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Abstract.  Deployable structures have gained more and more applications in space and civil structures, 

while it takes a large amount of computational resources to analyze this kind of multibody systems using 

common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems 

consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected 

through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. 

Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the 

bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint 

equations, the nodal displacements are expressed as linear combination of the independent modes of the 

rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method 

has less unknowns and a simple formulation compared with common multibody dynamic methods. An 

analysis program for the proposed method is developed, and its validity and efficiency are investigated by 

analyses of several representative numerical examples, where good accuracy and efficiency are 

demonstrated through comparison with commercial software package ADAMS. 
 

Keywords:  multibody system; deployable structure; dynamic analysis; constraint equations; equations of 

motion; generalized inverse matrix 

 
 
1. Introduction 
 

Multibody dynamics describes the physics of motion of an assembly of constrained or 

restrained bodies. As such it encompasses the behavior of nearly every living or inanimate object 

in the universe (Rahnejat and Rothberg 2004). Many advances have been made in dynamic 

analysis of constrained multibody systems in the past several decades (e.g., Liu and Huston 2008, 
Gan et al. 2015, Yesilce 2015). With the development of computer technology, dynamic analysis of 

systems such as robots, space deployable structures (Fig. 1) and complex machines, can be  

                                           

Corresponding author, Professor, E-mail: wuminger@tongji.edu.cn 



 

 

 

 

 

 

Ping Xiang, Minger Wu and Rui Q. Zhou 

 
 

(a) Solar sail (Montgomery 2004) (b) Astromesh deployable reflector (Thomson 1999) 

Fig. 1 Space deployable structures 

 

 
accomplished using commercial software packages, such as ADAMS (MSC.ADAMS 2005), 

which are based on dynamics of constrained multibody systems (Ahmed 2013, Masarati et al. 

2014).  

Equations of motion and constraint equations are two fundamental types of equations employed 

in dynamic analysis. Newton-Euler equations are basic equations in dynamic analysis. 

D’Alembert's principle can be used to eliminate constraint forces in equations of motion by 

considering work performed by constraint forces of ideal constraints to be zero. Wittenburg 

(1977), Schiehlen (2007), Roberson (1988) have made a lot of progresses in multibody dynamics. 

Udwadia and Kalaba (2001, 2004) developed general and explicit equations of motion for systems 

with non-ideal constraints, in which work performed by constraint forces under virtual 

displacements is no longer zero. 

The Lagrange multiplier method is a powerful method in which the constraints are collected 

into dynamic equations. Equations of motion take a form of differential-algebraic equations 

(DAEs). Constraint forces do not appear in the DAEs, but they can be calculated easily using 

Lagrange multipliers. The DAE variables include both generalized coordinates and the Lagrange 

multipliers, which can make the dimension of the DAEs very large. Numerical algorithms used for 

solving DAEs efficiently are necessary (Orlandea et al. 1977), and several algorithms and 

problems have been developed and solved (Ç elik and Bayram 2004, Elsheikh 2015). 

Kane (1961) used generalized velocities instead of generalized coordinates to describe motion 

of multibody systems. Kane’s equations are established using Lagrange’s form of the d’Alembert 

principle. No constraint reactions appear in equations of motion for either holonomic or 

nonholonomic constraint problems. Kane’s method avoids differentiation of energy functions, 

which is required for the Lagrange multiplier method. 

Commonly, utilizing dependent instead of independent generalized coordinates is more 

convenient in formulating equations of motion and constraints (Olivier and André 2008). Several 

efficient schemes have been suggested to find independent generalized coordinates by extracting 

the orthogonal complement of the Jacobian matrix (Kamman and Huston 1984, Singh and Likins 

1985, Kim and Vanderploeg 1986, Ider and Amirouche 1988). 

The motion of multibody systems can be described in terms of Cartesian coordinates or relative 

coordinates. When Cartesian coordinates are employed, motion of each rigid body is described by 

translation of the centroid and the rotation around the centroid. Equations of motion are obtained 

stowed deployed 
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Dynamic analysis of deployable structures using independent displacement modes... 

by the Newton-Euler or Lagrangian mechanics using coordinates of the centroid and the rotation 

angles (such as Euler angles). It is straightforward to formulate motion and constraint equations 

with the Cartesian coordinate system, but too many equations are required since six variables (or 

three variables in two dimensions) are necessary to describe the motion of each body. Relative 

coordinates, in the form of relative rotations or relative displacements, describe the position of 

each body in relation to the previous body in the multibody system. The major advantage of using 

relative coordinates is that the resulting system has the minimum number of dependent 

coordinates. However, the coefficient matrix of the equations of motion is difficult to formulate. 

