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Abstract.  A numerical approach is presented for the analysis of the forced vibration of a rigid surface 

foundation with arbitrary shape. In the analysis, the foundation is discretized into a number of sub square-

elements. The dynamic response within each sub-element is described by the Green‟s function, which is 

obtained by the Fourier-Bessel transform and Precise Integration Method (PIM). Incorporating the 

displacement boundary condition and force equilibrium of the foundation, it obtains a system of linear 

algebraic equation in terms of the contact forces within each sub-element. Solving the equation leads to the 

desired dynamic impedance functions of the foundation. Numerical results are obtained for foundation not 

only with simple geometrical configurations, such as rectangular and circular foundation, but also the case of 

irregularly shaped foundation. Several comparisons between the proposed approach and other methods are 

made. Very good agreement is reached. Also, parametric studies are carried out on the dynamic response of 

foundation. Addressed in this study are the effects of Poisson‟s ratio, material damping and contact 

condition of soil-foundation interface. Several conclusions are drawn the significance of the factors. 
 

Keywords:  elastic multi-layered half space; Green‟s function; wavenumber domain; spatial domain; 

Precise Integration Method (PIM); impedance functions 

 
 
1. Introduction 
 

An important step in the study of dynamic interaction between the structure and the supporting 

medium is the evaluation of the dynamic response for a massless foundation supported on the soil. 

It plays an important role in the study of machine vibration as well as in the study of structural 

response to earthquake excitations. The problem is a mixed-boundary-value issue in which the 

displacements are prescribed under the foundation while the rest of the surface is traction free. 

Over the past decades, a considerable amount of works have been done on this problem. Different 

approaches were developed. 

Among all the approaches, the analytical solutions always have theoretical appeal in 

themselves, they are really important as tools in the solution of the involved boundary value 

problems arising in seismology and Geo-mechanics. Luco and Westmann (1971), Veletsos et al. 

(1971, 1973) presented analytical solutions for the vibration of a circular foundation on an elastic 

                                           

Corresponding author, Ph.D. Student, E-mail: lin.chen@lbb.rwth-aachen.de 



 
 
 
 
 
 

Lin Chen 

homogeneous half space. They reduced the resulting mixed-boundary-value problem by standard 
technique to the solution of Fredholm integral equation. Later, Luco (1975) extended his solutions 
to an elastic multi-layered half space. Further, Gazetas (1980, 1981) applied the Fredholm integral 
equation to analyze the dynamic response of a strip foundation on a multi-layered half space. Luco 
and Mita (1987) used the integral representation involving the free-field ground motion to 
calculate the dynamic force-displacement relation of the foundation. However, the analytical 
solutions available so far are restricted to the analysis of the foundation with relatively simple 
geometry. 

For an irregularly shaped foundation, one should employ numerical methods to analyze the 
dynamic response of the foundation. Finite element method (FEM) is one of the most widely used 
approaches. The application of FEM in this problem needs to represent the semi-infinite soil 
medium by a finite size model. This model will have the effect of trapping the energy of the 
system in a finite region. Furthermore, it will impart to the continuum some artificial dynamic 
characteristics (Lehmann 2005). These effects may be overcome by the use of infinite elements 
(Kazakov 2010) or by the use of energy transmitting boundaries (Lee et al. 2011). Several types of 
finite elements are available for the dynamic response analysis of the foundation: three-
dimensional solid elements (Ju et al. 2012); axisymmetric solid elements (Said et al. 2009); and 
two-dimensional plane strain elements (Ellis et al. 2001, Kim et al. 2003). In principle, FEM can 
be used to solve a large class of problems. In particular, its use should be invoked for problems 
involving non-regular foundation shapes, inclined layering in soil deposits, complex constitutive 
relation, embedment effects, coupling between adjacent foundations. However, the problems 
encountered in the design of large-scale structures restrict the use of FEM. This is due to the fact 
that the transmitting boundary should be placed far away from the soil-structure interface. 
Furthermore, to be able to transmit higher frequencies, sufficiently small-sized elements must be 
used. The combined effect of these two requirements leads to prohibitive costs and severely taxes 
the storage memory capabilities of presently available computer hardware. 

The boundary element method (BEM) is well suited to model infinite medium because it is able 
to take into account the wave radiation to infinity. It has been used to calculate the dynamic 
impedance functions of rectangular (Dominguez et al. 1978), circular (Alarcón et al. 1989) and 
strip foundation in the frequency domain (Abascal et al. 1986) as well as in the time domain 
(Spyrakos et al. 1986, Karabalis et al. 2006). Recently, a new boundary element formulation is 
proposed for the wave load analysis of submerged or floating foundation (Yalcin et al. 2013). 
However, for the boundary element method, the required fundamental solution is not always 
available.  

In view of the limitations by applying the finite element method (FEM) and boundary element 
method (BEM), the combination of BEM with FEM was emerged to eliminate their shortcomings. 
Normally, the structure and a small portion of the supporting soil can be discretized by finite 
elements, while the remaining soil medium is represented by boundary elements. Karabalis and 
Beskos (1985) analyzed the response of three-dimensional linear elastic foundation of arbitrary 
shape with this approach. Estorff and Firuziaan (2000) proposed a general coupled boundary 
element/finite element formulation for the investigation of dynamic soil-structure interaction 
including nonlinearities. Rizos and Wang (2002) used the coupled methodology for the 3D wave 
propagation and soil-structure interaction analysis in the direct time domain. Sheng et al. (2006) 
employed the wavenumber finite/boundary element method, which is formulated in terms of the 
wavenumber, to predict the ground motion from the trains. Recently, Galvín et al. (2010) presented 
a generally three dimensional multi-body-finite element-boundary element model, formulated in 
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the time domain to predict vibrations due to train passage at the vehicle, the track and the free 
field. Later, Romero et al. (2013) considered the non-linear contact at the FEM/BEM interface to 
analyze the dynamic response of rectangular foundation. However, in general, the equation of the 
coupled system has a banded structure only in the FEM part, while in the BEM part it is fully 
populated. Consequently, for its solution the optimized solvers usually used in FEM cannot be 
employed anymore, which leads to rather expensive calculations regarding the computation time. 

