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Abstract.  H-infinity norm relates to the maximum in the frequency response function and H-infinity 

control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm 

relates to the output energy of systems with the input of pulses or white noises and 2-norm control method 

weighs the overall vibration performance of systems. The trade-off between the performance in 

frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed 

vibration control method. Based on the linear fractional state space representation in the modal space for a 

piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency 

modes, a mixed dynamic output feedback control design method is proposed to suppress the structural 

vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the 

designing of robust control laws with different H-infinity performance indices before the robust 2-norm 

performance index of the closed-loop system is included in the fitness function of optimization. A flexible 

beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical 

studies. Compared with the velocity feedback control method, the numerical simulation results show the 

effectiveness of the proposed method. 
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1. Introduction 
 

Flexible structures have found many applications in aerospace, civil, and mechanical fields, 

such as large space structures, tall buildings, and flexible manipulators. The flexibility of these 

structures often results in structural vibration, which may last for a long time, if not suppressed in 

time. The light-weight flexible structures are typically characterized by poorly damped and 

clustered vibration modes with low resonant frequencies (Gawronski 1996). Such structures even 

become unstable since their open-loop poles are very close to the imaginary axis in the complex 

plane. Therefore, it is desirable to use active vibration control methods to attenuate the vibration of 

the structures to improve the structural performances. Recently, piezoelectric materials become 

very popular in the structural control problems due to their lightweight, large linear range and broad 

bandwidth. In literatures, active vibration control of structures with piezoelectric materials has been 
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extensively studied (Gao and Chen 2003, Song and Sethi 2006, Belouettar and Azrar 2008, Qiu 

and Wu 2009, Bruant and Gallimard 2010, Tavakolpour et al. 2010, Lin and Zhang 2012, 

Damanpack et al. 2013). 

In the designing of active vibration controller, model reduction, such as balanced reduction and 

direct mode truncation is often required since it is difficult to implement a high-order controller for 

a flexible structure with a large number of vibration modes. Due to the unclear characteristics of 

vibration modes in the balanced-reduction model, the direct mode truncation is the common 

practice to obtain a relatively low-order model in the vibration control. As a result, model errors 

coming from the mode truncation have to be considered in order to avoid control spillover and 

observation spillover. The interaction of two spillovers may lead to system instability, especially in 

the non-collocated control. To deal with the problem, a variety of control design frameworks have 

been explored (Balas 1978, Meirovitch and Baruh 1983, Vasques and Rodrigues 2006, Morales et 

al. 2012). In addition, the variation in modal parameters (resonant frequencies and damping ratio) 

may degrade the performance of the controller (Bala 1995, Zhang and Shao 2001, Samuel and 

Vicente 2006, Chen et al. 2007, Gasbarri et al. 2014). 

It is well known that each robust control method is mainly useful for capturing a set of design 

specifications. Robust H∞ control method focuses on the case that the vibration is excited at the 

fundamental frequency and tends to be conservative and cost-wasting since the H∞ norm relates to 

the maximum in the frequency response function. The H2 norm relates to the output energy of a 

system with the input of pulses or white noises, and, as a result, the robust H2 control method takes 

the overall performance of a system into account without considering the fundamental resonance 

excited by the external disturbance. Two norm indices should be integrated to achieve the trade-off 

between the robust performance and time domain performance in the structural vibration control. 

Most of the studies available focus on the state feedback controller or observer-based feedback 

controllers of structural systems (Yang and Sun 2002, Caracciolo et al. 2005, Karimi et al. 2008, 

Rittenschober and Schlacher 2012, Schulz et al. 2013). In practice, the measurement of the modal 

displacement and velocity is not practical for vibration control of engineering structure and an 

observer-based controller may require a large number of computation. 

