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Abstract.  Dolphin echolocation (DE) optimization algorithm is a recently developed meta-heuristic in 

which echolocation behavior of Dolphins is utilized for seeking a design space. The computational 

performance of meta-heuristic algorithms is highly dependent to its internal parameters. But the 

computational time of adjusting these parameters is usually extensive. The DE is an efficient optimization 

algorithm as it includes few internal parameters compared with other meta-heuristics. In the present paper a 

modified Dolphin echolocation (MDE) algorithm is proposed for optimization of steel frame structures. In 

the MDE the step locations are determined using one-dimensional chaotic maps and this improves the 

convergence behavior of the algorithm. The effectiveness of the proposed MDE algorithm is illustrated in 

three benchmark steel frame optimization test examples. Results demonstrate the efficiency of the proposed 

MDE algorithm in finding better solutions compared to standard DE and other existing algorithms. 
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1. Introduction 
 

In the field of structural engineering one of the serious problems is designing the cheapest 

possible structures with the minimum amount of used material. In the face of increase in price of 

materials, the civil engineers and the manufacturers are forced to reduce the costs of construction 

and shorten the implementation period to maintain their competitiveness. The use of modern 

optimization methods thus becomes a great opportunity in the area of civil and structural 

engineering. Optimum design of structures is a computationally difficult problem. The difficulty 

lays in complex relationships between design variables and constraints of the optimization 

problem and the large dimensions of the design space. This necessitates that an efficient algorithm 

to be utilized for dealing with such problems (Gholizadeh and Fattahi 2014).  

In the recent decades meta-heuristic optimization algorithms have been developed based on 

some natural phenomena. Every meta-heuristic method consists of a group of search agents that 

explore the feasible region based on randomization and some specified rules (Kaveh and Farhoudi 

2011) inspired the laws of natural phenomena. Meta-heuristics are more and more popular in 

different research areas as they are simple to design and implement, and are very flexible (Yang et 
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al. 2013, Gandomi et al. 2013). Based on a huge number of publications in the field of meta-

heuristic applications, genetic algorithm (GA) (Holland 1975, Goldberg 1989), particle swarm 

optimization (PSO) (Eberhart and Kennedy 1995), firefly algorithm (FA) (Yang 2008) and bat 

algorithm (BA) (Yang 2010) are the most popular meta-heuristics and many successful 

applications of theme have been reported. During the recent years, many new meta-heuristics have 

been proposed by researchers. Charged system search (CSS) is one of the recent meta-heuristics 

proposed by Kaveh and Talatahari (2010a) that uses the electric laws of physics and the Newtonian 

laws of mechanics to guide the charged particles (CPs) to search the design space. Gandomi and 

Alavi (2012) proposed krill herd algorithm (KHA) based on the simulation of the herding behavior 

of krill individuals for solving benchmark optimization problems. Talatahari et al. (2014) proposed 

a hybrid algorithm based on the concepts of CSS to optimum seismic design of steel frames 

considering four performance levels. Talatahari et al. (2015) introduced a new hybrid eagle 

strategy with differential evolution (ES-DE) to optimum design of frame structures. Kaveh and 

Farhoudi (2013) proposed a new meta-heuristic entitled Dolphin echolocation (DE) based on the 

strategies used by dolphins in their hunting process. Dolphins produce a kind of voice to locate the 

target, doing this dolphin change sonar to modify the target and its location. This fact is mimicked 

as the main feature of the DE (Kaveh and Farhoudi 2013).  

One of the powerful and popular computational tools in nonlinear dynamics is chaos theory 

(Pecora and Carroll 1990). Combination of chaos with meta-heuristic optimization algorithms to 

tune the algorithmic parameters is an efficient computational strategy in the field of optimization 

(Gandomi and Yang 2014). The chaotic sequences based GA (Gharooni-fard et al. 2010), PSO 

(Gandomi et al. 2013a), HS (Alatas 2010a), FA (Gandomi et al. 2013b), ant colony optimization 

(ACO) (Gong and Wang 2009), artificial bee colony (ABC) (Alatas 2010b), imperialist 

competitive algorithm (ICA) (Talatahari et al. 2012), simulated annealing (SA) (Mingjun and 

Huanwen 2004), krill herd algorithm (KHA) (Wang et al. 2014) and Cuckoo search (CS) (Wang et 

al. 2014) demonstrate their computational merits in comparison with their standard versions. 

