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Abstract.  In this paper, a simple n-order refined theory based on neutral surface position is developed for 

bending and frees vibration analyses of functionally graded beams. The present theory is variationally 

consistent, uses the n-order polynomial term to represent the displacement field, does not require shear 

correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses 

vary parabolically across the thickness satisfying shear stress free surface conditions. The governing 

equations are derived by employing the Hamilton’s principle and the physical neutral surface concept. The 

accuracy of the present solutions is verified by comparing the obtained results with available published ones. 
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1. Introduction 
 

Composite materials have been successfully used in aircraft and other engineering applications 

for many years because of their excellent strength to weight and stiffness to weight ratios. 

Recently, advanced composite materials known as functionally graded material have attracted 

much attention in many engineering applications due to their advantages of being able to resist 

high temperature gradient while maintaining structural integrity (Koizumi 1997). The functionally 

graded materials (FGMs) are microscopically inhomogeneous, in which the mechanical properties 

vary smoothly and continuously from one surface to the other. They are usually made from a 

mixture of ceramics and metals to attain the significant requirement of material properties. 

Due to the increased relevance of the FGMs structural components in the design of engineering 

structures, many studies have been reported on the static, and vibration analyses of functionally 

graded (FG) beams. Sankar (2001) investigated an elasticity solution for bending of functionally 

graded beams (FG beams) based on Euler-Bernoulli beam theory. Li (2008) investigated static 

bending and transverse vibration of FGM Timoshenko beams, in which by introducing a new 

function, the governing equations for bending and vibration of FGM beams were decoupled and 

the deflection, rotational angle and the resultant force and moment were expressed only in the 

terms of this new function. Sallai et al. (2009) investigated the static responses of a sigmoid FG 
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thick beam by using different beam theories. Benatta et al. (2009) presented a mathematical 

solution for bending of short hybrid composite beams with variable fibers spacing. Şimşek (2010a) 

studied the free vibration analysis of an FG beam using different higher order beam theories. In a 

recent study, Şimşek (2010b) has studied the dynamic deflections and the stresses of an FG 

simply-supported beam subjected to a moving mass by using Euler-Bernoulli, Timoshenko and the 

parabolic shear deformation beam theory. Thai (2012) investigated the Bending and free vibration 

of functionally graded beams using various higher-order shear deformation beam theories. Giunta 

et al. (2011) used the Hierarchical theories for the free vibration analysis of functionally graded 

beams. Zhang (2013) studied the nonlinear bending analysis of FGM beams based on physical 

neutral surface and high order shear deformation theory. Murin (2013) investigated the modal 

analysis of the FGM beams with effect of the shear correction function. Salamat (2012) presented 

the static and dynamic analysis of third-order shear deformation FG micro beam based on 

modified couple stress theory. 

Since, the material properties of functionally graded beam vary through the thickness direction, 

the neutral surface of such beam may not coincide with its geometric middle surface. Therefore, 

stretching and bending deformations of FG beam are coupled. Some researchers (Zhang and Zhou 

2008, Saidi and Jomehzadeh 2009) have shown that there is no stretching-bending coupling in 

constitutive equations if the reference surface is properly selected. Recently, Bessaim et al. (2013) 

proposed a new higher-order shear and normal deformation theory for the static and free vibration 

analysis of sandwich plates with functionally graded isotropic face sheets. Belabed et al. (2014) 

investigated an efficient and simple higher order shear and normal deformation theory for 

functionally graded material (FGM) plates. Hebali et al. (2014) presented the new quasi-3D 

hyperbolic shear deformation theory for the static and free vibration analysis of functionally 

graded plates. Ould Larbi Latifa et al. (2012) investigated an efficient shear deformation beam 

theory based on neutral surface position for bending and frees vibration analysis of functionally 

graded beams. Klouch et al. (2014) proposed an analytical investigation on the bending and free 

vibration of functionally graded plates using a n-order four variable refined theory. 

In this paper, a n-order refined theory is used to analyze the static and vibration characteristics 

of functionally graded beams. The present n-order refined theory is based on assumption that the 

in-plane and transverse displacements consist of bending and shear components, in which the 

bending components do not contribute toward shear forces and, likewise, the shear components do 

not contribute toward bending moments. The most interesting feature of this theory is that it 

accounts for a parabolic variation of the transverse shear strains across the thickness and satisfies 

the zero traction boundary conditions on the top and bottom surfaces of the beam without using 

shear correction factors. The material properties of FG beam are assumed to vary according to a 

power law distribution of the volume fraction of the constituents. To simplify the governing 

equations for the FG beams, the coordinate system is located at the physical neutral surface of the 

beam. This is due to the fact that the stretching-bending coupling in the constitutive equations of 

an FG beam does not exist when the physical neutral surface is considered as a coordinate system 

