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Abstract.  This paper presents the effect of hybridization material on variation of critical buckling load 

with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types 

subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing 

equations are derived from the principle of virtual displacement; the formulation is based on a new 

trigonometric shape function of displacement taking into account transverse shear deformation effects vary 

parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved 

analytically using the Navier solution of a simply supported. The influence of the various parameters 

geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid 

laminates material has been investigated to find the critical buckling loads. The numerical results obtained 

through the present study with several examples are presented to verify and compared with other models 

with the ones available in the literature. 
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1. Introduction 
 

With advances in science and technology, there is increasing interest in composite materials, 

both in scientific research and for engineering applications like aircraft runway, automobile ships, 

and trains. In particular, hybrid materials are increasingly in demand for structural applications in 

the aerospace, automotive ,marine industries, civil construction and other systems due to their 

advantageous excellent specific mechanical performance (mechanical properties /density ratio) and 

design flexibility compared with conventional materials. The realization of hybrid laminates also 

allows a reduction of the mass of structures and, hence, often a reduction of economic cost. 

However, these materials are prone to a wide range of defects and damage that can cause 

significant reduction in their properties and their lifetime Sadowski (2009, 2012).In practice; these 

composite plates are subject to main loading conditions and mechanical stresses. In order to obtain 
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an effective structural design, which can often be idealized as equivalent laminated plates, they 
need a study of their stability. In response to this need; the buckling performance of composite 
plates has been analyzed by many investigations. Creating a more efficient method to predict the 
buckling resistance of composite laminates is of great interest to many researchers. Some exact 
results solutions for the buckling load of orthotropic plates can be found as early as Thielemann 
(1950). 

Based on different assumptions for displacement fields considering the transverse shear 
deformation effect, a number of theories for buckling analysis have been devised. The classical 
laminated plate theory (CLPT); which neglects the transverse shear deformation effect, provides 
reasonable results for thin plates. This theory was employed for buckling analysis of orthotropic 
plate by Das (1963), Harik and Ekambaram (1988), Bao et al. (1997), Hwang and Lee (2006), 
among others. As a consequence, the evaluation of mechanical behavior of hybrid laminates   
needs more advanced theories, as the higher-order shear deformation theories (HSDT) use by Phan 
and Reddy (1985), this theory is capable of considering a quadratic variation for transverse shear 
strains along the thickness and thus a shear correction factor is necessary. Reddy and Khdeir 
(1989) have conducted an analytical solution by ESL theories (CLPT-HSDT) to study the buckling 
behavior of cross ply laminated composite plates. Another approach is presented by Akavci (2007) 
using a hyperbolic displacement model with five unknowns which accounts the transverse shear 
strains and their parabolic variation through the thickness with 3D Elasticity by Noor (1975) have 
presented a solution for stability of multi layered composite plates based on three dimensional 
elasticity theory by solving equations with the finite difference method. A three dimensional 
elasticity employing layer-wise theory has been refined to take into account the variation of the 
variables through the thickness by Setoodeh (2004). In addition of these methods, Rajasekaran and 
Wilson (2013) are used finite difference technique for determination of buckling loads, 
Singhatanadgid and Sukajit (2011) are used a vibration correlation technique (VCT) to identify the 
buckling load of a rectangular thin plate. Felix et al. (2011) are proposed an analytical solution 
using the Ritz method to calculate the critical buckling load of clamped, orthotropic, rectangular 
thin plates subjected to different linear distributed in-plane forces.   

Even as plates on elastic foundations are often encountered in many practical applications, the 
analysis of a general problem of thick reinforced laminated plate resting on elastic foundation are 
the focus of attention for mechanical and structural engineers and has been studied by a considered 
number of investigations. Winkler’s elastic foundation model which consists of infinitely many 
closed-spaced linear springs is a one parameter model that is extensively used in practice. Some 
authors have dealt buckling plates on Winkler’s foundation Gupta (2006), Saha (1997), Lee 
(1998), Utku (2000), El-Zafrany (1995). The limitation of this method is that it assumes no 
interaction between the springs. The Pasternak model takes into account the effect of shear 
interaction among the point in the foundation has presented by Malekzadeh and Karami (2004), 
Omurtag and Kadioglu (1998), Xiang et al. (1996), Hui-Shen et al. (2003). 

The buckling behavior of composite hybrid plates can be critical and therefore must be properly 
represented by the various models of structures usually employed either to predict their behavior to 
identify experimentally their properties. 