In the present study, a modified Dolphin echolocation (MDE) meta-heuristic is proposed by 

incorporating chaotic maps into the DE algorithm. The proposed MDE is employed to tackle size 

optimization problem of steel frame structures.  

 

 

2. Formulation of optimization problem 
 

For optimal design of a steel frame including ne members collected in ng design groups, the 

design variables of each design group are usually selected from a given standard profile list. In this 

case, the optimization problem may be formulated as follows 

Minimize:  
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where xi is an integer value expressing the sequence numbers of steel sections assigned to ith 

group; w represents the weight of the frame, ρi and Ai are weight of unit volume and cross-

sectional area of the ith group section, respectively; nm is the number of elements collected in the 
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ith group; Lj is the length of the jth element in the ith group; gk(X) is the kth behavioral constraint.  

The lateral displacement and inter-story drift constraints are usually taken as 
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where δ is the maximum lateral displacement; H is the height of the frame structure; R is the 

maximum drift index; dk is the inter-story drift; hk is the story height of the kth floor; ns is the total 

number of stories; and RI is the inter-story drift index permitted by the code of practice. 

The stress constraints of members subjected to axial and flexural stresses are as follows: 

 
If the code of practice is selected ASD-AISC (1989) 
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If the flexural member is under tension, then the second part of Eq. (6) is used. 

In which fa represents the computed axial stress; fbx and fby are the computed flexural stresses  

due to bending of the member about its major (x) and minor (y) principal axes, respectively. 
exF   

and eyF 
 
are the Euler stresses about principal axes of the member; Fa represent the allowable axial  

stress under axial compression force alone, and is calculated depending on elastic or inelastic 

buckling failure mode of the member using ASD-AISC (1989). The allowable bending 

compressive stresses about major and minor axes are designated by Fbx and Fby; Cmx and Cmy are 

the reduction factors, introduced to counterbalance overestimation of the effect of secondary 

moments. Also, Fy is the material yield stress. 

 
If the code of practice is selected LRFD-AISC (2001) 
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where Pu is the required strength (tension or compression); Pn is the nominal axial strength 

(tension or compression); ϕc is the resistance factor; Mux and Muy are the required flexural strengths 

in the x and y directions; respectively; Mnx and Mny are the nominal flexural strengths in the x and y 

directions; and ϕb is the flexural resistance reduction factor (ϕb=0.9). 
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Fig. 1 Practical demands of beam-column joint 

 

 
The effective length factor, K, for beam and bracing members is taken equal to unity. This 

parameter for columns is calculated from the following approximate Eqs. (10) and (11) 

respectively for braced and unbraced frames, developed by Dumonteil (1992), which are accurate 

to within about −1.0% and +2.0% of the exact results (Hellesland 1994) 

281)(023

640)(413

.GG.GG

.GG.GG
K

BABA

BABA




                         (10) 

57

57)(461

.GG

.GGGG.
K

BA

BABA




                         (11) 

where GA and GB refer to stiffness ratio or relative stiffness of a column at its two ends. 

In order to satisfy practical demands geometric constraints should be considered in beam-

column framing joints (Hasancebi et al. 2011). Considering Fig. 1 the following geometric 

constraints may be considered for 2D frames 
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where bfb and bfc are the flange width of beam and column, respectively; nj is the number of joints. 

In the present work, the exterior penalty function method (EPFM) is employed to handle the 

design constraints. The EPFM transforms the basic constrained optimization problem into the 

unconstrained formulation. In this case, the pseudo unconstrained objective function can be 

represented as follows 

  







 









nj

m m
B

ne

l l

ns

k k
dp grgrgrgrXwrXΨ

1

2

1

2

1

22
})(max{0,})(max{0,})(max{0,}max{0,1)(),(   (13) 

where Ψ and r are the pseudo objective function and a positive penalty parameter, respectively. 
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3. Dolphin echolocation algorithm 
 

The echolocation behavior of Dolphins in the natural world has been described in (Au 1993) 

and here the basic concepts which are necessary for formulation of DE are briefly explained.  