The purpose of this study is to present an efficient method that will permit analyzing the forced 
vibration of a rigid surface foundation with arbitrary shape, in which it concentrates mainly on the 
derivation of the dynamic impedance and compliance functions of the foundation. The 
development of the method has been guided by the desire to accomplish the following objectives, 
and it should be: 
(1) valid for the wide range of frequency interested in the seismology and engineering.  
(2) suitable for the dynamic analysis of foundation with arbitrary shape. 
(3) stable for models involving solid layers of thicknesses ranging from large value to thin ones. 

To meet these objectives, it divides the contact area between the foundation and ground into a 
number of sub square-elements. The contact forces within each area are assumed as concentrated 
loads, which are applied at the center of the sub square-elements. And the force-displacement 
relation within each sub-element is expressed as the Green’s function, which is obtained by the 
Fourier-Bessel transform and Precise Integration Method (PIM) (Zhong 2004). PIM is an efficient 
and accurate numerical method for the solution of one order ordinary differential equation, which 
is widely employed in the field of structural dynamics (Zhong et al. 2001, Zhang et al. 2012) and 
wave propagation analysis (Gao et al. 2006, Lin et al. 2013a, Lin et al. 2013b, Lin et al. 2014). 
Considering the displacement boundary conditions, it obtains a system of linear algebraic equation 
in terms of the contact forces at each sub-element. Also, employing the force equilibrium of the 
foundation, one can obtain the relation between the total forces of the foundation and the contact 
forces at each sub-element. Combining the displacement boundary conditions and force 
equilibrium, it leads to the desired dynamic impedance functions of the foundation. Numerical 
examples are provided in the last part of the paper. The accuracy of the method is validated by 
comparison to the solutions available in the literature. Also, parametric studies on the dynamic 
response of foundation are investigated. 

An outline of this paper follows: In Section 2, the solution procedure for wave motion equation 
of layered half space is addressed. Both the Green’s function in the wavenumber domain and 
spatial domain are derived. In Section 3, the impedance functions of arbitrarily shaped foundation 
are calculated. In Section 4, three numerical examples are presented. The first two cases are used 
to validate the proposed approach. The last one is employed to demonstrate the capability of the 
approach. Parametric studies are performed in Section 5. Here, it investigates the effects of 
Poisson’s ratio, material damping and contact condition of soil-foundation interface on the 
impedance and compliance functions. The paper ends with some concluding remarks. 
 
 
2. Dynamic response of multi-layered half-space 
 

2.1 Basic equation of wave propagation 
 
Consider an arbitrarily shaped rigid foundation placed on a homogeneous, isotropic half space 

overlaid by n parallel layers of similar medium but with distinct material properties, see Fig. 1. A  
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Fig. 1 Rigid foundation on a multi-layered half space 

 
 

cylindrical coordinate system is set at the top free surface and the origin is placed at the center of 
the foundation. The jth layer is characterized by the material parameters: λj and μj (Lame 
constants), ρj (mass density), ξj (material damping ratio) and thickness hj=zj−zj-1, where zj and zj-1 
are the depths of its upper and lower interfaces. The Lame constants, mass density and material 
damping ratio of the half space are denoted as H , μH, ρH and ξH. 

In the cylindrical coordinate system, the general differential equation of wave motion is 
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Herein the normal and shear stress are denoted as σ and τ. As usual, the first subscript of τ 
denotes the direction of the stress component; the second one is the direction of the normal of the 
infinitesimal area that the stress component acts on. ur, uθ and uz are radial, tangential and vertical 
displacement. The comma denotes a partial derivative. The problem is solved in the frequency 
domain. The variation with time is given by the factor exp(iωt). 

Since the material is isotropic, the wave motion equation can be decoupled into in-plane wave 
motion (P-SV wave) and out-of-plane wave motion (SH wave) in the transformed wavenumber 
domain (Kausel 2006). The transformations are based on the Fourier-Bessel transform. 
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where    ,
T

rz z zk n   S  denotes the stress vector in the transformed wavenumber domain, 

The superscript bar is a reminder that the components are defined in the wavenumber domain; 
S(r,θ,z)={τrz τθz σz}

T refers to the value in the spatial domain. Similar domain transformation can be 
performed for the displacement vector U={ur uθ uz}

T as Eq. (2). The orthogonalization factor an is 
the normalization factor, which is equal to 1/2π for n=0 and 1/π for n≠0. The diagonal matrix 
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T(nθ) is T(nθ)=diag[cos nθ  −sin nθ  cos nθ] for the symmetric case about the x axis (r-axis at  
θ=0); and is T(nθ)=diag[sin nθ  cos nθ  sin nθ] for the anti-symmetric case. θ is the angle of 
revolution around x axis. The matrix Cn(kr) includes Bessel functions, which is  

 

     

     

 

0

1
0
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n n

n n n

n

d
r J kr nJ kr

d kr

d
kr nJ kr r J kr

kr d kr

krJ kr

 
 
 
 

  
 
 
 
 

C                                 (3) 

in which Jn(kr) is the first kind Bessel function with nth order. 
For the evaluation of Green’s function, only the cases of n=0 and n=1 of Eq. (2) need to be 

considered (Kausel 1981). The case n=0 corresponds to an axisymmetric vertical load case, while 
the case 1n   is used to the horizontal load case which is symmetric about the x axis.  

After Fourier-Bessel transform of Eq. (1), the in-plane wave motion and out-of-plane wave 
motion equation will be obtained. In-plane wave motion corresponds to the displacement ūr(k,z) 
and ūz(k,z). The corresponding equations are (Kausel 2006). 

                     2 2 2 22 0    2 0r z r z r zu k ik u k k u k u k ik u k k u k                             

(4) 

Out-of-plane wave motion corresponds to the displacement ūθ(k)  

     2 2 0u k k u k                                                          (5) 

In Eqs. (4) and (5), (·)′=∂(·)/∂z; hereinafter, the superscript prime of (·)′ has the identical 
definition. Eqs. (4) and (5) can be written in a matrix form as 

   2
22 21 12 11      K U K K U K I U 0                                            (6) 

where Ū={ūr  ūθ  ūz}
T is the displacement vector in the wavenumber domain; I is a 3×3 unit matrix. 

