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Abstract.  Form-finding for cable-membrane structures is a delicate operation. During the last decades, 

the force density method (FDM) was considered to be an efficient method to address the problem. Many 

researchers were devoted to improving this method and proposed many methods such as natural force 

density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a 

modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane 

elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they 

can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, 

INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient 

and precise. 
 

Keywords:  form-finding; cable-membrane structure; force density method (FDM); equivalent transform 

relationship 

 
 
1. Introduction 
 

Cable-membrane structures have a very attractive characteristic of large span distances. They 

are expected to be very light, elegant, and efficient (Bradshaw et al. 2002). These advantages make 

cable-membrane structures play a major role in engineering practice. Nowadays, cable-membrane 

structures have gained wide applications in space missions, such as spaceborne membrane SAR 

antenna. JPL (Grahne and Cadogan 1999), DLR (Straubel et al. 2010) and CSA (Colinas et al. 

2005) have been performed their efforts on the development of membrane SAR antenna program, 

respectively. The membrane SAR antenna is typically composed of three components, the support  
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Fig. 1 The membrane SAR antenna 

 
 

frame, tension cable and the membrane as showed in Fig. 1. The membrane is ultra-thin, 
lightweight and of extremely large size (several hundred square meters) (Lane et al. 2011), and has 
high surface flatness requirement (less than 5 mm). Tensioning the membrane is an effective 
method to render it flat. The experiments proposed by Leifer et al. (2010) indicate that the 
increasing the tautness of the membrane significantly reduces (but does not eliminate) the surface 
wrinkling. If the tension stress in the membrane is distributed well, it will make more efforts on 
increasing the surface flatness. Hence, design a uniform tension stress field in the membrane is 
expect necessary. 

For cable-membrane structures, the stresses distribution in it is a direct result of the structural 
shape. Therefore, the self-equilibrium shape should be decided by a form-finding analysis that 
simultaneously gets the feasible set of internal stresses distribution and geometry of the structure 
(Ye et al. 2012). It is a fundamental step in the design of a membrane SAR antenna. Up to now, 
there are various techniques having been proposed to solve the form finding problem, such as 
Force Density Method (FDM) (Zhang et al. 2007, Pauletti and Pimenta 2008, Ye et al. 2012), 
Dynamic Relaxation Method (DRM) (Barnes 1999, Zhang et al. 2006, Xu and Luo 2011), 
geometrically nonlinear finite element method (Valdés et al. 2009), minimal surface method 
(Tsiatas and Katsikadelis 2006). Veenendaal and Block (2012) have discussed and compared these 
form finding methods and presented a single computational framework. DRM starting from an 
arbitrary non equilibrated configuration the final form is resolved by means of an iterative pseudo-
dynamical process, with each iteration based on an update of the geometry (Greco and Cuomo 
2012). However, DRM requires too many parameters, such as time step, to control stability and 
convergence (Nouri-Baranger 2004), and resents of dynamic stability problems. 

FDM is originally proposed by Linkwitz (1971a, b), Scheck (1974), and its main feature lies in 
prescribing a force density, namely the ratio of force-to-length, for each cable element. This 
method was first developed to solve the form finding problem of cable networks, and was used to 
find the form of double layer grid structure (Tran and Lee 2013), slack cable nets (Greco and 
Cuomo 2012), flexible bridge decks (Quagliaroli and Malerba 2013) and cable net antennas 
(Hernandez-Montes et al. 2006, Morterolle et al. 2012, Liu et al. 2013a, b, c). Then Maurin and 
Motro (1998) introduced it into shape finding problem of membrane structures and proposed some 
analogous procedures. When applying the FDM to cable-membrane structures, the structure is first 

Support frame 

Membrane 

Tension cable 
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modeled as cable nets, thus the FDM can convert the nonlinear problem into linear equations that 
can be readily solved. FDM is an attractive method, and it has universal applicability and 
advantages. However, FDM had not considered the variety of the cable member length. In order to 
preserve the linearity of the original force density method and retains its simplicity and robustness, 
Pauletti and Pimenta (2008) propose the natural force density method (NFDM). The stress field is 
calculated by updating the reference configuration and then the desired stress field. As the width of 
the member element is also varying in the form finding process, Xiang et al. (2010) presented an 
improved nonlinear force density method (INFDM) taking into account of the effect of 2-
dimensional deformations of the membrane surface. However, in all these methods, the force 
density can only be determined after several trial calculations, which often is dependent on the 
experience of the researchers. Moreover, stresses distribution in the membrane is hard to assess, 
especially for membrane structures with flexible boundaries (Maurin and Motro 1998, 2004, Ye et 
al. 2012). The stresses distribution of the form-finding shape will not agree with the given design 
stresses distribution. 