A dolphin is able to generate sounds in the form of clicks. Frequency of these clicks is higher 

than that of the sounds used for communication and differs between species. When the sound 

strikes an object, some of the energy of the sound-wave is reflected back towards the dolphin. As 

soon as an echo is received, the dolphin generates another click. The time lapse between click and 

echo enables the dolphin to evaluate the distance from the object; the varying strength of the signal 

as it is received on the two sides of the dolphin’s head enabling him to evaluate the direction. By 

continuously emitting clicks and receiving echoes in this way, the dolphin can track objects and 

home in on them. The clicks are directional and are for echolocation, often occurring in a short 

series called a click train. The click rate increases when approaching an object of interest (Au 

1993). 

Regarding an optimization problem, it can be understood that echolocation is similar to 

optimization in some aspects; the process of foraging preys using echolocation in dolphins is 

similar to finding the optimum answer of a problem. As mentioned in the previous part, dolphins 

initially search all around the search space to find the prey. As soon as a dolphin approaches the 

target, the animal restricts its search, and incrementally increases its clicks in order to concentrate 

on the location. The method simulates dolphin echolocation by limiting its exploration 

proportional to the distance from the target. For making the relationship much clear, consider an 

optimization problem. Two phases can be identified: in the first phase the algorithm explores all 

around the search space to perform a global search, therefore it should look for unexplored 

regions. This task is carried out by exploring some random locations in the search space, and in the 

second phase it concentrates on investigation around better results achieved from the previous 

stage. These are obvious inherent characteristics of all meta-heuristic algorithms (Kaveh and 

Farhoudi 2013). 

As most of the meta-heuristics provide better performance in sorted design spaces, it would 

better if prior to starting the search process, the design space to be sorted out. For each design 

variable alternatives of the design space should be sorted in an ascending or descending order. In 

the case that the alternatives have more than one characteristic, ordering should be performed 

according to the most important one.  

Moreover, a curve according to which the convergence factor should change during the 

optimization process should be assigned. Here, the change of convergence factor (CF) is 

considered to be according to the following curve (Kaveh and Farhoudi 2013) 
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where PP is the predefined probability, PP1 is the convergence factor of the first loop, Loopi is the 

number of the current loop, power is the degree of the curve and Loops Number is number of loops 

in which the algorithm should reach to the convergence point. 

The main steps of DE algorithm for discrete optimization are as follows (Kaveh and Farhoudi 

2013): 

1. Initiate NL locations for a dolphin randomly. This step contains creating LNL× NV matrix, in 

which NL is the number of locations and NV is the number of variables (or dimension of each 

location). 
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2. Calculate the PP of the loop using Eq. (14). 

3. Calculate the fitness of each location. Fitness should be defined in a manner that the better 

answers get higher values. In other words the optimization goal should be to maximize the fitness. 

4. Calculate the accumulative fitness according to dolphin rules as follows: 

(a) 

    for i = 1 to the number of locations 

    for j = 1 to the number of variables 

          find the position of L(i , j) in jth column of the Alternatives matrix as A. 

    for k = -Re to Re 

        
jkAe

e

jkA AFiFitnesskR
R

AF )()( )()(
1

                                (15) 

    end 

   end 

    end 

where AF(A+k)j is the accumulative fitness of the (A+k)th alternative (numbering of the alternatives 

is identical to the ordering of the Alternative matrix) to be chosen for the jth variable; Re is the 

effective radius in which accumulative fitness of the alternative A’s neighbors are affected from its 

fitness. This radius is recommended to be not more than 1/4 of the search space. Fitness(i) is the 

fitness of location i. 

It should be added that for alternatives close to edges (where A+k is not a valid; A+k<0 or 

A+k>LAj), the AF is calculated using a reflective characteristic. Thus, if the distance of an 

alternative to the edge is less than Re, it is assumed that the same alternative exists where picture of 

the mentioned alternative can be seen, if a mirror is placed on the edge. 

(b) In order to distribute the possibility much evenly in the search space, a small value of ε is 

added to all the arrays as AF=AF+ε. Here, ε should be chosen according to the way the fitness is 

defined. It should be less than the minimum value achieved for the fitness. 

(c) Find the best location of this loop and name it “The best location”. Find the alternatives 

allocated to the variables of the best location, and let their AF be equal to zero. 