The coefficient matrices are 

2
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0 0

0 0 0

0 0

H ik
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 
    
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K K          22

0 0
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


 

 
   
  

K              (7) 

in which the superscript H denotes the Hermitian transpose. For a viscoelastic medium with a 
hysteretic type dissipative mechanism, one only needs to replace λ and μ by the complex Lame 
parameters λ(1+2ξi) and μ(1+2ξi), where ξ is the hysteretic damping ratio. 

Writing Eq. (6) in a variation form, Γ(Ū, Ū′) is the Lagrange function. 

   2
22 21 11, 2T T T       Γ U U u K U U K U U K I U          , 0

V
dz   Γ U U                     (8) 

In order to solve Eq. (6), it is necessary to reduce the second order differential equation to first 
order. Here, the dual vector is introduced, which is the stress vector S . 
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 22 21     S Γ U K U K U                                                     (9) 

Substituting Eq. (9) into (6), it can be written as the following partitioned form     

           
    

A DU U
Ψ ΠΨ

B CS S
                                            (10) 

in which 
1

22 21
H   A K K C         1 2

11 12 22 21   B K K K K I          1
22
D K                 (11) 

The matrix ∏ in Eq. (10) is 
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H         (12) 

For perfectly incompressible material (Poisson’s ratio v=0.5), λ is infinite. Eq. (12) is modified 
as 
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Π                              (13) 

The continuity conditions at interfaces between two layers are i i
 U U , i i

 S S  
(i=1,2,...,n−1,n). 
 

2.2 Wave motion in the half space 
 
Two cases of layered half space are considered: the layered medium on a rigid base and on a 

semi-infinite space. When the layered medium underlain by a rigid base, there is no displacement 
at the bottom surface. The boundary condition is Ū=0 (z=zn). In another case, the radiation 
conditions should be considered. The state equation for the semi-infinite space, i.e., the (n+1)th 
layer, is 1 1 1n n n   Ψ Π Ψ . If 1nT  and 1nΛ  is the eigenvector and eigenvalue matrix of the matrix 

1nΨ , then 

1
1 1 1 1 1n n n n n


    
 Ψ T Λ T Ψ                                                       (14) 

 1 2 1 1 2 1 1diag , , , , ,n          Λ                                               (15) 

2 2
1 H Hk              2 2

2 2H H Hk                                           (16) 
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T T
T

T T
  (17) 

For the perfectly incompressible material (Poisson’s ratio v=0.5), Eq. (16) should be modified 
as  

 2 2
1 H Hk                         2 k                                    (18) 

The radiation conditions require no upward wave in the semi-infinite space, which yields  

     1
n dd ud n nz z z

 S T T U R U                                               (19) 

Eq. (19) is the general stress-displacement relation for the semi-infinite space. If we consider 
different values of wavenumber k and frequency ω, the following specific equation can be 
obtained 

(a) Non-zero frequency, non-zero wavenumber: k>0, ω>0 

22

12
1 2
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0 0 0 2

0 0 0 0 0

0 2 0 0
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H
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ik ik
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ik ik
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 
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      

R                             (20) 

(b) Zero frequency, non-zero wavenumber: k>0, ω>0 
For this case, one cannot directly set the frequency ω>0 in Eq. (17), because there is no inverse 

matrix of udT . To overcome this, the limit approaching method is employed to Eq. (20). Utilizing 
l’Hospital’s rule, the following expression can be obtained 

 

 

2 2 0 2

= 0 3 0
3

2 0 2 2

H H H

H
H H

H H
H H H

i
k

i

  


 
 

  


 
      

R                         (21) 

(a) Non-zero frequency, zero wavenumber: k=0, ω=0 

 diag 2H H H H H H Hi i i         
   R                         (22)  

(b)  Zero frequency, zero wavenumber: k=0, ω=0.  diag 0 0 0 R  

 
2.3 Solution procedure for layered medium 
 
Within an arbitrary layer, select an interval [za, zb] (za<zb), and assume that it is subjected to 

external dynamic tractions, ap  and bp , at its upper and lower external interfaces. Hence, if Ūa and 
Ūb are the displacements at the two interfaces of the layer, we have (Kausel 2006) 
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a aa aba a

b ba bbb b

      
       

      

p K KU U
K

p K KU U
                                             (23) 

in which, K is the stiffness of the layer. 
The dynamic potential energy of the layer is  

   1

2

T

a b a b  U U K U U                                                  (24) 

The corresponding internal force vectors aS  and bS can be introduced from the principle of 

virtual work,   S U . Hence, aS  and bS  can be derived from Eq. (24) as  

a aa a ab ba    S U K U K U              b ba a bb bb     S U K U K U                 (25) 

Solving Eq. (25), we will obtain 

 b a b U FU GS                      a a b S QU ES                                      (26) 

which implies that the stress-displacement relation at the two ends of one layer is linearly 
correlated. Also, F, G, Q and E are termed as correlation matrices of the layer, which can be 
obtained from Eq. (25). However, the matrix K is unknown. Thus, they cannot be obtained 
explicitly here. It will solve the correlation matrices F, G, Q and E by Precise Integration Method 
(PIM) (Zhong 2004) latter. 

Considering any two adjacent layers 1 and 2 ranging [za, zb] and [zb, zc], now, we apply Eq. (26) 
to the two layers to merge into a new layer c ranging [za, zc] with the continuity condition at 
interface between them. The corresponding correlation matrices for the newly combined layer c 
are 

       1 11 11 1
2 1 2 1 2 2 1 2 2 1 1 2 1 1 1 2 1 2,   ,   c c c c

             F F I G Q F G G F G Q E Q Q E Q G F E E I Q G E (27) 

where the subscripts 1, 2 and c denote the corresponding layer that the correlation matrices belong 
to. 