In this paper, a modified nonlinear force density method (MNFDM) is proposed. The 
disadvantages of the above-mentioned methods were addressed through the following 
modification: the stresses of membrane elements were transformed to the force-densities of cable 
nets by an equivalent relationship. With this transformation the form-finding of the membrane 
structures will be of high efficiency. Membrane stresses and cable tension can be introduced as 
initial conditions to establish a quantitative relationship between the force densities and the 
internal forces of the structure, which would avoid the complicated trial calculation process and 
simplify the form finding computation for the cable-membrane structures. 
 
 
2. An outline of the force density method 
 

In order to apply FDM to cable-membrane structure, first, the membrane is discretized into 
elements and modeled as a cable net. Consider a cable net has n free nodes and nf fixed nodes, 
connected by m elements. The total number of nodes is ns=n+nf. With reference to the ith node of a 
3D net (Fig. 2), the equilibrium equations in the x, y, z directions are respectively 

0

0

0

j i k i l i m i
ij ik il im xi

ij ik il im

j i k i l i m i
ij ik il im yi

ij ik il im

j i k i l i m i
ij ik il im zi

ij ik il im

x x x x x x x x
T T T T F

L L L L

y y y y y y y y
T T T T F

L L L L

z z z z z z z z
T T T T F

L L L L

    
    


         

         


              (1) 

where Tij is the axial force and Lij is the length of the element between the nodes i and j 

     2 2 2

ij i j i j i jL x x y y z z                           (2) 

Suppose that the topology of the cable net structure is known at the start of the analysis. The 
member-node incidence matrix, also called structural topological matrix, which describes the 
connectivity of the cable members to the nodes, are given by 
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Fig. 2 Generically free node 
 

 

1 if  =

( , ) 1 if  =

0 for other cases
s

q i

p q q j


 



C                          (3) 

where p is the row number of matrix Cs denotes the p-th cable member that matches node i and 
node j (i<j), Cs is an m by ns matrix. 

For convenience of subsequent analysis, by partitioning the matrix Cs, we can put in evidence 
separately the coordinates of the free and those of the fixed nodes, as follows 

s u f   C C C                                (4) 

where Cu∈Rm×n and fm n
f

RC describe the connectivity of the members to the free and fixed 
nodes, respectively. 

Take x-direction for instance, the projection of the cable member on x-axis is 

s s u u f f  u C x C x C x                            (5) 

where xs, xf and x are x coordinates of the total nodes, free nodes and fixed nodes, respectively. 
Introduce the concept of force density qij=Tij/Lij, denote q is the force densities of the members, 

Q=diag(q). Then the equilibrium equations of the cable net can be set out into a matrix form 

T
s s s xsC QC x p                                (6) 

Generally 

T
x

fT
f xff

     
              

x pC
Q C C

x pC
                         (7) 

Then 

T T
f f x

T T
f f f f xf

  


 

C QCx C QC x p

C QCx C QC x p
                          (8) 
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ikT
ijT

ilT
imT

1048



 
 
 
 
 
 

Modified nonlinear force density method for form-finding of membrane SAR antenna 

Fig. 3 The flow chart of the NFDM 
 
 
Letting D=CTQC and Df=CTQCf, we have finally 

 1
x f f

 x D p D x                              (9) 