5. For variable j(j=1 to NV), calculate the probability of choosing alternative i(i=1 to ALj), according to 

the following relationship 
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6. Assign a probability equal to PP to all alternatives chosen for all variables of the best 

location and devote rest of the probability to the other alternatives according to the following 

formula 

for j = 1: Number of variables 

      for i = 1: Number of alternatives 

             if  i = The best location(j) 

                 PPPij                                                               (17)                        

          else 

             
ijij PPPP )1(                                                          (18) 

          end 

      end 
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end 

Calculate the next step locations according to the probabilities assigned to each alternative. 

     Repeat Steps 2-6 as many times as the Loops Number. 

The values of DE parameters have been given by Kaveh and Farhoudi (2013).  

 

 

4. Modified dolphin echolocation algorithm 
 

An efficient meta-heuristic optimization algorithm should possess balanced exploration and 

exploitation characteristics. For a meta-heuristic with dominant exploration characteristic the 

convergence rate would be slow while the dominant exploitation characteristic results in trapping 

in local optima. In the both cases, the meta-heuristic is not able to find the global or even near 

global optima. The diversification via randomization provides a good way to balance between 

exploration and exploitation and avoids the solutions being trapped at local optima. Employing a 

uniform distribution is not the only way to achieve randomization (Gholizadeh et al. 2014). With 

the development of theories and applications of nonlinear dynamics, chaos concept has attracted 

great attention in various fields of science and technology (Lin et al. 2012). The chaos has the 

property of the non-repetition, ergodicity, pseudo-randomness and irregularity (Pecora and Carroll 

1990) and the track of chaotic variable can travel ergodically over the whole design space. In the 

last years, many successful combinations of the chaotic sequences with various meta-heuristic 

optimization algorithms have been reported in literature (Gandomi and Yang 2014). Such a 

combination of chaos with meta-heuristics has shown some promise once the right set of chaotic 

maps is used. It is still not clear why the use of chaos in an algorithm to replace certain parameters 

may change the performance, however, empirical studies indeed indicate that chaos can have high-

level of mixing capability, and thus it can be expected that when a fixed parameter is  replaced by 

a chaotic map, the solutions generated may have higher mobility and diversity. For this reason, it 

may be useful to carry out more studies by introducing chaos to other, especially newer, meta-

heuristic algorithms (Gandomi and Yang 2014).  

In meta-heuristic algorithms randomness is often achieved by using uniform or Gaussian 

probability distributions. As chaos can have very similar properties of randomness with better 

statistical and dynamical properties, past studies (Gandomi and Yang 2014) demonstrated the 

computational advantages of replacing such randomness by chaotic maps. In order to enable the 

algorithm to provide diverse solutions, such dynamical mixing is vital.  

Due to the ergodicity and mixing properties of chaos, algorithms can potentially carry out 

iterative search steps at higher speeds than standard stochastic search with standard probability 

distributions (Coelho and Mariani 2008). In the present study, in order to achieve such potential 

the well-known Gauss (He et al. 2001), Logistic (Li et al. 2011) and Sinusoidal (Li et al. 2011) 

one-dimensional chaotic maps, respectively defined by Eqs. (19) to (21), are combined with the 

newly developed DE meta-heuristic algorithm. 
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In order to calculate the next step locations based on the probability of each alternative the 

above chaotic maps are employed. For this purpose, the following steps are added to the original 

DE and the resulted algorithm is termed as modified dolphin echolocation (MDE) algorithm. It 

should be noted that steps 1 to 6 of the MDE are same as those of the DE. For the MDE, steps 7 to 

9 are as follows:  

7. Calculate the cumulative sum of each row of the P matrix (CP). 

8. Generate a NL× NV matrix based on chaotic maps, termed as chaotic matrix (CM).  

9. Calculate new locations as follows: 

for i = 1: Number of variables 

      for j = 1: Number of locations 

             count the number, N, of values at the ith row of CP that are less than CM(i,j). 

             new location (i,j) = N. 

   end 

        end 

Repeat Steps 2-9 as many times as the Loops Number. 

All the required computer programs for performing optimization task are coded in MATLAB 

(2009) platform. 