Since aU  and bS  are mutually independent in Eq. (26), differentiating it with respect to zb and 
comparing with Eq. (10), one can obtain a set of ordinary differential equations  

   F A GB F          G AG GC D GBG        Q EBF         E E BG C            (28)  

Let zb approach za, the boundary conditions for these equations are 

   , ,a a a az z z z E F I                    , ,a a a az z z z G Q 0                             (29) 

Eq. (28) shows the matrices F, G, Q and E are coupled with each other. In order to obtain 
them, the Precise Integration Method (PIM) (Zhong 2004, Gao 2006) will be employed. The detailed 
theoretical derivation of the method can be found in the work of Zhong. Here, only the application 
of the method in the present study will be addressed. For an arbitrary ith layer (i=1,2,...,n) of the  
layered medium, it assumes the thickness of the layer being hi. The layer is firstly divided into 12N  
(N1 is an integer) sub-layers of equal thickness 12N

i ih h , and each sub-layer is further divided 
into 22N  (N2 is an integer) mini-layers of equal thickness 22N

ih  . In this paper, N1=20 and 
N2=20 are chosen. Under such condition, the thickness of the mini-layers is 
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 2 1 22 2 1048576 1048576N N N
i i ih h h     . Since the thickness τ of such intervals is sufficiently 

small, the correlation matrices F(τ), G(τ), Q(τ) and E(τ) can be expressed in terms of the Taylor 
series expansion to ensure sufficient accuracy. Any desired accuracy of the results can be achieved 
with increasing terms of the expansion. In this paper, four terms of Taylor series are considered. 
The Taylor series expansion is truncated after the τ4 terms. Therefore, the relative order of the 
neglected terms is τ4. With N2=20, τ has been divided by even more than 106. Thus τ4 will be of the 
order 10-24, which is well beyond the precision of real*8 typically only the leftmost 15 digits 
significant. 

       
       

2 3 4 2 3 4
1 2 3 4 1 2 3 4

2 3 4 2 3 4
1 2 3 4 1 2 3 4

           

           

            

           

F f f f f F I F Q θ θ θ θ

E φ φ φ φ E I E G γ γ γ γ

 

 
        (30) 

where θi, γi, fi and φi (i=1,2,3,4) are the coefficient matrices to be determined. Substituting Eq. 
(30) into (28), the coefficients of various τ must be equal to zero, which leads to 

1  θ B             1  γ D             1 f A              1  φ C                                  (31)  

       2 1 1 2 1 1 2 1 1 2 1 12       2       2       2        θ φ B Bf γ Aγ γ C f Af γ B φ Bγ φ C           (32) 

       3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 13   3   3   3            θ φ B Bf φ Bf γ Aγ γ C γ Bγ f Af γ B γ Bf φ Bγ φ C φ Bγ  

(33) 

   
   

4 3 3 2 1 1 2 4 3 3 2 1 1 2

4 3 3 2 1 1 2 4 3 3 1 2 2 1

4         4

4              4

        

       

θ φ B Bf φ Βφ φ Bf γ Aγ γ C γ Bγ γ Bγ

f Af γ B γ Bf γ Bf φ Bγ φ C φ Bγ φ Bγ
                 (34) 

The matrixes  F  and  E  are extremely small compared to the unit matrix I in the small  
interval τ. Therefore, it is important that they are computed and stored independently to avoid 
losing effective digits. The derivations in the former sections are exact, the only approximation 
made in the Precise Integration Method (PIM) is the truncation of the Taylor series expansion in Eq. 
(30). It will cause numerical errors; however, the errors are less than the round-off error of double 
precision computation. Therefore, the method is exact in the sense that any method can be exact, 
i.e., it is as exact as the computer precision permits. Once F(τ), G(τ), Q(τ) and E(τ) for a mini-layer 
are determined, they are combined as below. Considering that, all mini-layers within one sub-layer 
have equal thickness and identical material properties, therefore, F1=F2=F, G1=G2=G, Q1=Q2=Q 
and E1=E2=E. Considering cF and cE being very small, for combination of mini-layers, Eq. (27) is 
modified as 

          
        
        

-1 -1 -1-1 -1

-1 -1 -1

-1 -1 -1

        

- 2 - 2         

- 2 - 2        

c c

c c c

c c c

         
       
       

Q Q I E Q G I F G G I F G Q I E

F F GQ I GQ I GQ F GQ F I GQ F F I F

E E QG I QG I QG E QG E I QG E E I E

   

     

     
          (35) 

Recursively executing Eq. (35) N2 times, the matrices F, G, Q and E turn to be the correlation 
matrices  ihF ,  ihG ,  ihQ  and  ihE of the given ih  interval. Such algorithm is termed as 
‘interval doubling’. Since the matrices F  and E  of ih  interval are no longer very small, repeatedly  
employing Eq. (27) N1 times, the correlation matrices F(hi), G(hi), Q(hi) and E(hi) of the thi  layer 
are observed. Until now, equations of PIM to obtain the correlation matrices F, G, Q and E are 
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available, and the algorithm is presented as below:  
1. read the material properties and thickness hi of the ith layer, wavenumber k, frequency ω. 
2. calculate matrices A, B, C and D in Eq. (11); let N1=20 and N2=20, 12N

i ih h  and 22N
ih  . 

3. employ Eq. (30) to calculate  Q ,  G ,  F  and  E .  

     Q Q ,  G G ,  F F   and  E E  . Comment: initiation 

4. for (iter=0; iter< N2; iter++) Comment: PIM in the ih  interval;      

4.1 according to Eq. (35), compute cQ , cG , cF  and cE ; 

4.2 cQ Q , cG G , cF F   and cE E  ; 

end→  i ch  F I F ,  i ch  E I E ,  i ch G G  and  i ch Q Q .    Comment: the correlation 

matrices  ihF ,  ihG ,  ihQ  and  ihE  of the given ih  interval are obtained. 

              1 2 ih F F F ,  1 2 ih G G G ,  1 2 ih Q Q Q  and  1 2 ih E E E .     Comment: initiation 

5. for (iter=0; iter< N1; iter++)     Comment:     PIM in the ih  interval  

5.1 use Eq. (27) to calculate cF ,  cG , cQ  and cE ; 

5.2 1 2 c F F F , 1 2 c G G G , 1 2 c Q Q Q  and 1 2 c E E E ; 

end →  i ch F F ,  i ch G G ,  i ch Q Q  and  i ch E E .    Comment: the correlation 

matrices  ihF ,  ihG ,  ihQ  and  ihE of the thi  layer are achieved. 

The combination of layers, which have different thickness and material properties, can be 
directly performed by Eq. (27). Consequently, one can obtain the following dual vector equation 
for the whole layered medium. 