The above provides the equations of FDM. In these equations, the force density q is constant, 
but the member length L is variation, this will makes the tension force T=q×L did not match the 
initial value. In order to overcome this disadvantage, the NFDM use the viable configuration as 
reference configuration, in which the force density is updated by qi+1=T/Li (i is the iteration 
number, T is keeping fixed) in every iteration. The flow chart of NFDM is illustrated in Fig. 3.  
First the initial stresses are set, and the structure is discretized. Then the coordinate of the node and 
the force density of the member are updated. After that, the equilibrium equations displayed in Eq. 
(6) are solved. If the unbalance force error is less than a set value, the form finding process could 
be ended. Otherwise, the program will run one more loop. In INFDM, the force density of the 
membrane member updated by qi+1=s∙Wi/Li, where s and W are the stresses and width of the 
membrane elements, respectively. In this paper, the force densities of the membrane member will 
be updated according to an equilibrium transformation relationship, which will lead to a more 
accurate solution. 

 
 

3. Equivalent transformation relationship for cables and quadrangle elements 
 
As the elements with a higher number of nodes could result in higher accuracy. In order to 

reach a higher accuracy, quadrangle element is chosen to discretize the membrane. Consider a 
planar mesh, with no shear stresses involved, the mesh lines of the elements can be taken as the 
cable segments of a cable net. The boundary cable segments belongs to one quadrangle membrane  

Set Initial Stresses

Discretized the structure

Solve the equilibrium equations

Convergence? 

Update the coordinate of the node

END

Update the force density of the member

YES

NO 
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(a) (b) 

Fig. 4 Forces of cables and its equivalent nodal force in a single quadrangle element 
 
 

elements and one cable elements, the other belongs to two quadrangle membrane elements. One of 
the quadrangle elements is shown in Fig. 4. Denote Te=[Tij Tjk Tkl Tli]

T as the force vector and 
qe=[qij qjk qkl qli]

T as the corresponding force density vector of cables respectively, where qij=Tij/Lij 
and Lij is the length of the cables. Denote Fe=[Fi Fj Fk Fl]

T as the equivalent nodal force vector, and 
Te

x ix jx kx lxF F F F   F
Te

y iy jy ky lyF F F F   F
 

Under the above assumption of straight cable members, the cable member can be treated as a 
tension truss structure. Consequently, the equilibrium equation of cable member ij is 

 1 1
sin

2 2
j i

ix jx ij ij ij x j iF F tL t y y                          (10) 

 1 1
cos

2 2
j i

iy jy ij ij ij y j iF F tL t x x                          (11) 

Similarly, the equilibrium equation of cable member li is 

 1 1
sin

2 2
l i

ix lx li li li x i lF F tL t y y                          (12) 

 1 1
cos

2 2
l i

iy ly li li li y i lF F tL t x x                          (13) 

Hence, the node force of node i is  

 1

2
j l

ix ix ix x j lF F F t y y                            (14) 
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Write the force vector of the four nodes in the matrix form 

0 1 0 1

1 0 1 0

0 1 0 12 2

1 0 1 0

ix i

jx je ex x
x

kx k

lx l

F y

F yt t

F y

F y

 
    

           
    
        

F A y                (16) 

0 1 0 1

1 0 1 0

0 1 0 12 2

1 0 1 0

iy i

jy y yje e
y

ky k

ly l

F x

F t tx

F x

F x

 
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             
    
          

F A x              (17) 

According to the equilibrium conditions at nodes shown in Fig. 4, the force equilibrium 
equations at node i are 

   j i l i
ix ij li ij i j li i l

ij li

x x x x
F T T q x x q x x

L L

 
                      (18) 

   j i l i
iy ij li ij i j li i l

ij li

y y y y
F T T q y y q y y

L L

 
                     (19) 

The force equilibrium equations on the four nodes can be written in the form of matrix as 
below 

0 0

0 0

0 0

0 0

i j i l ij

j i j k jke e
x

k j k l kl

l k l i li

x x x x q

x x x x q

x x x x q

x x x x q
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       

F X q                (20) 

0 0

0 0

0 0

0 0

i j i l ij

j i j k jke e
y

k j k l kl

l k l i li

y y y y q

y y y y q

y y y y q
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    
         
    
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F Y q               (21) 

Let B=[X Y]T, then 

0

02

e e
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e e
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t 

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Hence 

  1 0

02

e
xe T T

e
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t 
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A y
q B B B

A x
                    (23) 

Then the force densities of the total members q can be obtained by adding element force 
densities qe together 
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Fig. 5 Transform from element stresses to cable forces 
 
 

e

e

q q                                 (24) 

From Eq. (23), one can assume that the transform relationship is depending on the coordinates 
of the nodes. Hence, in the form-finding process, the force density should be updated in every 
iterating step. 