 

 

5. Numerical examples 
 

Three benchmark steel frame optimization problems are solved by the proposed MDE 

algorithm and the results are compared with those of reported in literature. For all examples, 

PP1=0.15, Re=5, ε=1 (Kaveh and Farhoudi 2013), NL=50 and the best value of power is 

determined by sensitivity analysis. As the convergence rate of the algorithm is sensitive to the 

variations in power and in order to brevity and conciseness we have performed a sensitivity 

analysis only based on the different values of power. To achieve this, fifteen values 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 1.4 and 1.5 are considered for power and MDE is 

employed to perform 20 independent optimization runs in each case. In addition, our 

computational experiences in this study reveal that the best results of all examples are obtained in 

the case of Gauss one-dimensional chaotic map. Therefore, for brevity, only the results obtained by 

employing Gauss map are presented for each numerical example. 
 

5.1 A 3-bay 15-story planar frame 
 

The configuration, applied loads and grouping details of the structural members of a 3-bay 15-

story frame structure are shown in Fig. 2.  
There are 11 design variables in this example including 10 column sections and 1 beam 

sections related variables. The section of the beam and column element groups are chosen from all 

W-shaped sections. The material has a modulus of elasticity E=205 GPa and yield stress of 

Fy=248.2 MPa. In addition, the allowable tensile and compressive stresses are used according to 

the LRFD specification. Also, the maximum lateral displacement and maximum inter-story drift 

are limited to 23.5 cm and h/300, respectively, where h is the height of a story. In this example, the 

geometric constraints are not considered during the optimization process. The effective length 

factors of the members are calculated as Kx≥0 for a sway-permitted frame and the out-of-plane 

effective length factor is specified as Ky=1.0. Each column is considered as non-braced along its  
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Fig. 2 Topology of the 3-bay 15-story frame 

 

 

Fig. 3 The results of sensitivity analysis for the 3-bay 15-story frame 
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length, and the unbraced length for each beam member is specified as one-fifth of the span length. 

In this example, for the MDE meta-heuristic algorithm the sensitivity analysis is performed 

considering Loops Number=100 and the results shown in Fig. 3 demonstrate that the best value for 

the power parameter is equal to 0.6. 

The best results of the MDE and those of reported in literature are compared in Table 1. 

Moreover, The convergence histories of DE (Kaveh and Farhoudi 2013) and MDE are compared 

in Fig. 4. 

It can be observed that the MDE finds an optimal solution which is 12.22%, 10.35%, 9.29% 

and 5.33% lighter than those of the HPSACO (Kaveh and Talatahari 2009), ICA (Kaveh and 

Talatahari 2010b), CSS (Kaveh and Talatahari 2012) and DE (Kaveh and Farhoudi 2013), 

respectively. Also, Fig. 3 implies that the convergence rate of MDE is better than that of DE. 

For the optimum design found by MDE, the inter-story drifts profile is shown in Fig 5. The 

maximum value is 1.11 cm which is less than the allowable value of 1.16 cm. The maximum 

 

 
Table 1 Optimum designs of the 3-bay 15-story planar frame 

Design 

Variables 

HPSACO (Kaveh and 

Talatahari 2009) 

ICA (Kaveh and 

Talatahari 2010b) 

CSS (Kaveh and 

Talatahari 2012) 

DE (Kaveh and 

Farhoudi 2013) 
MDE 

1 W21×111 W24×117 W21×147 W12×87 W21×101 

2 W18×158 W21×147 W18×143 W36×182 W27×146 

3 W10×88 W27×84 W12×87 W21×93 W18×76 

4 W30×116 W27×114 W30×108 W18×106 W24×104 

5 W21×83 W14×74 W18×76 W18×65 W14×61 

6 W24×103 W18×86 W24×103 W14×90 W27×84 

7 W21×55 W12×96 W21×68 W10×45 W21×48 

8 W27×114 W24×68 W14×61 W12×65 W21×62 

9 W10×33 W10×39 W18×35 W6×25 W12×26 

10 W18×46 W12×40 W10×33 W10×45 W14×38 

11 W21×44 W21×44 W21×44 W21×44 W21×44 

Weight (kN) 426.36 417.46 412.62 395.35 374.27 

Analyses 6800 6000 5000 N/A 5000 

 

 

Fig. 4 Convergence histories of DE (Kaveh and Farhoudi 2013) and MDE for the 3-bay 15-story frame 
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Fig. 5 Inter-story drifts profile for the optimal 3-bay 15-story frame found by MDE 

 

 

Fig. 6 Element group maximum stress ratios of the optimal 3-bay 15-story frame found by MDE 

 

 

displacement is 12.19 cm which is less than its limit of 23.5 cm. Fig. 6 represents the maximum 

stress ratios in each element group of the frame. The maximum stress ratio is 0.9999. One can see 

that as well as the inter-story drift constraints, stress ratios are very close to the allowable value. In 

other words, both the inter-story drift and stress ratio constraints are active in this problem.  