0n N N n U F U G S                 0 0N N n S Q U E S                                      (36)  

where the matrices FN, GN, QN and EN are the correlation matrices from the surface layer to the nth 
layer; 0U  and 0S  are the displacement and stress at the free surface z=0; while nU  and nS  are the 
displacement and stress at the bottom surface z=zn. 

When the layered medium is placing on a rigid base, from the boundary condition Ūn=0 (z=zn) 
and Eq. (36), the surface stress-displacement relation can be approached 

   11
0 0 0N N N N k

  U Q E G F S G S                                             (37) 

When the layered medium is resting on a semi-infinite space, from Eqs. (19) and (36), it 
obtains 

    
11

0 0 0N N N N k


    U Q E R I G R F S G S                                 (   38) 

where  kG represents the Green’s function matrix in the wavenumber domain, which is expressed 

as 

 
 
 

   

   

 
 
 

0

0 0

0

r rzrr rz

z

zr zzz z

u k kG k G k

Gu k k

G k G ku k k

 






    
        
        

                                        (39) 

632



 
 
 
 
 
 

Forced vibration of surface foundation on multi-layered half space 

(a) vertical load (b) horizontal load 

Fig. 2 Displacement under the uniformly distributed load on a disk 
 
 
where element  ijG k  (i,j=r,θ,z) represents the flexibility coefficient in the wavenumber domain. 

 
2.4 Green’s function in the spatial domain 
 
As mentioned before, similar domain transformations can be performed for the displacement 

vector U as Eq. (2) via substituting the stress vector with the displacement vector. From Eqs. (2) 
and (39), the surface displacement due to the surface load in the spatial domain can be obtained 

         
0

0

, , 0 nk
n

r z n k kr k k dk 
 




   U T C G S                                    (40) 

where  kS  being the transform of the surface load in the wavenumber domain (Eq. (2)). 
In the present study, the Green’s function in the spatial domain is evaluated for the vertical and 

horizontal load conditions, which is the basis of the calculation of dynamic impedance functions. 
In the sequel, the calculations are associated within the ground z=0, for brevity, the term z=0 is 
dropped. 

Considering a surface uniformly distributed vertical load q is acting on a disk of radius ∆r, see 
Fig. 2(a). Using Eq. (2) to express the load in the wavenumber domain, at such load case n=0, it 
obtains 

     
2

0 10 0

1

2

r

z r

q r
k rJ kr qd dr J k r

k




 




 


                                        (41) 

Substituting Eqs. (39) and (41) into (40), one can obtain the displacements in the spatial 
domain 

                1 1 00
, , , 0

TT

r z rz zzk
u r u r u r q r J k r G k J kr G k J kr dk  




             (42) 

The surface displacements, due to the surface uniformly distributed horizontal load (Fig. 2(b)), 
at such load case n=1, can be obtained similarly. For brevity, here we only present the final result 

x  

y

z

r

 ,ru r  ,u r 

 ,zu r 

  

q  

Ox

y

z

q  

r  
r  

  

 ,ru r 

O

 ,zu r 
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 
 
 

 
   

   
 

 
 
 

1 1

1 1 10

1

, cos 0 0 2 2 0
1

, 0 sin 0 2 2 0
2

, 0 0 cos 0 0 2

r rr

k

z rz

u r J kr J kr kr G k

u r q r J k r J kr kr J kr G k dk

u r J kr G k
 

 
 
 





       
                

              

 (43) 

The Green’s function for concentrated load can be obtained from those for disk load by 
considering the limit when ∆r tends to zero. In the case of load with intensity F (horizontal or 
vertical load), the corresponding stress is q=F/π∆r2. The limit expression for the displacement 
when ∆r→0 are given below. The displacement due to the vertical concentrated load is 

              1 00
, , , 0

2

TT

r z rz zzk

F
u r u r u r k G k J kr G k J kr dk  





               (44) 

The displacement due to the horizontal concentrated load is 

 
 
 

   
   

 

 
 
 

1 1

1 10

1

, cos 0 0 2 2 0

, 0 sin 0 2 2 0
4

, 0 0 cos 0 0 2

r rr

k

z rz

u r J kr J kr kr G k
F k

u r J kr kr J kr G k dk

u r J kr G k
 

 
 


 





       
              

              

   (45) 

The surface force-displacement relation, obtained by Eqs. (42)-(45) in the local coordinate 
system, is transformed into the global cylindrical coordinate system as 

 
 
 

 
 
 

, ,

, ,

, ,

r xr yr zr x

x y z y

z xz yz zz z

u r G G G x y

u r G G G x y

u r G G G x y
   





     
          

         

GΓ                                      (46) 

where Γ represents the resultant force of the applied load, Γ=π∆r2q (uniformly distributed load) 
and Γ=F (concentrated load); (x,y) denotes the coordinate of the loading center; G is the Green’s 
function matrix; element Gij (i=x,y,z; j=r,θ,z) represents the flexibility coefficient, which indicates 
the displacement in the j direction at point (r,θ) when a unit load applied in the i direction at (x,y). 
 

2.5 Approach of numerical integration 
 
To obtain the displacement in Eq. (40), infinite integrals involving Bessel functions should be 

performed numerically. Since Bessel functions are oscillation functions and tend to zero slowly 
with the increase of variable, common numerical integration methods, such as Simpson’s rule or 
trapezoidal rule, are inadequate to achieve sufficient accuracy (Lucas 1995). However, the 
adaptive Gauss quadrature proposed by Chave (1983), Lucas (1995) are capable of executing these 
integrals. Thus, we adopt these approaches in the present study. Due to the difference of the 
integrands in the distributed and concentrated load case, the integrations should be performed 
separately. In the evaluation of displacement under concentrated load, such as Eqs. (44) and (45), 
only one Bessel function Jm(kr) is involved in the integrands. The integrals can be executed by the 
method of Chave (1983). The details of the method can be approached in Chave (1983). Here, only 
the concept will be briefly introduced. To perform the infinite integrals involving one Bessel 
function, the integral is expressed as a finite sum of a sequence of partial integral terms.  

