Circular hole diameter d 0~15.6 mm 

Pitch p 16.0 mm 

Thickness h 3 mm 
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   (Unit : mm) 

Fig. 2 Perforated square plate model to extract equivalent material properties 

 

 

Fig. 3 Typical finite element analysis model of a square plate 
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Fig. 4 Normalized natural frequency of a perforated square plate with fixed edges 

 

 

rapidly and the inertia of the plate is proportionally reduced with the hole area, the normalized 

natural frequencies are decrease with the hole size. The normalized natural frequencies for the 

fixed and simply supported cases can be categorized into three regions; the first region between 

approximately =0.8 and =1.0, shows a slow reduction in normalized natural frequencies; the 

second region between approximately =0.8 and =0.2, represents a linear reduction of 

normalized natural frequencies, finally; the third region, less than =0.2, reveals an abrupt 

reduction in normalized natural frequencies.  

As a rule, for the fixed case, the normalized natural frequencies of the perforated square plate 

do not depend on the mode number but the ligament efficiency only as illustrated in Fig. 4. On the 

contrary, the normalized natural frequencies of the perforated square plate with simply supported 

and free edges depend on not only the mode number but also the ligament efficiency as illustrated 

in Figs. 5 and 6. As shown in Fig. 5, the normalized natural frequencies of the perforated square 

plate with simply supported edges do not depend on the mode number in the higher ligament 

efficiency, but they spread wide at the narrow ligament range according to the mode numbers.  

The first mode normalized natural frequency of the perforated square plate with free edges is 

linearly reduced slowly from unity to approximately 0.9 in the range of =1.0 to 0.3, and then it is 

drastically reduced with a hole size when the ligament efficiency, is less than 0.3. On the other 

hand, the third mode normalized natural frequency of the perforated square plate with free edges 

linearly increase in the range of =0.1~0.8. The normalized natural frequency of the perforated 

square plate with the free edges seriously depends on the mode number when the ligament 

efficiency is less than 0.80. As a consequence, it is needless to say that a fixed effective flexural 

rigidity cannot exist independently of the plate boundary condition. Therefore, the suggestion of  
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Fig. 5 Normalized natural frequency of a perforated square plate with simply supported edges 
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Fig. 6 Normalized natural frequency of the perforated square plate with free edges 

 

 

O’Donnell (1973) and Slot and O’Donnell (1971), which is adopted by ASME PVP Code, Section 

III, Division 1, Appendices, Non-mandatory Appendix A (ASME 2007), may lead to inadequate 

results in dynamic analysis of perforated plates. 
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Fig. 7 Effective modulus of elasticity for a perforated square plate with fixed edges 

 

 

Fig. 8 Effective modulus of elasticity for a perforated square plate with simply supported edges 

 

 

The effective moduli of elasticity of the perforated plate with a triangular penetration are 

obtained using an inverse method as shown in Figs. 7 and 8 by defining the equivalent elastic 

constants such that the modal characteristics of the perforated plate with original properties are the 

same as those of a solid plate with modified equivalent properties. The effective moduli of  
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Table 2 Coefficients of polynomials for the normalized effective modulus of elasticity 

Boundary condition 
Coefficients of polynomials 

C0 C1 C2 C3 C4 

Fixed edges 0.03945 1.26910 −0.51685 1.26780 −1.06239 

Simply 

supported edges 

1st mode 0.05011 1.17405 −0.51177 1.51015 −1.22555 

2nd mode 0.03929 1.20695 −0.57331 1.58789 −1.26388 

3rd mode 0.03434 1.20832 −0.55733 1.57352 −1.26190 

4th mode 0.05011 1.17405 −0.51177 1.51015 −1.22555 

5th mode 0.05011 1.17405 −0.51177 1.51015 −1.22555 

 

 

elasticity of the perforated plate with the fixed and simply supported edges approximately do not 

depend upon the mode number, but they are given as a function of the ligament efficiency. 