García de Jalón et al. (1986, 1993, 2007) proposed a new series of Cartesian coordinates called 

natural coordinates. In this coordinate system, position of each body is described by the Cartesian 

coordinates of several selected points and unit vectors. These points include joints between bodies. 

Because points defined at the joints are shared by the related bodies, number of unknowns in the 

equations of motion is reduced. 

Linked-chain systems and kinematically indeterminate framework structures have been studied 

in structural engineering. These types of structures are categorized as unstable structures, which 

are also called mechanisms or kinematically indeterminate structures. Tanaka and Hangai (1986) 

studied rigid body displacement modes of unstable truss structures using the generalized matrix 

method. Pellegrino and Calladine (1986) examined modes of inextensional deformation by 

analyzing subspaces of the equilibrium matrix. Hangai and Kawaguchi (1990, 1993) analyzed 

quasi-static displacements of link structures and extended their method to dynamic analysis. Zhao 

and Guan (2005) performed dynamic analysis of deployable truss structures using the generalized 

matrix method. Hangai and Wu (1999) formulated constraint equations of a rigid body using nodal 

Cartesian coordinates as unknowns and used the equations in structural analysis of a system 

consisting of straight elements and rigid bodies. In all of these studies, a matrix analysis method 

was employed in which nodal coordinates were used as variables. 

In multibody systems, all the bodies are connected through joints. In many cases, positional 

information (i.e., coordinates, velocities and accelerations) of the joints is much more important 

than that of the bodies for dynamic analysis. It is straightforward to formulate equations of motion 

and constraints, when the Cartesian coordinates of the joints are used as unknowns, such as the 

natural coordinates proposed by García de Jalón (1986, 1993, 2007). In this study, a rigid body is 

considered as a whole, and first and second-order constraint equations of rigid body using nodal 

displacements as variables are derived by the generalized inverse matrix method (Hangai and Wu 

(1999)). The dynamic equation with nodal accelerations as variables is established at first. Then, 

the deploying process analysis is carried out by means of Moore-Penrose generalized inverse 

matrix and Newmark-β numerical integration. This paper proposes such a new dynamic analysis 

method for multibody systems that has the following characteristics. 

1. Multibody systems to be analyzed in this study consist of rigid bars with two nodes and 

arbitrarily shaped rigid bodies with more than two nodes. The bars and the rigid bodies are 

connected through their nodes by ideal pin joints. 

2. Only the Cartesian coordinates of all the nodal points are employed as unknowns in both 

equations of motion and constraint equations. 

3. The constraint equations for the nodal displacements of each rigid body are formulated by 

eliminating freedom of the centroid. This approach was firstly used in the stress-displacement 

analysis of hybrid structures (Hangai and Wu 1999). The Jacobian matrix is given in a generalized 

form, which can be straightforwardly calculated using coordinates of the nodes and the centroid of 

a rigid body with any number of nodes. 
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Fig. 2 Rigid bar 

 

 

4. Equations of motion of the rigid bodies are based on accelerations of the nodes instead of 

their translational and rotational accelerations. Consequently, constraint forces between the rigid 

bodies are automatically eliminated when equations of motion of the multibody system are 

assembled.  

5. Nodal displacements are transformed from dependent variables to independent variables 

using independent modes of the rigid body displacements calculated from constraint equations. 

Equations of motion are written in terms of the displacements within a short time interval and 

solved numerically. 

In addition, an analysis program based on the proposed method is developed for multibody 

systems by the authors. In this paper, three representative multibody structures are analyzed using 

the program, and its accuracy and computational efficiency are validated by comparison between 

the analysis results of the proposed method and those of the commercial software package 

ADAMS. 

 

 

2. Constraint equations and equations of motion 
 

2.1 Rigid bar 
 

Consider a rigid bar a with a length of l (see Fig. 2), i and j are the two end nodes of the rigid 

bar. Defining xi and xj to be coordinate vectors of i and j, respectively, and λ to be the direction 

cosine vector of the bar, we have 

    
1

T 2

j i j i
l    

  
x x x x   (1) 

  j i

1

l
 λ x x  (2) 

Let di and dj be incremental displacement vectors of i and j, respectively, over a time 

increment, Δt. Using the first- and second-order differentials of Eq. (1) and considering that  

0l l  , 
i i

t d x  and j j
t d x , the first- and second-order nodal displacement constraint  

equations are obtained as follows 

 
x 

 y 

z 

( , , )
i i i

x y z  

( , , )
j j j

x y z  

i  

j  

a  

O 
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Fig. 3 Rigid body 

 

 

   iT T

j

  
  

  

d
λ λ 0

d
  (3) 

   iT T

a

j

  
   