In this paper, a mixed dynamical output feedback control law is designed by not only 

minimizing the H2 norm but also setting an upper bound on H∞ norm to suppress the vibration of 

uncertain piezoelectric flexible structures due to external disturbances. The contribution of this 

paper is to provide a design method for the mixed dynamic output feedback controller using linear 

matrix inequality (LMI) and genetic algorithm, in which the robust H2 performance index of the 

closed-loop system with norm-bound uncertainty is chosen in the fitness function, which has not 

dealt with by the researchers to the best of authors’ knowledge. The remainder of this paper is 

organized as follows. First, the linear fractional representation (LFR) and its state space 

representation in the modal space for uncertain piezoelectric flexible structures are given, taking 

into account uncertain modal parameters and un-modeled residual high-frequency modes. Then, 

the procedures of the mixed dynamic output feedback control design are given. In the optimization 

processing of genetic algorithm, the initial populations are generated by the designing of H∞ 

suboptimal controllers with different H∞ performance indices and the robust H2 performance of 

system is chosen in the fitness function. Finally, compared to the velocity feedback control 

method, numerical simulation results are given to demonstrate the effectiveness of the proposed 

method. 
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2. Modal state space representation  
 

2.1 Deterministic modal state space modeling 
 

Considering a flexible structure with K piezoelectric actuator patches and L piezoelectric sensor 

patches in the modal space and including m modes in the model, we have (Xu and Chen 2008) 

          mitwbtVbtqtqtq
I

j

jij

K

j

jijiiiiii ,,2,1,
~
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2   


          (1) 

where qi(t) is the thi modal coordinate. ξi, ωi are the frequency and damping ratio of the ith mode 

respectively. Vaj(t) is the voltage applied to the jth actuator; bij is the influence coefficient of Vaj(t) 

on the ith mode. wj(t) is the jth external disturbance. bij is the influence coefficient of wj(t)
 
on the 

ith mode. 

The performance and measured outputs yp(t), zl(t) (p=1,2,...P; l=1,2,...,L) can be respectively 

defined by the modal displacement as follows 
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where cpj
 
is the influence coefficient of the jth mode on yp(t), and ljc~  is the influence coefficient  

of the jth mode on zl(t). 

Defining the state vector x(t)=[q1(t), )(1 tq , q2(t), )(2 tq ,..., qm(t), )(tqm
 ]

T
, the state space 

model of the structure can be written as  
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where, y(t)
 
is the performance output vector. z(t) is the measured output vector. Va(t)=[Va1(t), 

Va2(t), ..., VaK(t)]
T

 
is the control input vector. w(t)=[w1(t), w2(t), ..., wI(t)]

T

 
is the external 

disturbance vector.   
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2.2 Uncertain modal state space modeling 
 

In the uncertain model, the variation of modal parameters and residual modes should be 

included. The variations ∆ωi, ∆ξi 
of the ith modal frequency and damping ratio can be expressed as 

iiiiii 21 ,                             (4) 

where 1,1 21  ii  . As a result, we have 
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where 
iiiiii  


,ˆ . Substituting Eq. (4) into Eq. (5) and neglecting the 

high-order small terms, we have
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As a result, the uncertain system matrix Â can be obtained by 
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The model error due to residual high-frequency modes is represented by norm-bound addition 

uncertainty ΔG(s) and we have 
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                        (8) 

where, Δ2 is the unknown uncertainty. W(s) is determined by the upper bound of residual 

high-frequency modes. 

The state-space representation for W(s)can be written as 
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where, xr(t) is the state vector; Va(t) is the control input vector; h2(t) is the output vector; Ar, 
Br, 

Cr, Dr are the matrices corresponding to the chosen transfer function w(s) for the normalization of 

the uncertainty, which forms the upper bound in the un-modeled high-frequency region (Sana and 

Rao 2000). 

With Eq. (3), Eq. (7) and Eq. (9), the linear fractional representation (LFR) for the uncertain 

piezoelectric flexible structure is shown in Fig. 1. The corresponding state-space representation for 

 sĜ  can be written as 
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Fig. 1 LFR for uncertain flexible structures 
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3. Dynamic output feedback law 
 

The following dynamic output feedback control law is applied to the open-loop structure Eq. 

(10) 

         tttztt kkk δCVBδAδ  a,                    (11) 

where, ξ(t) is the state vector of the controller. Ak, Bk, Ck 
are unknown parameters of the controller. 