However, the effective modulus of elasticity of the perforated plate with the free edges seriously 

varies with both the ligament efficiency and mode number. The normalized effective moduli of 

elasticity, ψ, can be approximated by polynomials given Eq. (29).  

4

4

3

3

2

210  CCCCC                                           (29) 

The coefficients of polynomials for the normalized effective moduli of elasticity are obtained 

by the curve fitting and listed in Table 2. The coefficients of polynomials obtained by the 

polynomial curve fitting for the simply supported boundary condition depend on the mode 

numbers. 

The typical mode shapes of the perforated square plate with fixed, simply supported and free 

edges are shown in Figs. 9 through 11, respectively. The perforation of the plate can change the 

mode shapes. The 1st, 3rd, 4th, and 8th mode shapes of the perforated square plate with fixed 

edges are identical to those of the imperforated solid square plate. However, the 2nd, 5th, 6th, 7th, 

9th, 10
th
 and 11th mode shapes of the perforated square plate with fixed edges are different from 

those of the imperforated solid square plate. The distortion in mode shapes of the perforated square 

plate may cause the boundary rigidity of the plate. Although the square penetration pattern of a 

square plate can make an identical geometric boundary, the triangular penetration pattern of the 

square plate cannot make an identical geometric boundary. Therefore, the flexural rigidity in width 

along the horizontal edges differs from that in length along the vertical edges. It breaks the 

diagonal symmetry as shown in Figs. 9 and 10. 

The 1st, 3rd, 7th and 8th mode shapes of the perforated square plate with simply supported 

edges are identical to those of the imperforated solid square plate with the same edges. However, 

the 2nd, 4th, 5th, 6th, 9th, 10th and 11th mode shapes of the perforated square plate with simply 

supported edges are different from those of the imperforated solid square plate. It also shows that 

the perforation of the square plate tends to make the nodal line of mode shapes straight as shown 

in the 2nd, 6th and 11th modes of Fig. 10. The similar results can be observed for the free 

boundary condition as illustrated in Fig. 11. 

 

 

4.  Results and discussion 
 

The elastic constant extracted previously is checked whether it can be applicable to the partially 

perforated rectangular plate as shown in Fig. 12 for triangular penetration patterns. The 
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1st mode (163.4 Hz) 2nd mode (333.0 Hz) 3rd mode (491.3 Hz) 

   

4th mode (597.3 Hz) 5th mode (600.4 Hz) 6th mode (748.6 Hz) 

   

7th mode (954.7 Hz) 8th mode (998.7 Hz) 9th mode (1099.0 Hz) 

   
10th mode (1104.0 Hz) 11th mode (1344.4 Hz) 12th mode (1401.3 Hz) 

Fig. 9 Typical mode shapes of a perforated square plate with fixed edges 
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1st mode (88.5 Hz) 2nd mode (220.8 Hz) 3rd mode (354.2 Hz) 

   
4th mode (441.0 Hz) 5th mode (441.1 Hz) 6th mode (575.1 Hz) 

   

7th mode (749.4 Hz) 8th mode (797.2 Hz) 9th mode (883.7 Hz) 

   
10th mode (884.2 Hz) 11th mode (1107.0 Hz) 12th mode (1146.0 Hz) 

Fig. 10 Typical mode shapes of a perforated square plate with simply supported edges 
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1st mode (63.5 Hz) 2nd mode (91.4 Hz) 3rd mode (104.6 Hz) 

   

4th mode (161.0 Hz) 5th mode (270.9 Hz) 6th mode (293.8 Hz) 

   
7th mode (321.2 Hz) 8th mode (343.5 Hz) 9th mode (482.8 Hz) 

   
10th mode (525.2 Hz) 11th mode (539.8 Hz) 12th mode (590.0 Hz) 

Fig. 11 Typical mode shapes of a perforated square plate with free edges 
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Fig. 12 Model of a partially perforated rectangular plate with a triangular penetration pattern 

 