 
 

4. Numerical examples 
 

4.1 Transform from element stresses to cable forces 
 
In order to verify the equivalent transforms relationship between force-densities of cable nets 

and the stresses of membrane elements, we take a single quadrangle element as an example. 
Suppose the element stress is σx=σy=1 kPa, σxy=0 kPa. The thickness of the element t=1 mm. Fig. 5 
shows the equilibrium force densities of the cable segments in six different cases. 
 

4.2 Form finding of a plane membrane 
 
A plane membrane structure fixed at the vertices of a square, with the length 10 m and the 

thickness 1 mm, is considered here. Fig. 6(a) shows its initially assumed shape and mesh. The 
initial stresses in the membrane are σx=σy=1 MPa and the initial force on the boundary cable is 
T=5 kN. 
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Fig. 6 Transform from element stresses to cable forces 
 
 
The FDM, NFDM, INFDM and MNFDM are used to solve this problem respectively. For fair 

comparison, all methods are applied iteratively with 25 iterations. And the final viable shapes are 
shown in Fig. 6(b)-(e). Fig. 6(f) shows the comparison of the final shapes solved by these four 
methods. In Fig. 6(b)-(e), the red arrows stand for the tension force distribution of the boundary 
cable. The tension force of the boundary cable can be decompose into two parts: the normal force 
(vertical to the boundary cable curve) and the tangential force (tangent to the boundary cable 
curve), and they are compared in Fig. 7(a) and Fig. 7(b). As the initial stress of the membrane is 
set to 1 MPa, the normal force of the boundary cable would be 1 kN/m in the ideal case. Actually, 
the results demonstrate that the tension force solve by FDM is much less than 1 kN/m. That is 
because it did not consider the variety of the cable member length, the tension force go down with 
decreasing cable length while the force density is constant. By considering the variety of the cable 
member length, the tension force in the center solved by NFDM is much bigger than FDM. But the 
tension force in the corner becomes smaller, that’s because the mesh in there becomes wider. The 
INFDM taking into account both the variety of the cable length and mesh width, it did improve the 
result significantly. However, the tension force distribution is still non-uniform. As the force 
densities are corrected by multiple the cable length and mesh width in INFDM. The correction 
method will be inaccurate while the mesh is seriously distorted. Hence, we can see the tension 
force solve by INFDM is decreasing in the two ends of the edged. In the MNFDM presented in 
this paper, the force densities are transformed from the initial membrane stresses through the  
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Fig. 7 Tension and tangential force distribution comparison of the plane membrane 
 

Table 1 Statistical index of normal force distribution of the plane membrane 

Method Max Min Mean STD SSE 

FDM 0.9366 0.7221 0.7822 0.0629 1.9997 
NFDM 1.0279 0.6649 0.9487 0.1029 0.5047 
INFDM 1.0039 0.8091 0.9902 0.0431 0.0744 

MNFDM 1.0103 0.9917 1.0032 0.0032 0.0008 
 
 

equivalent transform relationship. Furthermore, by this method, the distribution of the tension 
force is expected to be very uniform.  

Table 1 list the statistical index of tension force distribution solved by the four methods, which 
are maximum (Max), minimum (Min), mean, standard deviation (STD) and sum of squares of 
errors (SSE). It shows that the mean of the tension force distribution solved by MNFDM is 1.0032, 
it is the most approximate one to the ideal result.  