In the current work, plates composed of graphite, glass fibers and epoxy resin subjected to   
in- plane loads will be investigated by a new shear deformation theory. The accuracy of this theory 
has been demonstrated for static bending and free vibration behaviors of plates by Shimpi and 
Patel (2006). This theory was successfully expanded to the buckling behaviors of laminated 
composite plates subjected to in plane loading by Kim et al. (2009), El Meiche et al. (2011)      
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provides analyze of new hyperbolic shear deformation theory taking into account transverse   
shear deformation effects is presented for the buckling and free vibration analysis  of thick   
functionally graded sandwich plates, Mechab et al. (2012) are also performed this function for 
analyze of thick orthotropic laminated composite under thermo- mechanical loading. 

Recently, El meiche developed a new function of the displacement of shear deformation with 
only four unknown functions. However, various higher-order shear deformation theories are 
developed using five unknown functions. 

A present method with this new function has been employed to find analytical solutions for 
buckling load and mode shape. The buckling loads and modes with respect to plate aspect ratios 
for different hybrid cross-ply composite laminates will be obtained, to illustrating the full 
mechanical behavior, this approach can coupled between compression, bending and shear 
deformation modes which considerably, reduce the number of equations, and the complexity in the 
formulation and resolution of different higher order theories. The results obtained by the present 
theory are compared with other theories existing in the literature. 

 
 
2. Modeling  
 

In this section the analytical model and the applied theories in this study are briefly outlined. 
The plate theories which are applied in the analytical formulation are the classical laminate plate 
theory (CLPT), the first and the higher order shear deformation theories 
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And the Reddy’s third order shear deformation theory is written as 

           

y)w(x,z)y,(x,w

y

w
z-y)(x,zy)v(x,z)y,(x,v

x

w
z-y)(x,zy)u(x,z)y,(x,u

y
3

y

x
3

x












)(C

)(C





1

1

                    (3) 

Where  v ,u and w  are components of displacements at a general point. u, vand w are 
similar components at the middle plane, ϕx and ϕy are the rotations of the mid plane normal about y 
and x axis respectively. 
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Fig. 1 Geometry and loading conditions of a laminated plate on elastic foundation 
(Nxx=γ1 xxN , Nyy=γ2 yyN , Nxy=0) 

 
 
Setoodeh (2004) presents the displacements with interpolating functions as 
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2.1 Formulation of the theory  
 
As shown in Fig. 1 Consider a flat laminated plate resting on an elastic foundation with fiber 

orientation angle of  with respect to x-axis.the plate has a length a, width b, constant thickness h. 
It is assumed subject to uniformly compressive distributed in-plane forces of xxN  and yyN . 

 
2.1.1 Assumptions of the theory 
• The displacements are small in comparison with the plate thickness h and, there for, strains 

involved are infinitesimal. 
• The transverse displacement w includes two components of bending wb and shear ws. Both 

these components are functions of coordinates x, y 
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Nyy 
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NXy 
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(5) 

• The transverse normal stress σz is negligible in comparison with in-plane stresses σx, σy. 
• The displacements u in x direction and v in y direction consist of extension, bending and shear 

components 

sb0 uuuU  ,  sb0 vvvV                        (6) 

The expression for bending components ub and vb can be given as 
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The shear components us and vs give rise in conjunction with ws to the parabolic variations of 
shear strains γxy, γxz and γyz 

hence to shear stresses τxz, τyz. Through the thickness of the plate, h, in 
such a way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. The 
expression for us and vs can be given as 
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   The subscripts s and b indicate the shear and bending quantities, respectively. 
 

2.1.2 The sisplacement field model 
Based on the assumptions made in the preceding sections, the displacement fields defined by 

new hyperbolic shape function developed by Noureddine El meiche and I. Mechab in unified form 
as follows: 
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Where u, v and w are components of displacements at a general point x, y, z direction, whilst u0, 

v0 are similar components at the middle surface (z=0). With the function f(z) the displacement field 
accounts for zero transverse shear stresses on boundary conditions on the top and bottom faces of 
the plate and the quadratic variation of transverse shear strains (and hence stress) through the 
thickness. Thus there is no need to use correction factors. 