(Yahoobi and Feraidoon 2010, Ould Larbi et al. 2013, Bouremana et al. 2013). Thus, the present 

n-order four variable refined theory based on the exact position of neutral surface together with 

Hamilton principle are employed to extract the motion equations of the FG beams. Analytical 

solutions are obtained for simply supported beam, and its accuracy is verified by comparing the 

obtained results with those reported in the literature. 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded beam 

 
 
2. Mathematical formulation 
 

Consider a functionally graded beam with length L and rectangular cross section b× h, with b 

being the width and h being the height. Since in functionally graded beams the condition of mid-

plane symmetry does not exist, the stretching and bending equations are coupled. But, if the origin 

of the coordinate system is suitably selected in the thickness direction of the FG beam so as to be 

the neutral surface, the analysis of the FG beams can easily be treated with the homogenous 

isotropic beam theories, because the stretching and bending equations of the beam are not coupled. 

In order to determine the position of neutral surface of FG beams, two different datum planes are 

considered for the measurement of z, namely, zms and zns measured from the middle surface and the 

neutral surface of the beam, respectively, as shown in Fig. 1. 

Following the power law distribution in the thickness direction, the volume fractions of ceramic 

constituent VC, and metal constituent VM, may be written in the form 
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Material non-homogeneous properties of a functionally graded material beam may be obtained 

by means of the Voigt rule of mixture (Suresh and Mortensen 1998). Thus, using Eq. (1), the 

material non-homogeneous properties of FG beam P, as a function of thickness coordinate, 

become 
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where PM and PC are the corresponding properties of the metal and ceramic, respectively, and k is 

the material parameter which takes the value greater or equal to zero. Also, the parameter C is the 

distance of neutral surface from the middle surface. In the present work, we assume that the 

elasticity modules E is described by Eq. (2), while Poisson’s ratio v, is considered to be constant 

across the thickness. The position of the neutral surface of the FG beam is determined to satisfy 

the first moment with respect to Young’s modulus being zero as follows (Ould Larbi et al. 2013, 

Bouremana et al. 2013) 
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Consequently, the position of neutral surface can be obtained as 
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It is clear that the parameter C is zero for homogeneous isotropic beams, as expected. 

 

2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

- The origin of the Cartesian coordinate system is taken at the neutral surface of the FG beam. 

- The displacements are small in comparison with the height of the beam and, therefore, strains 

involved are infinitesimal.  

- The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

)t,x(w)t,x(w)t,z,x(w sbns                          (5) 

- The transverse normal stress σz is negligible in comparison with in-plane stresses σx. The axial 

displacement u in x-direction, consists of extension, bending, and shear components. 

sb0 uuuu                                (6) 

- The bending component ub is assumed to be similar to the displacements given by the 

classical beam theory. Therefore, the expression for ub can be given as 

  x

w
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- The shear component us gives rise, in conjunction with ws, to the hyperbolic variation of shear 

strain γxz and hence to shear stress τxz through the thickness of the beam in such a way that shear 

stress τxz is zero at the top and bottom faces of the beam. Consequently, the expression for us can 

be given as 
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2.2 Kinematics and constitutive equations 
 

Based on the assumptions made in the preceding section, the displacement field can be 
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obtained using Eqs. (5)-(9) as 
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The strains associated with the displacements in Eq. (10) are 

s
xns

b
xns

0
xx k )z(fk z                          (11a) 

s
xznsxz  )z(g                                (11b) 

Where 

x

u
x




 00 ,  

2

b
2

b
x

x

w
k




 ,  

2

s
2

s
x

x

w
k




 , 

x

w ss
xz




 ,           (11c) 

 
 

1
2

1
)(

1)(

















n

ns

n

ns

ns

ns

ns
hCz

Cz

dz

zdf
zg

                 

(11d) 

By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become 

xns11x  )z(Q   and xzns55xz  )z(Q                    (12a) 
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2.3 Governing equations 
 

Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in 

an analytical form as 
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where δU is the virtual variation of the strain energy; δV is the virtual variation of the potential 

energy; and δK is the virtual variation of the kinetic energy. The variation of the strain energy of 

the beam can be stated as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The variation of the potential energy by the applied transverse load q  can be written as 
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The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 

ρ(zns) is the mass density; and (I0, I1, J1, I2, J2, k2) are the mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (14), (16), and (17) into Eq. (13) and 

integrating by parts versus both space and time variables, and collecting the coefficients of δu0, 

δwb, and δws, the following equations of motion of the functionally graded beam are obtained 
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Eq. (19) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (10), (11), (12) 
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and (15) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 

u0, wb, ws can be written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with m th eigenmode, and λ=mπ/L. The transverse load q is also expanded in Fourier 

series as 
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The coefficients Qm are given below for some typical loads. For the case of a sinusoidally 

distributed load, we have 

1m   and 01 qQ                             (25a) 

and for the case of uniform distributed load, we have 

....)5,3,1m(   ,
m

q4
Q 0

m 



                         

(25b) 

Substituting the expansions of u0, wb, ws, and q from Eqs. (22) and (23) into the equations of 

motion Eq. (20), the analytical solutions can be obtained from the following equations 
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4. Numerical results 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of the present theory in predicting the bending and free vibration responses of simply supported 

FG beams. The FG beam is taken to be made of aluminum and alumina with the following 

material properties: 

Ceramic ( CP : Alumina, Al2O3): 380Ec  GPa; 3.0 ; 3960c  kg/m3. 