  

5.2 A 3-bay 24-story planar frame 
 

Fig. 7 shows the 24-story frame and its loading and grouping conditions (Camp et al. 2005).  

The design constraints are considered based on the LRFD specification. Also, the maximum 

lateral displacement and maximum inter-story drift are limited to H/300 and h/300, respectively, 

where H is the total height of the frame and h is the height of a story.  

In this example, the geometric constraints are not checked and same as the first example Kx≥0  
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Fig. 7 Topology of the 3-bay 24-story frame 

 

 

Fig. 8 The results of sensitivity analysis for the 3-bay 24-story frame 

 

 

and Ky=1.0. The beams’ sections are chosen from all W-shaped sections, while the section of 

columns is limited to W14 sections. In this example, E=205 GPa and Fy=230.3 MPa. 
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A sensitivity analysis is performed considering Loops Number=200. The results are depicted in 

Fig. 8 indicating that the best results are obtained for Power=0.6. 

Table 2 compares the results of the MDE with those of reported in literature. 

The results indicate that the optimum design of MDE is 8.63%, 6.3%, 0.82% and 1.8% lighter 

than those of the ACO (Camp et al. 2005), HS (Degertekin 2008), TLBO (Togan 2012) and DE  

 

 
Table 2 Optimum designs of the 3-bay 24-story frame 

Design 

Variables 

ACO (Camp et 

al. 2005) 

HS (Degertekin 

2008) 
TLBO (Togan 2012) 

DE (Kaveh and 

Farhoudi 2013) 
MDE 

1 W30×90 W30×90 W30×90 W30×90 W30×90 

2 W8×18 W10×22 W8×18 W6×20 W14×22 

3 W24×55 W18×40 W24×62 W21×44 W24×55 

4 W8×21 W12×16 W6×9 W6×9 W10×12 

5 W14×145 W14×176 W14×132 W14×159 W14×132 

6 W14×132 W14×176 W14×120 W14×145 W14×109 

7 W14×132 W14×132 W14×99 W14×132 W14×120 

8 W14×132 W14×109 W14×82 W14×99 W14×82 

9 W14×68 W14×82 W14×74 W14×68 W14×61 

10 W14×53 W14×74 W14×53 W14×61 W14×53 

11 W14×43 W14×34 W14×34 W14×43 W14×26 

12 W14×43 W14×22 W14×22 W14×22 W14×22 

13 W14×145 W14×145 W14×109 W14×109 W14×99 

14 W14×145 W14×132 W14×99 W14×109 W14×109 

15 W14×120 W14×109 W14×99 W14×90 W14×99 

16 W14×90 W14×82 W14×90 W14×82 W14×90 

17 W14×90 W14×61 W14×68 W14×74 W14×82 

18 W14×61 W14×48 W14×53 W14×43 W14×53 

19 W14×30 W14×30 W14×34 W14×30 W14×43 

20 W14×26 W14×22 W14×22 W14×26 W14×22 

Weight (kN) 980.63 956.13 903.02 912.26 895.56 

Analyses 15500 13924 12000 N/A 10000 

 

 

Fig. 9 Convergence histories of DE (Kaveh and Farhoudi 2013) and MDE for the 3-bay 24-story frame 
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Fig. 10 Inter-story drifts profile for the optimal 3-bay 24-story frame found by MDE 

 

 

Fig. 11 Element group maximum stress ratios of the optimal 3-bay 24-story frame found by MDE 

 

 

(Kaveh and Farhoudi 2013), respectively. Furthermore, the proposed MDE converges to its best 

solution at less computational effort in comparison with the other meta-heuristic algorithm. Fig. 9 

compares the convergence histories of DE (Kaveh and Farhoudi 2013) and MDE indicating that 

the MDE possesses better convergence rate. 