       1

0
1 1

, ,
n

n

N N k

m n mk
n n

f k z J kr dk f k z J kr dk


 

                                  (47) 
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in which kn is the nth zero of Jm(x) normalized by the range r. 
Every partial integral terms Hn are then evaluated by the Gauss-Legendre quadrature method. It 

employs a combined relative-absolute error criterion to terminate the calculation. If the error 
criterion is not satisfied, new Gauss points are added. At each step, the integral kernel and Bessel 
function values are retained so that only the new integrand values need to be calculated. Summing 
the partial integrals leads to the complete integral. Due to the Bessel function’s oscillatory 
behavior, it attains the convergence of the result slowly, also it may diverge if the integral kernel 
increases faster than k1/2. To facilitate the calculation, in Chave (1983), it employs the continued 
fraction approach for the summation of the integral. We therefore adopt this algorithm. In the 
following analysis, the relative and absolute errors are set as 10-6 and 10-7. It uses a three-point 
Gauss rule firstly with an extension to 7, 15, 31, 63, 127, and 255 common-point interlacing forms, 
which corresponds to integrating polynomials of degree 5, 11, 23, 47, 95, 191 and 383, 
respectively.  

For the calculation of displacement under distributed load, such as Eqs. (42) and (43), the 
integrands involve products of Bessel functions of different orders, Jm(kR)Jn(kr). Charve’s method 
cannot be directly applied here. It has been studied by Lucas (1995) employing an adaptive Gauss 
quadrature. The detailed theoretical derivation of the method can be found in Lucas (1995). Still, 
we will briefly introduce the concept behind the method. The infinite integral of products of Bessel 
functions is expressed as a summation of two integrals 

                 max

max0 0
, , ,

k

m n m n m nk
f k z J kR J kr dk f k z J kR J kr dk f k z J kR J kr dk

 
          (48) 

where kmax is the largest of the first zeros of Ym(kR) and Yn(kr); Ym(kR) and Yn(kr) are the Bessel 
functions of second kind. Both the finite and infinite integrals at the right-hand side in Eq. (48) are 
then evaluated by the adaptive Gaussian quadrature of Chave (1983). To facilitate the calculation, 
the ε-algorithm and mW transform are used to achieve high accuracy and efficiency. 

 
 
3. Dynamic impedance functions of surface foundation 
 

Fig. 1 illustrates an arbitrarily shaped rigid foundation on the surface of a multi-layered half 
space. In order to calculate the dynamic impedance functions, the soil-foundation interface is 
discretized into n  sub square-elements (Fig. 1). The sum of the area of the sub square-elements 
equals to the total area of the foundation. In order to represent a traveling wave at a given 
frequency accurately, the maximum length of the sub square-elements should not be larger than 
Δa≤2πcs/10ωmax (Jeremić et al. 2009). Here, ωmax denotes the maximum excitation frequency; cs 
represents the shear wave velocity of the surface layer, sc   . A rigid foundation has three 

translational and three rotational degree-of-freedoms as shown in Fig. 1. Assuming the harmonic 
responses at the foundation center are (Ux, Uy, Uz)e

iωt and (Фx, Фy, Фz)e
iωt under steady-state loads 

(Fx, Fy, Fz)e
iωt and (Mx, My, Mz)e

iωt. The loads are acting at the center of the foundation. The force-
displacement relation with the corresponding amplitudes is as below, which is formulated in the 
degree-of-freedom of the foundation.  

     0 0  Ω S U                                                           (49) 

where S(ω) represents the dynamic impedance functions of the foundation, which is a 6×6 matrix; 
Ω0(ω) denotes generalized external force vector; U0(ω) represents generalized displacement vector 
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  0 , , , , ,
T

x y z x y zF F F M M MΩ              0 , , , , ,
T

x y z x y zU U U   U                     (50) 

The dynamic impedance functions S(ω) can be derived according to its definition: Fourier 
amplitude of the steady-state load exerts on the rigid foundation if a unit amplitude steady-state 
displacement occurs along any degree-of-freedom direction at a given frequency (Wolf 1985). To 
be specific, it is necessary to solve a mixed boundary-value problem: The vanishing tractions are 
imposed on the portion of the surface z=0, which is not covered by the rigid foundation. The 
displacement conditions, which are in the form of rigid-body displacements, are imposed on the 
contact areas of the foundation and soil. The surface force-displacement relation was obtained by 
Eq. (46) in the global coordinates. Employing Eq. (46), the force-displacement relation at the soil-
foundation interface is 
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                                   (51) 

where 
Ti i i i

r zu u u    U  (i=1,2,...,n) denotes the average of the displacement over the ith sub-
element in cylindrical coordinate system; 0 0 0 0

Tj j j j
x y z     Γ  (j=1,2,...,n) denotes the resultant  

of the tractions over the jth sub-element in Cartesian coordinate system, which is applied at the 
center of the jth sub-element; n corresponds to the number of sub-elements of the foundation. 
From Eq. (46), the Green’s function matrix ij

uG  (i,j=1,2,...,n)  can be expressed 

ij ij ij
xr yr zr

ij ij ij ij
u x y z

ij ij ij
xz yz zz

G G G

G G G

G G G
  

 
   
  

G                                                      (52) 

where ijG  (α=x,y,z; β=r,θ,z) represents the flexibility coefficient, which indicates the average of  
the displacement in the β direction at the ith sub-element when a unit concentrated load applied in 
the α direction at the center of the jth sub-element. Due to the singularity of the displacement at the 
loaded point (Kausel et al. 2000), the displacement within the loaded sub-element is evaluated by 
replacing the unit concentrated load via a uniformly distributed load q=1/πΔr2 over a disk with  
radius r a    , where Δa is the length of the sub square-element. Thus, we have two cases of  
evaluation of the Green’s function matrix ij

uG ; for the concentrated load case, it can be calculated  
by Eqs. (44) and (45), and for the distributed load case, it can be obtained by Eqs. (42) and (43). 