Metal ( MP : Aluminium, Al): 70Em   GPa; 3.0 ; 2707m  kg/m3. 

 

4.1 Bending analysis 
 

For bending analysis, a beam subjected to a uniform load is considered. For convenience, the 

following dimensionless forms are used: 
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Table 1 Nondimensional deflections and stresses of FG beams under uniform load  

k Method 
L/h=5 L/h=20 

w  u  x  
xz  w  u  x  

xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

Ould Larbi et al. (2013) 3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625 

Present n=3 3.1653 0.9398 3.8019 0.7329 2.8962 0.2306 15.0129 0.7437 

Present n=5 3.1597 0.9349 3.7880 0.6337 2.8959 0.2305 15.0094 0.6381 

Present n=7 3.1528 0.9319 3.7796 0.5954 2.8954 0.2304 15.0073 0.5976 

Present n=9 3.1474 0.9299 3.7742 0.5743 2.8951 0.2304 15.0060 0.5755 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

Ould Larbi et al. (2013) 4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795 

Present n=3 4.8285 1.6596 4.9923 0.7501 4.4644 0.4087 19.7003 0.7606 

Present n=5 4.8213 1.6527 4.9731 0.6508 4.4640 0.4086 19.6955 0.6551 

Present n=7 4.8124 1.6484 4.9614 0.6130 4.4634 0.4085 19.6926 0.6151 

Present n=9 4.8056 1.6456 4.9539 0.5924 4.4630 0.4085 19.6908 0.5935 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

Ould Larbi et al. (2013) 6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625 

Present n=3 6.2594 2.3038 5.8835 0.7329 5.8049 0.5685 23.2051 0.7437 

Present n=5 6.2499 2.2956 5.8601 0.6337 5.8043 0.5684 23.1993 0.6381 

Present n=7 6.2382 2.2905 5.8459 0.5954 5.8036 0.5683 23.1958 0.5976 

Present n=9 6.2291 2.2872 5.8367 0.5743 5.8030 0.5683 23.1935 0.5755 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

Ould Larbi et al. (2013) 8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005 

Present n=3 8.0677 3.1129 6.8824 0.6704 7.4421 0.7691 27.0989 0.6812 

Present n=5 8.0465 3.1032 6.8514 0.5692 7.4407 0.7689 27.0912 0.5737 

Present n=7 8.0255 3.0969 6.8328 0.5291 7.4394 0.7689 27.0866 0.5314 

Present n=9 8.0099 3.0929 6.8207 0.5068 7.4384 0.7688 27.0836 0.5081 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

Ould Larbi et al. (2013) 9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218 

Present n=3 9.8281 3.7100 8.1104 0.5904 8.8182 0.9134 31.8127 0.6013 

Present n=5 9.7627 3.6937 8.0639 0.4844 8.8141 0.9131 31.8012 0.4889 

Present n=7 9.7122 3.6839 8.0365 0.4413 8.8109 0.9129 31.7944 0.4437 

Present n=9 9.6768 3.6776 8.0189 0.4171 8.8087 0.9128 31.7901 0.4185 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

Ould Larbi et al. (2013) 10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788 

Present n=3 10.9381 3.8863 9.7119 0.6465 9.6905 0.9536 38.1382 0.6586 

Present n=5 10.8809 3.8659 9.6639 0.5398 9.6869 0.9533 38.1263 0.5451 

Present n=7 10.8247 3.8534 9.6336 0.4943 9.6833 0.9531 38.1188 0.4971 

Present n=9 10.7819 3.8452 9.6137 0.4677 9.6806 0.9530 38.1139 0.4694 

 

 

Table 1 contains nondimensional stresses and displacements of a simply supported FG beam 

for different values of power law index k and span-to-depth ratio L/h. The obtained results are 

compared with the analytical solutions given by Ould Larbi (2013), Li et al (2010). It can be found 

that the present n-order refined theory produces the close results to those of Ould Larbi (2013), Li 

et al. (2010). 
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u  

Fig. 2 The variation of the axial displacement u  through-the-thickness of a FG beam (L=2h) 