The lateral displacement of the optimum design found by MDE is 26.85 cm, which is less than 

the maximum displacement of 29.2 cm. The inter-story drift profile and element stress ratios of 

this optimum structure are shown in Figs. 10 and 11, respectively. The maximum inter-story drift 

and stress ratio are respectively equal to 1.21 cm and 0.9993 which are very close to their 

allowable values of 1.216 cm and 1.0. These results demonstrate that the solution is feasible. In 

this example, both the inter-story drift and stress ratio constraints dominate the optimum design. 

 
5.3 A 3-bay 24-story braced planar frame 

 

Fig. 12 depicts elevation and plan views of the 24-story braced frame (Hasancebi et al. 2010). 
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Fig. 12 224-Member 24-story braced planar steel frame 

 

 

For checking the stress constraints, the provisions of ASD-AISC specification are employed. 

Geometric constraints are considered for practicality of the solution obtained as well as the work 

of Hasancebi et al. (2010). The maximum lateral displacements and inter-story drift are restricted 

to H/400 and h/400, respectively where H is the total height of the frame and h is the height of a 

story. In this example, E=203.8936 GPa and Fy=253.1 MPa.  

The 224 members of the frame are collected in 32 member groups to satisfy practical 

fabrication requirements. As shown in Fig. 12 the exterior columns are grouped together as having 

the same section over three adjacent stories, as are interior columns, beams and braces. The wide-

flange (W) profile list consisting of 297 ready sections is used to size column members, while 

beams and diagonals are selected from discrete sets of 171 and 147 economical sections selected 

from wide-flange profile list based on area and inertia properties in the former, and on area and 

radii of gyration properties in the latter. The frame is subjected to a single loading condition of 
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combined gravity (dead, live and snow loads) and lateral (wind) loads that are computed as to 

ASCE 7-05 (2005) based on the following design values (Hasancebi et al. 2010): a uniformly 

distributed gravity load of 14.62 kN/m on top story beams and of 21.22 kN/m on other story 

beams. Wind loads acting at each floor level on windward and leeward faces of the frame are 

given in Table 3. 

In order to find the best value of the power parameter a set of sensitivity analysis, considering 

Loops Number=600, is conducted and the results are shown in Fig. 13. It can be observed that the 

best results associated with Power=0.3.  

 

 
Table 3 Wind loading on 24-story braced planar steel frame 

Floor no. Windward (kN) Leeward (kN) 

1 24.62 35.80 

2 28.16 35.80 

3 31.62 35.80 

4 34.32 35.80 

5 36.59 35.80 

6 38.54 35.80 

7 40.28 35.80 

8 41.84 35.80 

9 43.28 35.80 

10 44.60 35.80 

11 45.83 35.80 

12 46.99 35.80 

13 48.07 35.80 

14 49.10 35.80 

15 50.08 35.80 

16 51.01 35.80 

17 51.90 35.80 

18 52.76 35.80 

19 53.58 35.80 

20 54.37 35.80 

21 55.13 35.80 

22 55.87 35.80 

23 56.59 35.80 

24 28.63 17.90 

 

 

Fig. 13 The results of sensitivity analysis for the 24-story braced planar steel frame 
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Table 4 Optimum designs of the 24-story braced planar steel frame 

Design Variables 
Hasancebi et al. (2010) 