  

d
λ λ Φ 0

d
                        (4) 

where a
Φ can be expressed as 

    
T

a j i j i

1
t

l
   Φ x x x x                         (5) 

Let nodal forces of the rigid bar at i and j be fi and fj, respectively, the equations of motion for 

the rigid bar can be expressed as 

 
i i

a

j j

      
   

      

a f
M

a f
                               (6) 

where Ma is the mass matrix of the rigid bar, and the acceleration vectors of i and j are respective 

ai and aj. Ma can be constructed as a lumped mass matrix or a consistent mass matrix. The 

consistent mass matrix is derived by choosing the same shape functions as them used in the 

derivation of its stiffness matrix. For a 2-node rigid bar in 3-dimension, the stiffness shape 

functions are a

1 1

2 2

   
  
 

N I I , where ξ is the isoparametric natural coordinate that varies 

from -1 at node i to +1 at node j, and I is a 3×3 identity matrix. With 
1

d d d d
2

x y z l    , the 

consistent mass matrix can be obtained as 

 
1 T

a a a a a
1

21 1
d

22 6
m l m



 
   

 


I I
M N N

I I
                     (7) 

where am  and ma are, respectively, the linear density and mass of the rigid bar. 
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b
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k
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2.2 Rigid body 
 

Consider a rigid body b (see Fig. 3), where its centroid, i.e., the center of mass, is denoted as C, 

there are kb nodes through which rigid body connects with other bars and rigid bodies. Let the 

displacement at the centroid C of the rigid body during time interval Δt be {Dx Dy Dz}
T
, and the 

rotation of the rigid body with respect to the fixed reference system Oxyz during Δt be {Ωx Ωu 

Ωz}
T
. The displacement dk of node k during Δt can then be expressed as 

 
k k
d H D                                   (8) 

where 

  
T

k kx ky kz
d d dd

                             
(9) 

  
T

x y z x y z
D D D   D

                        
(10) 

 

 
 

 

k c k c

k k c c

k c k c

1 0 0 0

0 1 0 0

0 0 1 0

k

z z y y

z z x x

y y x x

   
 

    
    

H

               

(11) 

{xk yk zk}
T
 are the coordinates of node k, and {xc yc zc}

T
 are the coordinates of the centroid C. 

Considering all the nodes of the rigid body, Eq. (8) can be rewritten as 

 
b
d HD

                                
(12) 

where 

  
bb 1 k

d d ; ;d                              (13) 

  
b1 k

H H ; ;H                              (14) 

It should be noted that matrix H in Eq. (12) is a non-square matrix. To eliminate vector D in Eq. 

(12), the necessary and sufficient condition for Eq. (12) to have a solution is used. This condition 

can be expressed as (Penrose 1955) 

 
b

   I HH d 0  (15) 

where H
+
 is the Moore-Penrose generalized inverse matrix of H. The Moore-Penrose generalized 

inverse can be obtained numerically by the QR factorization method, the singular value 

decomposition method, and so on (Ben-Israel 2003). Eq. (15) is the first-order constraint equation 

for the rigid body, with the nodal displacements of the rigid body as variables. 

Differentiating Eq. (12) gives 

 b
 d HD HD  (16) 

Eq. (16) can be rearranged as 

 b
 HD d HD  (17) 
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Fig. 4 Coordinate system and forces on rigid body 

 

 

Likewise, using the necessary and sufficient condition for the solvability of Eq. (17), after 

eliminating vector D , Eq. (18) can be obtained 

  b

    I HH d HD 0  (18) 

From Eq. (12), Eq. (19) can be obtained 

 b

D H d  (19) 

Substituting Eq. (19) into Eq. (18) gives 

 
b b

    I HH d Φ 0  (20) 

where 

 
b b

     Φ I HH HH d  (21) 

Eqs. (15) and (20) are respective the first- and second-order displacement constraint equations, 

with the nodal displacements during the short time interval Δt as variables. 

Consider the motion of rigid body b. Let Oxyz be the fixed reference coordinate system, Cξεδ
 

be the centroid connection coordinate system of the rigid body and Cx′y′z be the centroid 

translation coordinate system of the rigid body (see Fig. 4). 

Consider the forces acting on the rigid body, which is connected to other bars or rigid bodies 

through nodes. Let F be the external force vector acting on the centroid C, where F consists of the 

force vector {Fx Fy Fz}
T
 and the moment vector {Mx My Mz}

T
. Defining fk to be the external force 

vector acting on node k, we have 

 

b

b

b

x x kx
1

y y ky
1

z z kz
1

k

k

k

k

k

k

mD F f

mD F f

mD F f








   




  


   


 (22) 

 

O 

b
D
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y 

z k 

C 

F  

b 

x’ 

y’ 

z’ 

  

  

  

k
f  
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where fkx, fky and fkz are three components of fk, and m is mass of the rigid body. 