The displacement in the cylindrical coordinate system (Eq. (51)) should be transformed into the 
Cartesian coordinate system (Fig. 1) as below 
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                   (53) 

where 
Ti i i i

b x y zu u u   U  (i=1,2,...,n) denotes the average of the displacement over the ith sub-

element in Cartesian coordinate system; the sub matrix Hi (i=1,2,...,n) represents the transfer 
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matrix of the ith sub-element, which is defined as 

cos sin 0

sin cos 0

0 0 1

i i

i i i

 
 

 
   
  

H                                                       (54) 

where θi is the circumferential angle of the ith sub-element, which can be obtained as 

     2 2cos i i i ix x y                2 2sin i i i iy x y                                       (55) 

in which (xi, yi) is the coordinate of the center of the ith sub-element. 
For the displacement boundary condition at the soil-foundation interface, the displacement 

field, averaged over each sub-element of the foundation, is given by Ub=AU0. U0 is defined in Eq. 
(50); A  denotes a 3n×6 matrix connecting the motion of each sub-element with each of the rigid 
body degree-of-freedom of the foundation, which is given by 
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where (xi, yi) (i=1,2,...,n) is the coordinate of the centre of the ith sub-element. 
Similarly, from the force equilibrium of the foundation, the generalized force Ω0 in Eq. (50), 

exerted by the foundation on the soil, is given by Ω0=ATΓ0. Γ0 is the resultant forces over each of 
the sub-elements of the foundation (Eq. (53)). 

Considering the displacement boundary condition and force equilibriums of the foundation, 
also incorporating Eq. (53) and comparing with Eq. (49), it obtains the dynamic impedance matrix 
S(ω) 

  1 1T
u  S A G Π A                                                          (57) 

The frequency domain solution for the dynamic impedance functions of surface foundation is 
function of foundation shape and dimension. In the most general case, the impedance functions 
S(ω) is full and symmetric, i.e., all the rigid body motions of the foundation are interrelated. 
However, in the present study, the foundation rests on the surface of a horizontally layered half 
space. Also, the stress resultants act at the centre of the foundation. Thus, the torsional and vertical 
motions are completely decoupled from the remaining degree-of-freedoms. As a result, the matrix 
S(ω) is 
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Fig. 3 Definition of axes for different geometries of foundation: (a) circular; (b) hexagonal; (c) square. 
The horizontal plane is considered, and all the foundations have the same characteristic length, R0 

 
 

where Sij (i,j=1,2,...,6) denotes the impedance coefficient along the directions identified by the 
subscripts i and j (Fig. 1), which can be written as an uniform expression 

      0 0 0 0
r i

stS a K S a ia S a                                                  (59) 

where stK ,  0
rS a  and  0

iS a  denote the static impedance coefficient, normalized spring constant 
and damping coefficient; 0 sa R c  and sc    denote the dimensionless frequency and the  
shear wave velocity of the surface layer; R is the characteristic length of the referred foundation, 
which could be defined as the radius of a circular foundation, or the half length of a square 
foundation of area equal to that of a rectangular foundation, or else as the radius of a circular 
foundation of area equal to the foundation of arbitrary shape. 

A further simplification of S(ω) is performed if the moment of inertia around a given horizontal 
axis is invariant to a rotation of the foundation around the vertical axis. This is the case for the 
gravitation foundations that are typically utilized for wind turbines, i.e., circular, square and 
hexagonal foundation. With reference to Fig. 3, the moments of inertia are Ix=Iy=Iξ=Iς, where ς is 
an arbitrary horizontal axis. As a result, S11=S22, S44=S55 and S15=−S24, and the coupling between 
the sliding in the x-direction and rocking in the y-direction (and vice versa) vanishes, i.e. 
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Inverse of S(ω) is the compliance matrix C(ω), each element of compliance matrix can be written 
as 

      0 0 0
r i

stC a C C a iC a                                                   (61) 

where Cst,  0
rC a  and  0

iC a  denote the static compliance coefficient, the real and imaginary part 

of the compliance coefficient. 
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(a) Square foundation on a layered semi-infinite space (b) Circular foundation on a layered rigid base 

Fig. 4 Foundation on a layered half space 
 

(a) horizontal ( 0.6L H
s sc c  and h/R=4) (b) vertical ( 0.8L H

s sc c  and h/R=3) 

(c) rocking ( 0.3L H
s sc c  and h/R=2) (d) torsional ( 0.3L H

s sc c  and h/R=3) 

Fig. 5 Dynamic impedance coefficients for a rigid square foundation on a layered semi-infinite space 
 
 
4. Applications: dynamic impedance of a rigid surface foundation 
 

To validate the present solutions, three types of foundation are considered: rectangular, circular 
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and complex geometry. The first two cases are employed to validate the theory by comparing with 
the solutions in the literature, while the last one is presented to illustrate the capability of the 
proposed method for the analysis of a foundation with arbitrary shape. The soil-foundation 
interface is discretized into a number of sub square-elements. The length of the sub square-element 
Δa is obtained by Δa≤2πcs/10ωmax (Jeremić et al. 2009). sc    denotes the shear wave velocity 
of the surface layer. 
 

4.1 Dynamic impedance functions of a surface rectangular foundation 
 
A surface square foundation of length 2R is considered; the soil medium consists of a layer 

overlying a semi-infinite space, see Fig. 4(a). The properties of the soil medium are: mass density 
ρH=1.13ρL, Poisson’s ratio vL=vH=0.45, material damping ratio ξL=0.05 and ξH=0.03 and the ratio  
of the shear wave velocity L H

s sc c . The dimensionless frequency is defined as 0
L
sa R c . Wong  

has solved this problem by employing the transfer matrix method (Wong 1985). The evaluated 
impedance coefficients of the rigid rectangular foundation, normalized as given in Eq. (59), are 
shown in Fig. 5. Additionally, μLR and μLR3 are chosen as the dimensionless coefficients but not 
the static impedance coefficient Kst. After normalization, the real and imaginary part of the solution  
are depicted but not  0

rS a and  0
iS a . The solution of Wong is denoted by solid line and is  

compared to the proposed approach (line with stars). Both curves coincide, which indicates that 
the proposed approach leads to correct results. 