 

geometry and material properties are listed in Table 3. The partially perforated plates are assumed 

as a rectangular plate which is divided into two regions, inner perforated region and peripheral 

solid region, as shown in Fig. 1. As the inner perforated region can be regarded as a homogeneous 

plate which has an effective modulus of elasticity and an equivalent mass density, but the outer 

peripheral solid region has an original modulus of elasticity and mass density (Jhung and Jeong 

2015). The effective modulus of elasticity of the inner perforated region is determined by Eq. (29) 

and the equivalent mass density is calculated by Eq. (6). Finally, the theoretical natural frequencies 

can be calculated using Eq. (28). Finite element analyses for the partially perforated plates defined 

by Fig. 12 and Table 3 were performed to confirm the theoretical method characterized by Eq. (28) 

using ANSYS. 

The natural frequencies of the partially perforated rectangular plate are extracted by the 

suggested theory and two finite element analyses. The results from finite element analysis using 

effective modulus of elasticity (E
*
) are compared with those from finite element analyses of the 

perforated plate model. It will show validity of the effective modulus of elasticity for the 

perforated rectangular plate modal analysis. The effective modulus of elasticity calculated by Eq. 

(29) and the equivalent density (*
) given by Eq. (6) are used in the finite element analysis with 

the homogeneous model. 
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Table 3 Geometry and physical properties of a partially perforated rectangular plate model 

Physical properties  in 

solid plate 

Modulus of elasticity E 195 GPa 

Poisson’s ratio  0.30 

Density  7770 kg/m
3
 

Rectangular plate 

geometry 

Total plate area AB 1600 mm1200 mm 

Perforated area LK 1305 mm980 mm 

Circular hole diameter d 30 mm 

Pitch p 45 mm 

Thickness h 8 mm 

 
Table 4 Natural frequencies of a partially perforated rectangular plate with fixed edges 

Serial mode 

number 

Natural frequency (Hz) 
Discrepancy 

between FEM 

results (%) 

Discrepancy 

between theory 

and FEM result (%) 
Theory 

FEM (ANSYS) 

Perforated 

model 

Homogeneous 

model 

1 38.56 38.35 38.81 0.55 1.20 

2 63.11 62.78 63.73 0.53 1.51 

3 88.64 87.70 89.04 1.07 1.53 

4 102.8 101.4 103.31 1.38 1.88 

5 110.5 109.9 111.95 0.55 1.87 

6 147.6 146.3 149.51 0.89 2.19 

7 155.5 152.0 155.43 2.30 2.26 

8 160.7 159.6 162.34 0.69 1.72 

9 181.8 181.1 184.66 0.39 1.97 

10 199.3 195.5 200.30 1.94 2.46 

11 217.4 214.5 219.31 1.35 2.24 

12 220.4 216.4 221.36 1.85 2.29 

 

Table 5 Natural frequencies of a partially perforated rectangular plate with simply edges 

Serial mode 

number 

Natural frequency (Hz) 
Discrepancy 

between FEM 

results (%) 

Discrepancy 

between theory 

and FEM result (%) 
Theory 

FEM (ANSYS) 

Perforated 

model 

Homogeneous 

model 

1 19.59 18.93 19.61 3.49 3.59 

2 40.87 38.90 40.22 5.06 3.39 

3 53.72 52.72 54.19 1.90 2.79 

4 74.67 70.51 72.45 5.90 2.75 

5 79.64 74.93 77.42 6.28 3.32 

6 108.26 108.47 110.96 -0.19 2.29 

7 118.92 114.82 117.24 3.57 2.11 

8 137.55 131.67 135.29 4.46 2.75 

9 159.30 153.58 157.78 3.72 2.73 

10 172.72 166.92 171.60 3.47 2.80 

11 180.51 172.95 175.93 4.37 1.72 

12 182.96 187.08 190.85 4.34 2.02 
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Tables 4 and 5 show 12 natural frequencies of a partially perforated rectangular plate with 

fixed and simply supported edges, respectively. The discrepancies between FEM results and 

theoretical natural frequencies are less than 3%. The discrepancies are greater than those for the 

simply supported boundary condition. It may be caused by the application of first mode effective 

modulus of elasticity in the simply supported case. As a result, it is found that the maximum 

discrepancy between the estimations by the FEM analysis and theoretical results is 6.28% as listed 

in Table 5. Therefore, the effective modulus of elasticity cannot be recommended in the modal 

analysis of the partially perforated plate with simply supported edges. However, it is clear that the 

Rayleigh-Ritz method applying the effective modulus of elasticity and the equivalent density is 

effective in the analysis of the partially perforated rectangular plate with fixed edges.   