Using Eq. (9) in the strain-displacement equation of the elasticity; gives the following 
expressions for normal and shear strains 
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2.2 Equilibrum equations 

 
The governing equation for the buckling analysis of structural system can be derived using a 

principle of the virtual work. This gives by Reddy (1981). 
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Where U is the strain energy, Uf 
is the strain energy of foundation and W is the work of external 

forces. Employing the minimum of the total energy principle and integrating by parts 
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Where xN  and yN are inplane compressive loading on the side of plate. 
Fe is the density of reaction force of foundation; follows for two parameters Pasternak model as 

               wKKF 2w 10e 
                         

(16) 
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Where stress and moment resultants are defined as 
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The governing equations of equilibrium can be derived from Eq. (17) by integrating the 
displacement gradients by parts and setting the coefficients u0, v0, wb and ws. The equilibrium 
equations associated with the present theory are 
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In the above equations, the stress resultants are defined as
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Where 
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And stiffness components are given as 
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2.3 Analytical solution 

 
Assuming the four edges of the plate is simply supported; the geometric boundary conditions 

are given as follows 
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Navier method is used for the analytical solutions of Eq. (19). In order to satisfy the geometric 
boundary conditions the displacement functions may be approximated by a truncated FOURRIER 
series as 

y) x)sin(μ cos(λUy)(x,u mn
1m 1n

0 








  

y) x)cos(μ sin(λVy)(x,v mn
1m 1n

0 








  











1m 1n

bmnb y) x)sin(μ sin(λWy)(x,w  

      










1m 1n

smns y) x)sin(μ sin(λWy)(x,w  (24)

Where Umn, Vmn, Wbmn, Wsmn are unknown constants that will determinate the buckling mode 
shape and m, n are integers that will determine the number of terms of the truncated series. 

amu /
 , 

bnλ /
 

 
 
3. Buckling of a simply supported plate under compressive loads 
 

Substituting Eqs. (22)-(24) into equilibrium Eq. (19), the buckling problem is 
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As the constants of the matrix of rigidity [K] are written as 
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For nontrivial solutions of Eq. (25) the following determinations should be zero 

0 [N][K]                                      (28) 

The solutions of Eq. (28) give the buckling loads of the plate with different mode shape. 
 

 
4. Numerical results and discussion 
 

In order to validate the accuracy and efficiency of the method, some numerical calculations are 
carried out. In the examples considered the buckling analysis of symmetric and antisymmetric 
cross- ply thick laminates on elastic foundation by a new shear deformation model are suggested 
for investigation and the comparisons are made with available solutions in literature. 

 
4.1 Validation study   
 
A square limited plate is composed of two layers oriented at (0°/90°) to the x axis. This plate is 

simply supported on the four sides. The sum of the thickness of the 90° layer is the same as the  
 

 

Table 1 Uniaxial non-dimensional buckling load factors of two cross play square (0°/90°) laminate for 
different orthotropic ratios (a/h=10) 

 load direction E1/E2 

k0  (γ1, γ2) Method 20 30 40 

0 0 (-1,0) 

Noor 
HSDTa 

FSDTb 

Setoodeh
Akavci 
Present 

(1975)  

(1989)  

(1989)  
(2004)
(2007)

7.8196 
8.1151 
8.0423 
8.0455 
8.1223 
8.1173 

9.3746 
9.8695 
9.7347 
9.6995 
9.8826 
9.8549 

10.8170 
11.5630 
11.3530 
11.2382 
11.5828 
11.5258 

100 0 (-1,0) 
Setoodeh
Akavci 
Present 

(2004)
(2007)

15.3245 
15.5347 
15.5484 

17.5249 
18.2844 
18.2501 

19.3401 
20.7765 
20.6802 

100 10 (-1,0) 
Setoodeh
Akavci 
Present 

(2004)
(2007)

27.5347 
28.0347 
28.0484 

29.7616 
30.7844 
30.7501 

31.5981 
33.2765 
33.1802 
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Table 2 Comparison of non-dimensional critical buckling load of square plates subjected to biaxial   
compressive load 

a/h 
load direction 

Theories 
Orthotropic 

(γ1, γ2) E1/E2=10 E1/E2=25 E1/E2=40 

5 
 
 
 
 

10 
 
 
 
 
 

20 
 
 
 
 
 

50 
 
 
 
 
 

100 
 
 
 
 

 
 

(-1,-1) 
 
 
 
 

(-1,-1) 
 
 
 
 
 

(-1,-1) 
 
 
 
 
 
(-1,-1) 
 
 
 
 
 

(-1,-1) 

Present 
RPT Kim et al. (2009)

FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009)
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009)
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009)
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009)
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