The angular momentum 
O

C
H  of the rigid body at the centroid C with respect to the fixed 

reference coordinate system Oxyz can be expressed as 

 
O O O

C
H J ω  (23) 

where J
O
 is the inertia matrix of the rigid body with respect to the centroid translation coordinate 

system Cx′y′z′. The value of J
O
 changes as the rigid body rotates. ω

O
 is the angular velocity of the 

rigid body with respect to the fixed reference system Oxyz, and can be represented as {ωx ωy ωz}
T
. 

To simplify the formulation, the inertial principal axis coordinate system at the centroid C of 

the rigid body is used as the centroid connection coordinate system Cξεδ, and the inertia matrix JC 

with respect to Cξεδ will then be a constant diagonal matrix. Using the relationship between the 

inertia matrices of connected coordinate systems with the same origin, J
O
 can be given by Eq. 

(24). 

 
TO

C
J CJ C  (24) 

where C is the direction cosine matrix of the inertial principal axis coordinate system Cξεδ with 

respect to the fixed reference coordinate system Oxyz. C can be expressed as 

11 12 13

21 22 23

31 32 33

cos cos -sin cos sin -cos sin -sin cos cos sin sin

sin cos +cos cos sin -sin sin +cos cos cos -cos sin

sin sin sin cos cos

c c c

c c c

c c c

           

           

    

 
 


 
  

 
 


 
  

C

 

    

11 12 13

21 22 23

31 32 33

cos cos -sin cos sin -cos sin -sin cos cos sin sin

sin cos +cos cos sin -sin sin +cos cos cos -cos sin

sin sin sin cos cos

c c c

c c c

c c c

           

           

    

 
 


 
  

 
 


 
  

C

 

(25) 

(c11, c21, c31), (c12, c22, c32) and (c13, c23, c33) are the direction cosine vector components of the 

inertial principal axes Cξ, Cε and Cδ, respectively, with respect to the fixed reference coordinate 

system Oxyz, and ψ, ζ and φ are the Euler angles of the inertial principal coordinate system Cξεδ 

with respect to Oxyz.  

Let ƩmC(F) be the total moment on the rigid body with respect to the centroid C, we have 

  
C

d

d

O

C

t


H
m F  (26) 

Eq. (26) is expanded into 

 

 

 

 

   

   

   

b

b

b

x k c kz k c ky

1
x

y y k c kx k c kz

1

z

z k c ky k c kx

1

k

k

k
O

C

k

k

k

M y y f z z f

m

m M z z f x x f

m

M x x f y y f







 
      

  
     

          
   
    

      
  



 



F

H F

F

 (27) 

If J
O
 is considered to be constant during the short time interval Δt, differentiating Eq. (23) 
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yields 

 
O O O

C
H J ω  (28) 

Substituting Eq. (28) into Eq. (27) gives 

 

   

   

   

b

b

b

x k c kz k c ky

1

x

y y k c kx k c kz

1

z

z k c ky k c kx

1

k

k

k
O

k

k

k

M y y f z z f

M z z f x x f

M x x f y y f













 
      

  
    

         
   
   

      
  







J  (29) 

Combining Eq. (22) with Eq. (29) yields 

 
b c b

 M a F Gf  (30) 

where ac is the centroid acceleration vector of the rigid body, including both translational and 

angular accelerations. Mb is the matrix comprising m and J
O
, fb is the force vector consisting of all 

the nodal forces. According to Eqs. (11) and (14), matrix G in Eq. (30) yields 

 TG H           (31) 

If H is considered to be constant during the short time interval Δt, differentiating and solving 

Eq. (12) give 

 
+

c b
a H a           (32) 

where ab is the nodal acceleration vector of the rigid body. 

Substituting Eq. (32) into Eq. (30) gives 

 b b b

 M a f G F           (33) 

where 

  
T T

b bb b

     M G M H H M H M  (34) 

Eq. (33) is the equation of motion for the rigid body, in which the accelerations of the nodes are 

used instead of the translational and rotational accelerations of the rigid body. bM  is the general 

mass matrix of the rigid body. If only the nodal forces are taken into account, Eq. (33) can be 

rewritten as 

 b b b
M a f           (35) 

 
 
3. Dynamic analysis of a multibody system 
 

Consider a multibody system composed of sa rigid bars and sb rigid bodies. The bars and the 
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rigid bodies are connected by ideal pin joints. After writing Eq. (3) for each of the bars and Eq. 