MDE 
ACO TS ESs SA 

1 W14×120 W12×120 W14×109 W14×109 W12×120 

2 W40×268 W36×280 W40×277 W40×277 W36×282 

3 W10×45 W8×40 W10×39 W8×40 W14×38 

4 W16×40 W16×45 W16×40 W16×40 W18×40 

5 W33×118 W18×106 W30×108 W14×99 W24×104 

6 W40×221 W30×191 W12×210 W12×190 W36×256 

7 W8×35 W8×35 W8×35 W10×39 W6×20 

8 W14×43 W16×45 W14×43 W16×45 W24×55 

9 W14×90 W18×97 W27×94 W14×90 W30×99 

10 W33×152 W40×167 W14×145 W14×145 W30×173 

11 W14×43 W10×33 W8×35 W8×31 W6×20 

12 W18×50 W16×45 W14×43 W16×45 W21×48 

13 W30×90 W27×94 W30×90 W30×90 W30×108 

14 W27×129 W10×112 W30×116 W27×114 W36×135 

15 W8×35 W10×39 W8×40 W8×40 W8×24 

16 W18×60 W16×50 W18×50 W18×50 W21×48 

17 W21×83 W24×76 W21×73 W10×68 W21×73 

18 W24×104 W18×97 W24×104 W24×104 W21×111 

19 W8×31 W8×31 W8×31 W8×31 W6×20 

20 W16×40 W16×50 W14×43 W16×45 W21×44 

21 W21×62 W14×53 W24×76 W14×53 W21×55 

22 W21×73 W14×68 W8×31 W12×72 W12×72 

23 W8×31 W8×31 W8×31 W8×31 W10×22 

24 W16×40 W16×40 W16×40 W16×40 W16×45 

25 W16×67 W14×43 W16×40 W16×40 W12×45 

26 W12×53 W12×45 W10×49 W10×54 W21×55 

27 W10×33 W8×31 W8×31 W8×31 W6×15 

28 W16×40 W16×40 W16×40 W16×40 W18×46 

29 W14×53 W8×35 W8×31 W8×31 W16×36 

30 W12×45 W10×33 W8×35 W8×35 W21×62 

31 W10×33 W10×33 W8×31 W8×31 W6×15 

32 W18×55 W18×55 W14×43 W14×43 W21×44 

Weight (ton) 119.96 115.89 112.59 112.06 110.41 

Analyses 50000 50000 50000 50000 30000 

 

 

Comparison of the results of MDE with other algorithms is achieved in Table 4. The results 

indicate that the optimum design of MDE is 7.96%, 4.73%, 1.94% and 1.47% lighter than those of 

the ACO (Hasancebi et al. 2010), TS (Hasancebi et al. 2010), ESs (Hasancebi et al. 2010) and SA 

(Hasancebi et al. 2010), respectively. Furthermore, it can be observed that MDE finds the optimal 

solution performing 30000 structural analyses while the other algorithms require 50000 analyses to 

converge to their best solutions. 
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Fig. 14 Element group maximum stress ratios of the optimal 24-story braced planar steel frame found 

by MDE 

 

 

For the optimum design found by MDE, the maximum value of displacement and inter-story 

drift are equal to 9.75 cm and 0.533 cm, respectively which are less than their allowable values of 

22.19 cm and 0.915 cm. Fig. 14 presents the element stress ratios and the maximum value is equal 

to 0.9994. These results demonstrate that the stress ratio constraints dominate this feasible 

solution. 

 

 

6. Conclusions 
 

In the present study, MDE meta-heuristic algorithm is proposed for design optimization of steel 

frame structures. In the framework of MDE, the one-dimensional Gauss chaotic map is employed 

to calculate the next step locations based on the probability of each alternative. The ergodicity and 

mixing properties of chaos enables the MDE algorithm to search the design space at better 

performance in comparison with its standard version. Three planar steel frame examples are 

presented to illustrate the computational advantages of the proposed MDE meta-heuristic 

algorithm. In each design examples, the results of the proposed MDE are compared with those of 

four other algorithms proposed in other studies. In the first example, the weight of the optimal 

structure found by MDE is 12.22%, 10.35%, 9.29% and 5.33% lighter compared with those of the 

HPSACO, ICA, CSS and DE algorithms, respectively. The number of structural analyses required 

by the MDE is almost equal to those of the mentioned algorithms. In the second example, the 

weight reduction factors of MDE with respect to ACO, HS, MPSO and DE algorithms are 

respectively equal to 8.63%, 6.3%, 0.82% and 1.8% while the computational effort of MDE is less 

than those of the other algorithm. In the last and largest example, the optimum design of MDE is 

7.96%, 4.73%, 1.94% and 1.47% lighter than those of the ACO, TS, ESs and SA meta-heuristics, 

respectively while the number of structural analyses achieved by MDE is 60% those of required by 

the other algorithms. The numerical results demonstrate that the MDE possesses better 

computational performance compared with the other meta-heuristic algorithms in terms of optimal 

weight and spent computational cost. In the sequel, the MDE can be efficiently used to implement 

optimization of steel frame structures. 
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