FSDT 

2.9442a 

2.8549a 

2.5042a 

2.8319a 

3.1027a 

 

4.7392a 
4.6718a 

4.4259 
4.6367 
4.7708 

 
5.3433 
5.3267 
5.2463 
5.3100 
5.3533 

 
5.5418 
5.5390 
5.5249 
5.5361 
5.5436 

 
5.5714 
5.5707 
5.5672 
5.5700 
5.5719 
5.5814 

 
3.4433a 
3.3309a 

2.7332a 
3.1422a 
3.4933a 

 

6.1766a 
6.0646a 
5.4351a 

5.8370a 

6.1425a 

 

7.7105a 
7.6643a 

7.3701a 

7.5546a 

7.6834a 

 
8.2871a 
8.2784a 

8.2199a 

8.2566a 

8.2812a 

 
8.3766a 
8.3744a 

8.3593a 

8.3657a 

8.3751a 

8.4069 

3.7976a 

3.4800a 
2.8303a 

3.2822a 

3.6793a 
 

7.4115a 
7.2536a 

6.0797a 

6.6325a 

7.0690a 

 
9.7346a 
9.6614a 

8.9895a 

9.3049a 

9.5297a 

 

10.6720a 
10.6576a 

10.5111a 

10.5810a 

10.6282a 

 
10.8209a 
10.8172a 

10.7788a 

10.7972a 

10.8095a 

10.8715a 

a Mode for plate is (m,n=1,2) 

 
 
sum of the thickness of 0° layer; each ply has identical material properties with respect to the 
material axes. The following properties are assumed. 

40
2

1

E

E
, 0.6

2

13

2

12

E

G

E

G
, 0.5

2

23

E

G
, 0.25 1312 νν  

The buckling load factor xN  is non-dimensionalized according to the following relations and 
denoted by λ. Also, elastic stiffness coefficients (K0 and K1) are non-dimensionalized and denoted 
by K0 and K1. 
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Table 3 Comparison of non-dimensional critical buckling load of square plates subjected to tension in the x-
axis direction and compression in the y-axis direction 

a/h 
load direction 

Theories 
Orthotropic 

(γ1, γ2) E1/E2=10 E1/E2=25 E1/E2=40 

 
5 
 
 
 
 
 

10 
 
 
 
 
 

20 
 
 
 
 
 

50 
 
 
 
 
 

100 
 
 

 
(1,-1) 

 
 
 
 

(1,-1) 
 
 
 
 
 

(1,-1) 
 
 
 
 
 

(1,-1) 
 
 
 
 
 

(1,-1) 

Present 
RPT Kim et al. (2009) 

FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009) 
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009) 
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009) 
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

 
Present 

RPT Kim et al. (2009) 
FSDT (k=2/3) 
FSDT (k=5/6) 
FSDT (k=1) 

FSDT 

4.1630b 
4.0258b 

3.2849d 

3.9241c 

4.4488b 

 
7.8987a 

7.7863a 

7.2656a 

7.7748a 

8.0651a 

 
9.3219a 

9.2811a 

9.1310a 

9.2782a 

9.3790a 

 
9.8174a 

9.8101a 

9.7830a 

9.8097a 

9.8275a 

 
9.8925a 

9.8907a 

9.8838a 

9.8906a 

9.8951a 

9.9179a 

4.2219c 
4.1044c 

3.3001e 
3.9794c 

4.5691c 

 
8.7441b 

8.5471b 

7.7820b 

8.4774b 

9.0153b 

 
11.7306b 

11.6347b 

11.2544b 

11.6015b 

11.8453b 

 
12.9723b 

12.9531b 

12.8751b 

12.9463b 

12.9942b 

 
13.1715b 

13.1666b 

13.1463b 

13.1648b 

13.1772b 

13.2393b 

4.2675c 
4.1525c 

3.3053e 

4.0075d 

4.6073c 

 
9.3882b 

9.1638b 

8.1208b 

8.9039b 
9.5197b 

 
12.9192b 

12.8031b 
12.1990b 
12.6339b 
12.9428b 

 
14.4415b 

14.4177b 
14.2839b 
14.3789b 
14.4430b 

 
14.6888b 

14.6827b 
14.6474b 
14.6724b 
14.6891b 
14.7732b 

a Mode for plate is (m,n=1,2) 
b Mode for plate is (m,n=1,3) 
c Mode for plate is (m,n=1,4) 
d Mode for plate is (m,n=1,5) 
e Mode for plate is (m,n=1,6) 

 
 

3
2

2

x
hE

a
Nλ   ; 3

2

4
0

0
hE

LK
k

 
 ; 3

2

2
1

1
hE

LK
k

 
   

 
4.2 Buckling of hybrid materials 
 
After verifying the merit and accuracy of the present solutions, in order to obtain the following 

new results it is assumed that the plates made of graphite/epoxy and glass/epoxy. 
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The numerical results obtained from the analytical solutions of the different hybrid plates under 
uniaxial and biaxial non-dimensional buckling load with a variation of aspect ratio and thickness 
ratio are studied and discussed and shown in Tables 5 and 6. 