(15) for each of the rigid bodies and collecting them into one equation, we obtain the first-order 

displacement constraint equation, Eq. (36). Similarly, the second-order displacement constraint 

equation, Eq. (37), is obtained from Eqs. (4) and (20). 

 Ad 0  (36) 

  Ad Φ 0   (37) 

where d is the nodal displacement vector, A is an s×n matrix, n is the total nodal degrees of 

freedom of the multibody system, and s is calculated according to Eq. (38). 

 
b

a b
1

3
s

b

s s k


    (38) 

Writing Eq. (6) for each of the bars and Eq. (35) for each of the rigid bodies and collecting 

them into one equation gives 

 Ma f  (39) 

Eq. (39) is the equation of motion of the multibody system. M is the total mass matrix, which is 

the combination of the mass matrices of the bars and those of the rigid bodies. a is the nodal 

acceleration vector, and f is the nodal external force vector. Dynamic analysis can be performed by 

solving Eq. (39) and using the constraints given in Eqs. (36) and (37). 

The non-zero solution to Eq. (36) can be expressed as (Tanaka and Hangai 1986, Pellegrino and 

Calladine 1986) 

 1 1 2 2 p p
      d u u u Uα  (40) 

where u1, u2,...,up are independent orthogonal vectors, and called independent modes of the rigid 

body displacement of the multibody system. They represent the null space orthogonal basis of 

matrix A. p=n−rank(A) is the number of rigid body displacement modes, n is the number of nodal 

degrees of freedom, and α is the vector that consisting of α1, α2,..., αp. 

In order to solve Eq. (39) numerically, the incremental equation is formulated that can be used 

for numerical integration method such as Newmark-β method. In a short time interval t~t+Δt, the 

displacement considering the first-order term during t~t+Δt can be expressed as 

  t t t t t t t 
 

~
d U α α  (41) 

In Eq. (41), the subscripts are used to specify the time interval and the instant. Solving Eq. (37) 

leads to 

 
t t t t t




 

~
d A Φ  (42) 

where t


A  is the Moore-Penrose generalized inverse matrix of At at time t. Eq. (42) can be 

rewritten as 

 
t t t t t




  d d A Φ  (43) 

Consider the Taylor expansion of dt+Δt with the third-order and higher-order terms ignored 

  
21

2
t t t t t

t t


    d d d d  (44) 
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The displacement increment, including the second-order term, during the interval t~t+Δt, can 

be obtained by substituting Eqs. (41) and (43) into Eq. (44) 

  
1

2
t t t t t t t t t

t

 
   

~
d U α α A Φ  (45) 

where 
t t t t

t


 
~

d d  and 
t t t t

t


  d d d  are used.  

In Eq. (45), 
t

Φ  can be calculated using Eqs. (5) and (21). For rigid bar a, 
a t

t
,

Φ  can be 

expressed as  

 
     

   

T 2

a j i j i

T

j i j i

1

1

t t t

t t t t t t t t t t t t

t t
l

l
   

    

  

,

, ~ , ~ , ~ , ~

Φ x x x x

d d d d

 (46) 

where di,t~t+Δt and dj,t~t+Δt are the first-order displacement increments of the nodes of the rigid bar 

during the interval Δt, which can be solved according to Eq. (41). 

For rigid body b, b t
t

,
Φ  can be expressed as 

 
 

b, b,

b,

t t t t t t t t

t t t t t t t

t t

t

 



 



      

     

~

~
d

Φ I H H H H d

I H H H H
 (47) 

where 

  
b

T

1, k ,t t t
t t t   H H , ,H  (48) 

 

 
 

 

 
 

k

k c k c

k c k c

k c k c

kz, cz, ky, cy,

kz, cz, kx, cx,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

t

t t t t

t t t t

t t t t

t~t+ t t~t+ t t~t+ t t~t+ t

t~t+ t t~t+ t t~t+ t t~t+ t

t

z z y y

z z x x t

y y x x

d d d d

d d d d

   

   



   
 

     
 

    

  

   

,

, , , ,

, , , ,

, , , ,

H

 

 

ky, cy, kx, cx,

b

0 0

1 2

t~t+ t t~t+ t t~t+ t t~t+ t
d d d d

k k

   

 
 
 
 

    

   , , ,

 (49) 

dkx,t~t+Δt and the similar displacement terms are the first-order displacement increments of the nodes 

of the rigid body during the interval Δt, which can be solved according to Eq. (41). 

If Eq. (46) is applied to each of the bars, and Eq. (47) is applied to each of the rigid bodies, then 

the displacement increment, including the second-order term, during the interval t~t+Δt can be 

obtained by substituting Eqs. (46) and (47) into Eq. (45). 