As a result, the state space realization of the closed-loop system is written as 
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4. Mixed vibration control of uncertain structure  
 

Genetic algorithm is an optimization and search technique based on the principles of genetic 

and natural selection, which is an adaptive method used to solve search and optimization problems 

(Fogel 1994, Tavakolpour et al. 2010, Xu and Ou 2013). Our aim is to use the linear matrix 
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inequality and genetic algorithm approach for seeking the best controller parameters in mixed H2/ 

H∞ control design. The steps of genetic algorithm based dynamic output feedback control by using 

LMI are provided in this section. 

 

4.1 Encoding 
 

When genetic algorithm is applied to solve a practical problem, the parameter set of the 

problem first needs to be coded as a finite-length string. In the present study, we use a real-coded 

genetic algorithm. Thus, every chromosome is a string of real values. Here, the real coding is used 

to represent the solution [Pk, Ak, Bk, Ck] to the dynamic output feedback controller Eq. (11).  

 

4.2 Initial population 
 

The initial populations Pj={Ak, Bk, Ck}, j=1,2,..., N (N is the size of populations) are generated 

by the designing of H∞ suboptimal controllers with different H∞ performance indices (Xu and 

Chen 2008). For the uncertain closed system Eq. (12) with the norm-bound uncertainties 

g
T
(t)g(t)≤h

T
(t)h(t), its robust stability and disturbance rejection can be guaranteed if the following 

condition can be satisfied  
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where γ is the upper bound on the H∞ norm from w(t) to y(t) of the system. As a result, the 

norm-bound uncertainties and the condition for the disturbance rejection with robust stability can 

be respectively expressed as 
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Using S-procedure, the robust stability and disturbance rejection can be guaranteed for the 

sysytem with norm-bound uncertainties if the following condition can be satisfied 
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Defining a matrix set   0~,0
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and reducing the 

conservative of design, the distubance of the uncertain sytem can be rejected with robust stability 
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if the following condition is satisfied 
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Using Schur complement, Eq. (17) can be rewritten as 
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4.3 Fitness function 
 

Fitness function in genetic algorithm is used to evaluate the goodness of a solution. The better 

solution has a higher fitness value. The fitness function is calculated using the following equation 

(Tavakolpour et al 2010)  

         iJMjf                                 (20) 

where, M is be assigned a large positive value, and it is chosen to guarantee that the value of the 

fitness function is always positive, Ji is the introduced performance index of the jth
 
individual. The 
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objective of the control system in this work is to minimize H2 norm accompanied by setting an 

upper bound on H∞ norm to avoid the worst vibration situation. So, the robust H2 performance 

index of the closed-loop system with norm-bound uncertainty will be chosen in the fitness 

function. 

H2 norm relates to the output energy of system with pulses or white noises as the input, in 

which the external disturbance is taken as the impulse excitation and Gauss white noises random 

process. As a result, for zero initial conditions and given disturbance w(t)=w0δ(t), the energy of 

system can be defined as 

       



0

T

2 dˆ tttJ yy                             (21) 

Hence, the robust H2 performance index with norm-bound uncertainty can be defined as 
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Since      twtwx 0,00ˆ   is equivalent to     0wBx  twcw ,0ˆ
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, Eq. (12) can be 

written as 
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Therefore, the norm-bound uncertainty and robust stability condition can be respectively expressed 

as 
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Using S-procedure, the robust stability condition can be expressed as 
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Further reducing the conservative of design, Eq. (26) can be written as 
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Eq. (27) can be written as 
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With arbitrary small ε>0, we have 
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Using Eq. (23), Eq. (24), Eq. (25) and Eq. (30), we have 
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Hence 
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Integrating both sides of Eq. (32) over time 0 to ∞, we have 
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Recalling ||Δ||≤1, and ||w0||≤1, we have 
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Therefore, the fitness function Eq. (21) can be written as 

     wMjf c

T

cw
ˆ BPB                         (35) 

   

237



 

 

 

 

 

 

Yalan Xu, Yu Qian, Jianjun Chen and Gangbing Song 

4.4 Selection 
 

The operation of selection can insert the best chromosome into the new population, i.e., 

selecting the best individual for reproduction. This can keep the best individual, evaluated by the 

fitness values for genetic operation, in the new generation. In the selection operation, the best 

individual is saved and the remainder will be probabilistically selected by the fitness values.  