 
 
Table 4 Material properties for graphite/epoxy and glass/epoxy unidirectional ply 

Material 
Graphite/Epoxy 

Groves et al. (1987) 
Glass/Epoxy 

Joffe et al. (2001) 
EL (GPa) 144.8 44.73 
ET (GPa) 9.58 12.76 
GLT (GPa) 4.79 5.8 
GTT (GPa) 4.2 4.49 

LT 0.31 0.297 
TL 0.4 0.42 

Ply thickness (mm) 0.127 0.144 
  

Table 5 Uniaxial non-dimensional buckling load factors of different hybrid cross-ply material on elastic 
foundation 

Hybrid laminates a/b (γ1,γ2) k0 k1 a/h=5 a/h=10 a/h=20 a/h=50 a/h=100

0°/90° 

graphite/epoxy (0°) 
glass/epoxy (90°) 

1
 
 
 

2
 

 

 
 
 
 

(-1 ,0) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

2,0077 
19,6778
69,6778

 
2,3864 

58,7233
228,7233

2,2025 
21,6677
71,6677

 
2,8839 

70,1858
240,1858

2,2573 
22,3026
72,3026

 
3,0426 

75,7470
245,7470

2,2731 
22,4031 
72,4031 

 
3,0903 

77,7000 
247,7000 

2,2754 
22,5208
72,5208

 
3,0972 

77,9969
247,9969

0°/90°/0° 

graphite/epoxy (0°) 
glass/epoxy (90°) 

1
 
 
 

2
 
 

 

 
 
 
 

(-1 ,0) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

 
9,6745 

33,4300
83,4300

 
5,8245 

70,5391
270,5391

14,3048
43,9184
93,9184

 
8,4465 

97,2127
267,2127

16,2518
48,2094
98,2094

 
9,5193 

113,4791
283,4791

16,8958 
49,6139 
99,6139 

 
9,8704 
119,859 
289,859 

16,9920
49,8231
99,8231

 
9 ,9227

120,8629
290,8629

90°/0°/90°/0° 
graphite/epoxy(90°) 

glass/epoxy (0°) 

1
 
 
 

2
 

 

 
 
 
 

(-1 ,0) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

7,5255 
47,2856
97,2856

 
9,2884 

81,3461
251,3461

10,2004
87,0933

137,0933
 

19,2403
170,4160
340,4160

11,1942
115,0078
165,0078

 
26,2189

316,4267
486,4267

11,5080 
126,8415 
176,8415 

 
29,1773 

441,7482 
611,7482 

11,5543
128,7528
178,7528

 
29,6552

469,5332
639,5332

0°/90°/90°/0° 
graphite/epoxy (0°) 
glass/epoxy (90°) 

 
1
 
 
 

2

 
 
 
 

(-1 ,0) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

9,5408 
35,1030
85,1030

 
6,2427 

73,6489
243,6489

13,8101
46,9013
96,9013

 
9,1923 

106,9003
276,9003

15,5516
51,8344

101,8344
 

10,4256
129,2676
299,2676

16,1210 
53,4627 

103,4627 
 

10,8326 
138,5246 
308,5246 

16,2058
53,7058

103,7058
 

10,8934
140,0074
310,0074
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Table 6 Biaxial non-dimensional buckling load factors of different hybrid cross-ply material on elastic 
foundation 

Hybrid laminates a/b (γ1,γ2) k0 k1 a/h=5 a/h=10 a/h=20 a/h=50 a/h=100

 
0°/90° 

graphite/epoxy (0°) 
glass/epoxy (90°) 

1 
 
 
 

2 
 

 

 
 
 