 

  

 

x  

Fig. 3 The variation of the axial stress x
 through-the-thickness of a FG beam (L=2h) 

 

 

In Figs. 2-4 we present the evolution of the axial displacement u , axial stresses x  and 

transverse shear stress xz  across the depth of the FG beam under uniform load. A comparison  

with the analytical solutions developed by Ould Larbi (2013) is also shown in these figures using 

different values of the power law index k. It is seen that there is a good agreement between the 

present theory and those of Ould Larbi (2013). It can be seen from Fig. 2 that the increase of the  

power law index k leads to an increase of the axial displacement u  and especially at the top and  

z  

z  
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xz  

Fig. 4 The variation of the transverse shear stress xz  through-the-thickness of a FG beam (L=2h) 

 

 
Fig. 5 Variation of the transverse displacement w  versus non-dimensional length of a FG beam (L=5h) 

 

 

bottom of the beam. In Fig. 3, the axial stress x  is tensile at the top surface and compressive at  

the bottom surface. The homogeneous ceramic beam (k=0) yields the maximum compressive 

stresses at the bottom surface and the minimum tensile stresses at the top surface of the beam. In  

Fig. 4 we have plotted the through-the-thickness distributions of the transverse shear stress xz . 

The through-the-thickness distributions of the transverse shear stresses for FG beams are not 

parabolic as in the case of homogeneous metal or ceramic beams. 

Fig. 5 illustrates the variation of the non-dimensional transversal displacement w  versus non-

z  
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imensional length for different power law index k. It can be seen also that the present beam theory 

based on neutral surface position gives almost identical results to Ould Larbi. In addition, the 

results show that the increase of the power law index k leads to an increase of transversal 

displacement w . 

 

4.2 Free vibration analysis 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of the present theory in predicting the natural frequency of simply supported beams. For 

convenience, following natural frequency parameter is used in presenting the numerical results in 

tabular and graphical forms 

 

 

 

For the verification purpose, the nondimensional fundamental frequencies   obtained by the 

present theory are compared with those given by Ould Larbi (2013), Simsek (2010) of FG beams 

for different values of power law index k and span-to-depth ratio L/h and the results are presented 

in Table 2. It can be seen that the present theory and the theories used by Ould Larbi (2013) and 

Simsek (2010) give almost identical results specially for n=3. 

 

 
Table 2 Variation of fundamental frequency   with the power-law index for FG beam 

L/h Theory 
k 

0 0.5 1 2 5 10 

5 

Simsek (2010) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

Present n=3 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816 

Present n=5 5.1572 4.4139 3.9934 3.6309 3.4119 3.2898 

Present n=7 5.1627 4.4178 3.9969 3.6355 3.4204 3.2979 

Present n=9 5.1669 4.4209 3.9998 3.6389 3.4264 3.3042 

20 

Simsek (2010) 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Present n=3 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

Present n=5 5.4607 4.6514 4.2053 3.8365 3.6494 3.5397 

Present n=7 5.4611 4.6517 4.2056 3.8368 3.6500 3.5403 

Present n=9 5.4614 4.6519 4.2058 3.8371 3.6505 3.5408 

 

 

Fig. 6 shows the non-dimensional fundamental natural frequency   versus the power law 

index k for different values of span-to-depth ratio L/h using both the present theory and theory 

developed by Ould Larbi (2013). An excellent agreement between the present theory and Ould 

Larbi is showed from Fig. 6. It can be observed that the frequency decreases with increasing the 

power law index. The full ceramic beams (k=0) lead to a highest frequency. However, the lowest 

frequency values are obtained for full metal beams (k→∞). This is due to the fact that an increase 

in the value of the power law index results in a decrease in the value of elasticity modulus. 

m

m
2

Eh

L 


934



 

 

 

 

 

 

A n-order refined theory for bending and free vibration of functionally graded beams 

  

 
Power law index, k 

Fig. 6 Variation of the nondimensional fundamental frequency   of FG beam with power 

law index k and span-to-depth ratio L/h 

 

 

5. Conclusions 
 

A n-order four variable refined theory is proposed to analyze the bending and free vibration of 

functionally graded beams. The present theory is variationally consistent, uses the n-order 

polynomial term to represent the displacement field, does not require shear correction factor, and 

gives rise to transverse shear stress variation such that the transverse shear stresses vary 

parabolically across the thickness satisfying shear stress free surface conditions. It is based on the 

assumption that the transverse displacements consist of bending and shear components in which 

the bending components do not contribute toward shear forces and, likewise, the shear components 

do not contribute toward bending moments. Based on the present beam theory and the neutral 

surface concept, the equations of motion are derived from Hamilton’s principle. Numerical 

examples show that the proposed theory gives solutions which are almost identical with those 

obtained using other shear deformation theories. 
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