 

 

  
1st mode (38.35 Hz) 2nd mode (62.78 Hz) 

  
3rd mode (87.70 Hz) 4th mode (101.4 Hz) 

  
5th mode (109.9 Hz) 6th mode (146.3 Hz) 

Fig. 13 Mode shapes for a partially perforated rectangular plate with fixed edges 
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Modal characteristics of partially perforated rectangular plate with triangular penetration pattern 

                       

            

 

  
7th mode (152.0 Hz) 8th mode (159.6 Hz) 

Fig. 13 Continued 

 

 

The mode shapes of the rectangular perforated plates with the fixed and simply supported 

edges, for the full model, are illustrated in Figs. 13 and 14, respectively. The mode shapes of the 

rectangular perforated plates with the fixed and simply supported edges, for the simplified model 

using the equivalent material properties, are illustrated in Figs. 15 and 16, respectively. It can be 

found that the mode shapes of the full model are also preserved in those of the simplified 

homogeneous model. 

 

 

  
1st mode (18.93 Hz) 2nd mode (38.90 Hz) 

  
3rd mode (52.72 Hz) 4th mode (70.51 Hz) 

Fig. 14 Mode shapes for a partially perforated rectangular plate with simply supported edges 
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5th mode (74.93 Hz) 6th mode (108.4 Hz) 

  
7th mode (114.8 Hz) 8th mode (131.7 Hz) 

Fig. 14 Continued 

 

  
1st mode (38.81 Hz) 2nd mode (63.73 Hz) 

  
3rd mode (89.04 Hz) 4th mode (103.31 Hz) 

Fig. 15 Mode shapes for a partially perforated rectangular plate with fixed edges using equivalent 

material properties 
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Modal characteristics of partially perforated rectangular plate with triangular penetration pattern 

                       

            

 

  
5th mode (111.95 Hz) 6th mode (149.51Hz) 

  
7th mode (155.43 Hz) 8th mode (162.34 Hz) 

Fig. 15 Continued 

 

  
1st mode (19.61 Hz) 2nd mode (40.22 Hz) 

  
3rd mode (54.19 Hz) 4th mode (72.45 Hz) 

Fig. 16 Mode shapes for a partially perforated rectangular plate with simply supported edges using 

equivalent material properties 
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5th mode (77.42 Hz) 6th mode (110.96Hz) 

  
7th mode (117.24 Hz) 8th mode (135.29 Hz) 

Fig. 16 Continued 

 

 
5. Conclusions 

 
Natural frequencies of a perforated plate with a triangular penetration pattern are obtained by 

finite element method with respect to ligament efficiency and they are used to extract the effective 

modulus of elasticity. The effective modulus of elasticity of the fully perforated plate is applied to 

the modal analysis of a partially perforated rectangular plate using a homogeneous finite element 

model. The natural frequencies and the corresponding mode shapes of the homogeneous model are 

compared with those of the detailed finite element model of the partially perforated rectangular 

plate in order to check the validity of the effective modulus of elasticity. In addition, theoretical 

method to calculate the natural frequencies of a partially perforated rectangular plate is suggested 

according to the Rayleigh-Ritz method, and its results are also compared to those from the finite 

element analysis, showing that the suggested effective modulus of elasticity can be applicable to 

the partially perforated rectangular plate with a triangular penetration pattern with the fixed 

boundary condition. It will reduce the finite element model size, computation time and storage 

memory for the dynamic analysis based on the finite element method. 
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