The velocity is considered as the time derivative of displacement, which is obtained from 

t t t t
t


 

~
d d / . By means of Eq. (45), the velocity and acceleration at time t can be expressed as 
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1

2
t t t t t

 v U α A Φ  (50) 

 
 

1

2
t t t t t t t t t t t t

t
t

 

   
  




U α U α A Φ A Φ

a  (51) 

Substituting Eq. (51) into Eq. (39) and multiplying the equation by T

t t
U  on both sides, we 

obtain 

  T T T T1

2
t t t t t t t t t t t t t t t t t t t t t t t t

t 

       
    U M U α U M U α U M A Φ A Φ U f  (52) 

Eq. (52) can be solved using numerical methods such as the Newmark-β method (Bathe and 

Wilson 1976), which is employed in this paper. According to the Newmark-β method, the velocity 

and the displacement at time t+Δt can be expressed as 

  1
t t t t t t

t t 
 

     α α α α  (53) 

    
2 21

2
t t t t t t t

t t t 
 

 
        

 
α α α α α  (54) 

where β and γ are two parameters used in the calculation, and they are set to β=0.25 and γ=0.5 in 

this research. From Eqs. (53) and (54), we have 

 
 

2

1
1

2

t t t t

t t t
tt  





  
    

  

α α α
α α  (55) 

   1 1
2

t t t t t t t
t

t

  

  
 

   
         

    
α α α α α  (56) 

Substituting Eq. (56) into Eq. (52) yields 

 

 

T

T T

T T1

2

1 1
2

t t t t t t t

t t t t t t t t t t t

t t t t t t t t t t t t t t

t

t t
t





  

  

  

  

 

   



    
           

     

  

U M U α

U f U M U α α α

U M U α U M A Φ A Φ

 (57) 

Eq. (57) is the dynamic iterative formula expressed using the vector α. The number of variables 

in Eq. (57) is p, which is less than the number of variables in Eq. (39). 

αt+Δt 
can be solved iteratively for the time interval t~t+Δt using Eq. (57), and 

t t
α  and 

t t
α   

can be obtained from Eqs. (55) and (56). The nodal displacements are obtained by substituting 

t t
α  into Eq. (45), and the nodal velocities and accelerations are obtained by the numerical  

differentiation of the displacements. The centroid displacement vector of the rigid body, {Dx Dy Dz 

ωxΔt ωyΔt ωzΔt }
T
, is obtained from Eq. (19), and the centroid coordinates with respect to the 

fixed reference system are updated accordingly. The Euler angle increments for the time interval 
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t~t+Δt are obtained from Eq. (58), and the Euler angles of the rigid body are updated accordingly. 

The inertia matrix at instant t+Δt is obtained next by substituting the updated Euler angles into  

Eqs. (25) and (24), and the mass matrix is updated accordingly so that α , α  and α  can be  
obtained from Eq. (57) at the next time step. The nodal displacements, velocities and accelerations 

are obtained similarly at each time step. 

 

x

z

-sin cot cos cot 1

cos sin 0

sin cos
- 0

sin sin

t t

    
 

 
 

 
 

    
    
      
    
     

y
 (58) 

 
 
4. Numerical examples 
 

A computer program was written for implementing the proposed method (the flowcharts are 

shown in Appendices A and B), and a five-bar linkage model was firstly analyzed using the 

program. The numerical results are compared with the results of the numerical integration of the 

equations obtained using the Lagrange multiplier method. Dynamic analysis results of two 

deployable structures using the proposed method are also compared with those using the 

commercial software package ADAMS (MSC.ADAMS 2005), in which the Lagrange multiplier 

method is implemented. 

 

4.1 A five-bar linkage 
 

The five-bar linkage in Fig. 5 is a two-degree-of-freedom system. The masses and the lengths 

of the bars are the same with mAB=mBC=mCD=mDE=2.45076 kg and lAB=lBC=lCD=lDE=1 m. The 

distance between the fixed points A and E is 2 m. The linkage starts to move under its self-weight 

with initial conditions xC=1.0 m, yC=0.0 and vCx=vCx=0 as shown in Fig. 5. In this example, the 

lumped mass matrix is used in the proposed method. For the Lagrange multiplier method, the 

masses of bars are replaced by the centralized masses at nodes B, C and D. The time history of xB 

and vBx calculated using the proposed method and the Lagrange multiplier method is shown in Fig. 