 

4.5 Crossover 
 

The crossover and mutation operation can generate new offspring generations. The probability 

of crossover is pc. The cross-over arithmetic operators are defined as follows (Fogel 1994). 

  
21

*

221

*

1 )1(,)1( PPPPPP                    (36) 

where, α is a uniformly distributed random variable between 0 and 1, P1, P2 are the parents, and
*

2

*

1 , PP are the offspring. 

 

4.6 Mutation 
 

The mutation operation is performed with the probability pm. In the mutation, the offspring is 

randomly selected from the given parent by using the following two possibilities (Tavakolpour et 

al. 2010) 
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where 
*, jj PP  is the child and parent solution, and PU, PL is the upper and lower limit of the 

solution space. GU 
is the specified maximum number of generations, GC is the current number of 

generations, and s is a given positive number. 

 

4.7 Termination 
 

The condition for terminating the genetic algorithm generation loop could be either when the 

desired accuracy has been achieved or when a certain number of generations have been reached. 

The maximum number of generations is set as the terminating condition in this work, i.e., the 

optimal process will be stop when the allowable generation number has been reached. It is worth 

noting that results obtained from a genetic algorithm process with the limited number of 

generation might be a suboptimal solution. To get a result with higher confidence, one has to run 

the genetic process either several times, each with a randomly generation initial condition 

satisfying the robust stability and disturbance rejection conditions Eq. (19), or with sufficient 

number of generations. 

 

 

5. Numerical example 
 

Here consider the flexural vibration control of a simply supported beam with non-collocated 

piezoelectric actuator/sensor patches bonded to it. The beam has the geometric parameters of 
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length (0.5 m), thickness (0.01 m) and width (0.05 m) and the material properties of Young’s 

elastic modulus (70 GPa) and mass density (2500 kg/m
3
).The disturbance is assumed to enter 

through the actuator channel. The damping ratio of all modes is assumed to be 0.005; The material 

properties of the piezoelectric actuator/sensor are as follows: d31=120×10
12

 m/V, g31=−1.15×10
-2

 

Vm/N, Cp=1.05×10
-7

 F, Ep=63 GPa. The width of the piezoelectric actuator/sensor is the same as 

that of the beam, and their thickness is 2×10
-4 

m. The piezoelectric actuator patch is located at 

0.23lb→0.49 lb along the beam (lb is the length of the beam), while the piezoelectric sensor is 

located at 0.58lb→0.85 lb. The performance displacement output is the displacement coming from 

a point along the beam. The first four modes are considered in the control design stage. The 

high-frequency modes is considered as norm-bound additive uncertainty, which is normalized by 

weighting function W(s)=0.01s
2
/(1+s/8)

2
 (from actuator to performance output); The genetic 

algorithm optimization is used to seek the best controller parameters. Crossover probability pc=0.6 

and probability of mutation pm=0.004. The maximum number of generations is set as 50 with the 

initial populations Pj={Ak, Bk, Ck}, j=1,2,...,10 generated by the designing of 10 suboptimal 

controllers. The mixed controller parameters Ak, Bk, Ck are as follows 

 
 1953.00019.00313.00059.00221.00026.00263.00001.00032.00925.0

7315.15429.05712.03757.10383.49901.42140.30960.36585.64424.2

9320.96182.01630.05139.06077.03122.14452.02639.03711.00350.0

9036.509730.24926.46766.29123.12166.60489.02449.03805.01876.0

3395.54527.08556.13175.01580.02190.03349.14491.10078.10364.0

9530.00218.04978.13840.08252.03864.02964.16547.09618.10034.0

8502.08991.05158.12618.16109.01671.09902.01905.05722.00206.0

0757.05091.03623.02145.10285.02172.03027.01752.01994.00083.0

9600.36324.05986.135673.19810.75713.44574.114326.24664.10617.0

7600.30554.01158.35862.09427.06232.09102.27429.06828.00318.0

0205.27026.06432.84855.02669.28762.15671.34709.34520.40020.0

8593.78755.05726.57963.03870.11973.05985.28833.03485.10383.0
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(38) 

Compared to the robust H∞ method, the impulse responses and frequency responses for the 

controlled system are shown in the Fig. 2 and Fig. 3 respectively. In these two figures, the mixed 

control exhibits better time-domain performance, having a settling time of 132s , which is less than 

that of the pure H∞ control with a settling time of 139s. The pure H∞ control exhibits a better 

frequency-domain performance, having a maximum attenuation of approximate 32.94 dB in terms 

of vibration magnitude, than mixed control with a maximum attenuation of approximate 30.34 dB. 