(-1,-1) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

1,0038
3,9355

13,9355
 

0,4772
3,4543

13,4543

1,1012
4,3335

14,3335
 

0,5767
4,1285

14,1285

1,1286
4,4605

14,4605
 

0,6085
4,4557

14,4557

1,1365 
4,4986 

14,4986 
 

0,6180 
4,5706 

14 ,5706 

1,1377
4,5041

14,5041
 

0,6194
4,5880

14,5880

 
0°/90°/0° 

graphite/epoxy (0°) 
glass/epoxy (90°) 

1 
 
 
 

2 
 

 
 
 
 

(-1,-1) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

4.8372
6.6860

16.6860
 

1.1648
4.1493

14.1493

7.1524
8.7836

18.7836
 

1.6893
5.7183

15.7183

8.1258
9.6418

19.6418
 

1.9038
6.6752

16.6752

8.4479 
9.9227 

19.9227 
 

1.9740 
7.0505 

17.0505 

8.4960
9.9646

19.9646
 

1.9845
7.1095

17.1095

90°/0°/90°/0° 
graphite/epoxy (90°) 

glass/epoxy (0°) 

1 
 
 
 

2 
 

 
 
 

(-1,-1) 
 

0 
100
100

 
0 

100
100

0
0

10
 
0
0

10

3.7627
9.4571

19.4571
 

1.8576
4.7850

14.7850

5.1002
17.4186
27.4186

 
3.8480

10.0244
20.0244

5.5970
23.0015
33.0015

 
5.2437

18.6133
28.6133

5 .7540 
25.3700 
35.3700 

 
5.8354 

25.9852 
35.9852 

5.7771
25.7505
35.7505

 
5.9310

27.6196
37.6196

 
 
In Table 1, non-dimensional critical uniaxial buckling load of antisymmetric two cross-ply 

square plates on elastic foundation for different orthotropy ratios are shown and compared with 
different shear deformation theories; it can be seen that the buckling load obtained by the present 
theory show also a satisfied agreement with other theories. 

In Tables 2-3 the non-dimensional critical buckling load subjected to biaxial and the tension in 
the x-direction and compression in the y-direction respectively with the variation of aspect ratio 
and side-to-thickness ratio of simply supported in the orthotropic square plates. 

These comparisons show that the results from the present method with new trigonometric 
shape function of displacement using two variable refined plate theories are in good agreement 
with the existing results. 

To show the effect of hybridization material with the variation of different parameters, 
geometrical and material on behavior non-dimensional critical uniaxial and biaxial buckling loads; 
the analysis for these elements is carried out considering configurations described in Tables 5-6. 

Figs. 2-3, show the effect of hybridization and behavior of different hybrid laminates; the 
critical buckling loads of hybrid materials are evaluated varying the aspect ratio and thickness ratio 
a/h. It is established that the elastic foundations significantly affect the mechanical behavior of 
hybrid composites plates. It is also seen from the figures that increasing the values of the 
foundation stiffness and orthotropy ratio increases the buckling load of the plate. The results are 
the maximum for the symmetric plate of material I and the minimum for the antisymmetric plate 
of material II. 

It can be seen from these various curves that without elastic foundations, the results of non- 
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dimensional critical buckling load are the same and stabilized with long-thick for different hybrid 
laminates material symmetric and antisymmetric. 

A numerical analysis enables us to find both the influence of elastic foundation, varying 
mechanical and geometrical parameters of the laminates, and advantages furnished from 
hybridization, by comparison with result relative to non hybrid laminates. 

 
 

5. Conclusions 
 
In this article, an approach to calculate the buckling load of plates made in different hybrid 

materials, resting on elastic foundation, under in plane loads was presented and investigated 
analytically. The closed-form solution of a simply supported rectangular plate subjected to in-
plane loading has been obtained by using the Navier method with new trigonometric shape 
function based on high order theory and compared with, first-order shear deformable theory 
solutions (FSDT) ,refined plate theory (RPT) and FEM with 3D Elasticity.  

A parametric study of the influence of different hybrid laminates material symmetric and 
antisymmetric, the effect of elastic foundations, slenderness ratio, on the critical buckling load. 
Based on the derived results, the following conclusions can be drawn:  

• The present model, based on a new shear shape function without shear correction factor, gives 
results which are in good agreement with the solution of previous higher-order theories. 

• The introduction of elastic foundations leads generally to increases the value of the critical 
buckling load with increasing a/b ratio and remains almost unaltered for a/h greater than 18. 

• The effect of hybridization with symmetric and antisymmetric material without elastic 
foundations leads generally to appear to have no influence on the critical buckling load. 
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