6. The same results are obtained from the two methods. 

 

4.2 A deployable reflector with stiff panels 
 

Fig. 7 shows a stiff-panel reflector similar to the reflector proposed by Rogers et al. (1993). The 

reflector is composed of four stiff panels, forty-one rigid bars and eight cables. To deploy the 

reflector synchronously, fourteen synchronous gears are located at nodes 2~8 and nodes 11~17. By 

shortening the length of the cables through motors, the deployable reflector can be stowed from 

the fully deployed state. As shown in Fig. 7(a), the four stiff panels are of the same size, 2.0 m×1.0 

m. As shown in Fig. 7(b), the diagonal rigid bars have the same length of 1.5 m, and the length of 

the other rigid bars is 1.0 m. To simplify the calculation, the cables are replaced by eight pairs of 

forces in the deployment analysis. The magnitude of the forces is maintained at a constant level of 

50.0 N along the direction of the cables. The synchronous gears are considered as the constraint 

condition, where the rotation angles of gears are kept the same during the folding process. The 

gravity of the reflector is not considered in the analysis. 
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Fig. 5 A five-bar linkage 

 

  

(a) xB (b) vBx 

Fig. 6 Time history of xB and vBx 

 

 

The dynamic process is analyzed starting from the fully deployed configuration and ending at 

the predetermined folded configuration. The displacements and velocities are initially set to zero, 

and the folding process is simulated using both the proposed method and the ADAMS software 

package (MSC.ADAMS 2005). Fig. 8 shows the change in the shape of the reflector during the 

folding process. The reflector reaches the predetermined configuration when t equals 9.07 s. In 

Fig. 9, the x and y components of the coordinates, velocities and accelerations of node 5 are plotted 

from the simulation results. The time interval Δt used in both the proposed method and ADAMS 

was 1.0×10
-2 

s. The simulation results from the two methods are almost the same. 

The number of unknowns in the dynamic equations in the proposed method is the number of 

independent rigid body displacement modes, which equals six in this numerical model. 

Comparatively, the degree of freedom (DOF) of this numerical model in ADAMS equals 47 (The 

numerical model comprises 45 moving parts, 76 spherical joints, 14 general constraints and 19 

redundant constraint equations, so DOF=45×6−76×3−14+19=47). Comparison of the 

computational efficiency between the proposed method and ADAMS is shown in Table 1. It can be 

seen from Table 1 that the analysis using the proposed method takes as little as approximately one-

half the CPU time of that required by ADAMS when the two methods give the same high 

accuracy. 
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(a) Stiff panels 

 

(b) Deployable truss 

 

(c) Deployable reflector 

Fig. 7 A deployable reflector with stiff panels 

 

 

Fig. 8 Simulation of folding process 

 

 

 

    

 t=0.00s t=2.00s t=4.00s 

    

 t=6.00s t=8.00s t=9.07s 
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(a) Displacements (b) Velocities 

 
(c) Accelerations 

Fig. 9 Time histories of dynamic responses of node 5 

 
Table 1 Computational efficiency comparison of Example 2 

Time interval Δt (s) 
Computing time (s) 

(present paper) 

Computing time (s) 

(ADAMS) 
Accuracy 

1.00×10
-3

 76.14 252 
high (present paper) 

low (ADAMS) 

1.00×10
-2

 7.84 15 high 

2.00×10
-2

 3.86 7 high 

1.00×10
-1

 –* 2 
– (present paper) 

very low (ADAMS) 

*symbol-in the table means calculation failed. 

 

 

4.3 A deployable truss 
 

Fig. 10 shows a three-dimensional deployable truss used in deployable reflectors
 
(Thomson 

1999). The truss consists of thirty rigid bars and a continuous diagonal cable. The deployable truss  
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Fig. 10 A deployable truss 

 

 

Fig. 11 Simulation of folding process 

 

 

is stowed by shortening the length of the cable (for example, using a motor). In the fully deployed 

state, the deployable truss is 1.6 m high, and the upper and lower truss rings are in the shape of a 

decagon with edges of length 1.2 m. The density of the truss members is 9.8 kg/m. In the 

deployment analysis, the continuous cable is replaced by ten pairs of forces. The magnitude of the 

forces is maintained at a constant level of 2.0 N along the direction of the diagonal cable. The 

gravity of the truss is not considered in the analysis. 

The dynamic process is analyzed from the fully deployed configuration to the fully folded 

configuration using both the proposed method and ADAMS. The displacements and velocities are 

initially set to zero. Fig. 11 shows the configurations of the truss at different instants during the 

folding process. The deployable truss is completely stowed when t equals 8.890 s. Fig. 12 gives 

the simulated coordinates, velocities and accelerations of node 1. The time interval Δt employed in 

both the proposed method and ADAMS was 1.0×10
-2

 s, and the two methods give almost the same 

simulation results. 

The number of unknowns in the dynamic equations of the proposed method is the number of 

independent rigid body displacement modes, which equals eleven in this numerical model. 