The impulse responses and frequency responses for the controlled system, as compared to the 

robust H2 method are shown in the Fig. 4 and Fig. 5, respectively. In these two figures, the mixed 

control exhibits a better frequency-domain performance, having a maximum attenuation of 30.34 

dB, which is better than that of a pure H2control with a maximum attenuation of 24.85 dB. Please 

note that the pure H2 control exhibits better time-domain performance, having a settling time of 

127 s ,which is less than that of the mixed control with a settling time of 132 s. 

For comparative purpose, both velocity feedback control, which is effectively used in active 

vibration control by modifying the damping of the system and consequently the closed-loop poles 

(Kapuria and Yaqoob 2010, Bodaghi et al. 2012), and the mixed control are employed to control  
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Fig. 2 Impulse responses for systems (H-infinity control and mixed control) 

 

 

Fig. 3 frequency responses for systems (H-infinity control and mixed control) 

 

 

the vibration of the flexible beam mentioned above. In velocity feedback control, the control law 

can be expressed as (Kapuria and Yaqoob 2010) 
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Fig. 4 Impulse responses for systems (2-norm control and mixed control) 

 

 

Fig. 5 Frequency responses for systems (2-norm control and mixed control) 
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where, Gv 
is the velocity gain matrix. 

The impulse responses and frequency responses for the controlled system, as compared to the 
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Fig. 6 Impulse responses for systems (velocity feedback control and mixed control) 

 

 

Fig. 7 Frequency responses for systems (velocity feedback control and mixed control) 

 

 

velocity feedback control method, are shown in the Fig. 6 and Fig. 7, respectively. It can be seen 

from Fig. 6 that the velocity control with a large gain exhibits better time-domain performance, 

having a settling time of 105 s for G=20, which is better than those of both mixed control with a 

settling time of 132 s and the small-gain velocity feedback control with a settling time of 424 s for 

G=5. It is observed from Fig. 7 that the mixed control law can suppress the low-frequency modes 
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without exciting the high-frequency modes, while the velocity feedback control method, which 

performs well in time-domain and low-frequency domain, excites the un-modeled high-frequency 

modes and may degrade the performance in the high-frequency domain for the non-collocated 

system. 

It is pertinent to mention that although a simple supported beam is used for discussion, the 

general procedure for controller design proposed in this paper applies to more complex structures, 

such as plates and shells, after the stochastic finite element models are developed and modal 

analysis is conducted to include the uncertain dynamics in the modal space. 

    

 

6. Conclusions 
 

In the vibration control, H-infinity norm focuses on the case that the vibration is excited at the 

fundamental frequency, and 2-norm weighs the overall performance of a system with the input of 

pulses or white noises. Using LMI and genetic algorithm, a dynamical output feedback control law 

with best controller parameters is designed by not only minimizing H2 
norm but also setting an 

upper bound on H∞ norm to suppress the vibration of an uncertain piezoelectric flexible beam 

structure due to external disturbances. In the optimization processing of genetic algorithm, the 

robust H2 performance of the closed-loop system with norm-bound uncertainty is included in the 

fitness function.  

The simulation results show that mixed control method based on LMI and genetic algorithm 

with the proposed fitness function provides the remarkable flexibility to comprise between 

frequency-domain performance and time-domain performance while the pure H∞ control method 

possesses better robust frequency-domain performance, having smaller peak frequency response, 

and pure H2 control method possesses better time-domain performance, having shorter settling 

time of impulse response. Compared to the velocity feedback control method in literatures which 

is easier to implement practically because of more simple control structure and exhibits excellent 

control performance in time-domain and low-frequency domain, the proposed control law can 

suppress the low-frequency modes without exciting the high-frequency modes. 
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