Fig. 8 illustrates the length variations of the member in x-directions, and the statistical indexes 
are listed in Table 2. Several properties can be seen from the results:  
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Fig. 8 Length variations of the member in x-direction 
 

Table 2 Statistical index of length variations of the member in x-direction 

Method Max Min Max/Min Mean STD 
FDM 0.2591 0.1773 1.4614 0.2191 0.0173 

NFDM 0.4497 0.1724 2.6085 0.1994 0.0291 
INFDM 0.3212 0.0419 7.6659 0.2036 0.0644 

MNFDM 0.3531 0.0577 6.1196 0.2036 0.0642 
 
 
(1) For FDM, the member length of the left and right side are shortened, and the up and down 

side are lengthened; 
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(2) For NFDM, the member length of the four corner are lengthened, and center are shortened 
slightly; 

(3) For INFDM and MNFDM, the member length variations are very similar: the left and right 
sides are shortened sharply, and the centers are lengthened slightly.  

Since the problem of a plane membrane fixed at four points was considered as a benchmark, 
Pauletti and Pimenta (2008) present several border configurations for different tension force 
(T=100, 10, 5, 2, 1.5  and 1.41 kN) on the border cables, and discussed the solution from a 
theoretical point of view. Fig. 9 compares six different solutions for this problem solved by 
INFDM and NFDM. It is shown that the result of the two methods is much approximate to each 
other. 

 
 

Fig. 9 Comparison of INFDM and NFDM under different tension force 
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Fig. 10 Form finding result of the membrane SAR antenna 
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Fig. 11 Tension force distribution comparison of the membrane SAR antenna 
 

Table 3 Statistical index of normal force distribution of the membrane SAR antenna 

Method Max Min Mean STD SSE 

FDM 1.3248 0.8096 0.9129 0.1209 3.5151 
NFDM 1.0109 0.7742 0.9341 0.0420 0.9696 
INFDM 1.0174 0.8571 0.9961 0.0400 0.2554 

MNFDM 1.0205 0.9737 1.0038 0.0080 0.0123 
 
 
4.3 Form finding of the membrane SAR antenna 
 
A membrane SAR antenna structure fixed at the 18 points of the edges, with width 10 m, length 

40m and thickness 1 mm, is considered here. Its initial shape and mesh are presented in Fig. 10(a). 
The initial stresses in the membrane are σx=σy=1 MPa

 
and the initial force on the boundary cable is 

T=8 kN. Fig. 10(b)-(e) illustrates the final viable shapes of the membranes solved by FDM, 
NFDM, INFDM and MNFDM, respectively. As the ideal shape of the border cables is known a 
priori as circular arches, if the membrane stress is homogeneous isotropic and the cable force is 
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uniform normal. The four border configurations for different methods and the ideal shape are part 
enlarged and compared in Fig. 10(f). The red arrows in the figures stand for the tension force at the 
of the boundary cable. The tension force of the boundary cable can be decompose into two parts: 
the normal force (vertical to the boundary cable curve) and the tangential force (tangent to the 
boundary cable curve), and they are compared in Fig. 11(a) and (b). The results demonstrate that 
all the four tension force distribution and tangential force distribution are periodically changing. 

Statistical indexes of tension force distribution are compared in Table 3. It is shown that the 
STD of the MNFDM is 0.008, which is much lesser than the other three methods. Moreover, the 
mean and SSE of the tension force distribution solved by MNFDM is 0.0123. As in theoretical, the 
normal force distribution and the tangent force distribution are 1 kN/m and 0 kN/m, respectively. 
Therefore, we can demonstrate that the result of MNFDM is the most approximate one to the 
theoretical result. 
 
 
5. Conclusions 
 

This paper addressed the form-finding problem of cable-membrane structures.  Attempting to 
find a viable initial configuration with a uniform, isotropic plane stress state for the cable-
membrane structures, an equivalent transformation relationship between force-densities of cable 
nets and the stresses of membrane elements was established. Based on such relationship, a 
modified nonlinear force density method (MNFDM) was proposed. Numerical examples are 
conducted to verify the proposed method and the following conclusions can be drawn: 

• The membrane stress and cable tension are used as initial conditions instead of assuming the 
value of force density, this would avoid the complicated trial calculation process and makes the 
process of form-finding more concise, efficient and clear. 

• The MNFDM is more accurate than FDM, NFDM and INFDM in the same iterations. In the 
present simulation cases, the final shapes solved by it have a very uniform stresses distribution. 
The max errors of the edge normal force are less than 2.05% in both cases. These results are much 
appropriate to the theoretical one. 
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