Comparatively, the degree of freedom (DOF) of this numerical model in ADAMS equals 45 (This 
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numerical model comprises 30 moving parts, 10 planar joints, 40 spherical joints and 15 redundant 

constraint equations, so DOF=30×6−10×3−40×3+15=45). The computational efficiencies of the 

proposed method and ADAMS are compared in Table 2, indicating that the proposed method takes 

approximately one-sixth of the CPU time required by ADAMS when the same high accuracy is 

achieved. 

 

 

  
(a) Displacements (b) Velocities 

 
(c) Accelerations 

Fig. 12 Time histories of dynamic responses of node 1 

 
Table 2 Computational efficiency comparison of Example 3 

Time interval Δt (s) 
Computing time (s) 

(present paper) 

Computing time (s) 

(ADAMS) 
Accuracy 

1.00×10
-4

 321.50 – 
high (present paper) 

– (ADAMS) 

1.00×10
-3

 32.27 238 high 

1.00×10
-2

 3.25 18 high 

1.00×10
-1

 –* – – 

* symbol – in the table means calculation failed. 
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5. Conclusions 
 

Multibody dynamic analysis based on an inertial coordinate system has many advantages, such 

as clarity of the resulting formulation, convenience for computer processing and ease of 

integrating the analysis with finite element modeling and continuum mechanics theory. It has 

become an effective method of dynamic analysis for multibody systems. This paper proposed a 

new dynamic analysis method based on nodal Cartesian coordinates, where a generalized inverse 

matrix method is applied to analysis of multibody dynamics. The constraint equations of 

displacements and the equations of motion using displacement modes as variables are established 

by means of Moore-Penrose generalized inverse matrix. The method proposed in this paper has 

less unknowns and a simple formulation. 

Three representative numerical examples were analyzed using the proposed method, and the 

results were also compared with other analysis methods, through which the validity and efficiency 

of the proposed method are demonstrated. 

The second-order displacement constraint equation is also formulated in this paper. Since the 

generalized inverse of the large dimension matrix A should be calculated when the second-order 

term is considered, the efficiency of numerical calculation is expected to be further investigated in 

future study. 
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Dynamic analysis of deployable structures using independent displacement modes... 

Appendix A. Flowchart of the proposed computational procedure 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computation of nodal freedom and sort 

(Call INDEX Subroutine) 

Formation of A, C , O
J , bM  

Computation of A
+
, H 

(Call HH Subroutine) 

Formation of nodal force matrix 1NFRERNODE   

(Call FORCE Subroutine) 

Formation of mass matrix NFRE NFREM  

(Call MASS Subroutine) 

Establishment of dynamic analyzing iterative equation 

Solving using Newmark   method 

(Call NEWMARK Subroutine) 

Inputs: 

-Total number of nodes 

-Total number of rigid bars 

-Total number of rigid bodies 

-Initial nodal positions 

-Constraint conditions 

-Material properties 

- t  、 、  

-Error limit 

(Call DATIN Subroutine) 

END 
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Appendix B. Flowchart of the iterative solving process 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Call HH Subroutine 

ITNU 1  

Calculation of ,ITNU ,ITNU 1t t t t  α α  

||αt+Δt,ITNU - αt+Δt,ITNU-1|| 

<error limit 

Calculation of the first- and  

second-order term increment  

of nodal coordinates 

ITNU>20  

Calculation 

failed,  

DT and/or 

error limit 

need to be 

modified 

Calculation of increment of Euler angles during 

~t t t   and updated Euler angles at time t t   

Calculation of nodal displacements, displacements 

and updated coordinates of the centroids C  of 

rigid bodis 

Existence of rigid bodies 

No 

Yes 

Formation of iterative equation 

Formation of 1 1, , ,
2

t t t t t tt
t

 

 

   
     

    
M U α α α α ,etc. 

TTT=TTT+DT 

The number of iterations ITNU=ITNU+1during ~t t t   

Calculation of t tα  

(Call LEQ Subroutine) 

ITNU 2  

Calculation of the second-order term  

in iterative equation 

Calculation of 0α  by solving equation T T
0 0 0 0 0 0U M U α U f  

(Call LEQ Subroutine) 

 
TTT=0.0 

Yes 

No 

Yes 

No 

Yes 

No 

No 

Yes 

Calculation of length variation of rigid bars 

and rigid bodies 

Calculation of , , ,t t t t t t t t   α α v a  

Yes 

Output of calculation results 

Deployment or folding 

has been completed 

STOP 
No 

Call MASS Subroutine 

Call FORCE Subroutine 

Assumption of 0 0 0,  α α 0 v 0  

Fig. 4 Flowchart of the iterative solving process 
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