 

(a) horizontal impedance coefficient (b) vertical impedance coefficient 

 
(c) rocking impedance coefficient (d) torsional impedance coefficient 

Fig. 6 Dynamic impedance functions of a circular foundation 
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Fig. 7 Foundation with complex geometry on a five-layered rigid base 
 
 
4.2 Dynamic impedance functions of a surface circular foundation 
 
A surface circular foundation of radius R is considered; and the soil medium consists of three 

layers placed on a rigid base, see Fig. 4(b). Kausel (2003) has solved this problem by employing 
the thin layer method (TLM). The evaluated impedance coefficients of the rigid circular 
foundation, normalized as given in Eq. (59), are shown in Fig. 6. Here, Kst is selected as the static 
impedance coefficient of a rigid circular foundation placed on a homogeneous semi-infinite space 
which is with the material properties of the surface layer. Kst is equal to 8μ0R/(2−v0), 4μ0R/(1−v0), 
8μ0R

3/(3(1−v0)) and 16μ0R
3/3 for horizontal, vertical, rocking and torsional motion, respectively.  

0 sa R c  and 0 0sc    denote the dimensionless frequency and the shear wave velocity of  
the surface layer. In the figure, the solution of TLM is denoted by solid line and is compared to the 
proposed approach (line with stars). It can be observed that the agreement among the two sets of 
results is fairly good, for the real part as well as for the imaginary part. 
 

4.3 Dynamic impedance functions of a foundation with complex geometry 
 
To illustrate the capability of the proposed method, the case of a rigid foundation with complex 

geometry in Fig. 7 is considered. The shape of the foundation is similar to that found in some real 
projects. In this example, the soil medium in Fig. 7 is employed here. The origin of the coordinate 
system is set at the center of the foundation. The impedance coefficients in Eq. (58) are shown in 
Fig. 8. Additionally, μ0R and μ0R

3 are chosen as the dimensionless coefficient but not the static 
impedance coefficient Kst. After normalization, the real and imaginary part of the solution are  
depicted but not  0

rS a  and  0
iS a . In order to show the effect of the supporting rigid base, the  

impedance of the foundation placed on a four layered semi-infinite space is also described in the 
figure. The four layered semi-infinite space includes the first four layers of the medium in Fig. 7 
plus a semi-infinite space with the material properties of the fifth layer. The dimensionless  
frequency is defined as 0 sa R c , 0 0sc    denotes the shear wave velocity of the surface  
layer. In Fig. 8, the solid line denotes the impedance coefficients of foundation placed on the 
layered rigid base; while the line with stars demonstrates the impedance coefficients of foundation 
placed on the layered semi-infinite space. It can be observed that the impedance of layered rigid  
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(a) horizontal impedance coefficient (b) vertical impedance coefficient 

 
(c) rocking impedance coefficient (d) torsional impedance coefficient 

Fig. 8 Dynamic impedance functions of the foundation with complex geometry 
 
 
base have a close resemblance to those of layered semi-infinite space in the range of large 
frequency a0; and such resemblance is more remarkable in the cases of horizontal or torsional 
excitation than in the cases of vertical or rocking excitation. 
 
 
5. Parameter study for the impedance and compliance functions 
 

In the following, the effects of Poisson’s ratio, material damping and contact condition of soil-
foundation interface on the impedance and compliance functions are presented. The foundation 
considered here is a circular foundation of radius R placed on a homogeneous semi-infinite space 
with Poisson’s ratio v, shear modulus μ, material density ρ and material damping ratio ξ. The  
dimensionless frequency is defined as 0 sa R c . sc    denotes the shear wave velocity of  
the semi-infinite space. Here, for the horizontal, vertical, rocking and torsional motion of the 
circular foundation, the static impedance coefficients Kst in Eq. (59) equal to 8μR/(2−v), 4μR/(1−v), 
8μR3/(3(1−v)) and 316 3R ; and the static compliance coefficients Cst in Eq. (61) are (2−v)/8μR, 
(1−v)/4μR, 3(1−v)/8μR3 and 3/16μR3. 
 

5.1 Material damping 
 
The effect of material damping on the impedance functions is illustrated in Fig. 9. In the figure,  
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(a) horizontal impedance coefficient (b) vertical impedance coefficient 

(c) rocking impedance coefficient (d) torsional impedance coefficient 

Fig. 9 Effect of material damping on the impedance functions (v=0.3) 
 
 

the normalized spring constant and damping coefficient in Eq. (59) are shown for different values 
of material damping ratio. It can be observed that the material damping in the soil leads to a  
reduction in the normalized spring constant  0

rS a at higher frequencies while increases the 
damping coefficient  0

iS a  at lower frequencies. Additionally,  0
rS a  at lower frequencies and 

 0
iS a  at higher frequencies tend to be constant. Kausel (1975) proposed an approximate  

approach for the dynamic impedance functions of a surface foundation on a viscoelastic semi-
infinite space 

       0 0 0 0 1 2st r iS a K S a ia S a i                                             (62) 

where stK ,  0rS a and  0iS a  denote the static impedance coefficient, the normalized spring 

constant and damping coefficient of the foundation placed on the same elastic semi-infinite space 
but without considering the material damping; ξ denotes the material damping ratio of the semi-
infinite space. Expanding Eq. (62), one can obtain the following expression 

           0 0 0 0 0 0 0 02st r i i rS a K S a a S a ia S a S a a                                  (63) 

Comparing Eqs. (59) and (63), it can obtain 
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(a) horizontal compliance coefficient (b) vertical compliance coefficient 

(c) rocking compliance coefficient (d) torsional compliance coefficient 

Fig. 10 Effect of Poisson’s ratio on the compliance functions (ξ=0.05) 
 
 

     0 0 0 02r
r iS a S a a S a                0 0 0 0

i
i rS a S a S a a                         (64) 

Eq. (64) indicates that the normalized spring constant  0
rS a  has negative relation with the 

material damping ratio and the damping coefficient  0
iS a  has positive relation. At lower 

frequencies, the normalized spring constant changes little because the damping coefficient  0iS a  
and the frequency a0 are comparatively small. The same remark is suitable for the damping 
coefficient  0

iS a  at higher frequencies due to the relatively small values of  0rS a and large 
frequency a0. All these remarks are graphically proved by Fig. 9. In other words, the results of the 
proposed method validate the approximate formulas of Kausel (1975). 

 
5.2 Poisson’s ratio 
 
The Poisson’s ratio plays an important role on the compliance functions. The nature of this 

effect is illustrated in Fig. 10, in which the normalized compliance coefficients in Eq. (61) are 
presented. From the figures of horizontal compliance, it can be seen that the dynamic compliance 
does not depend much on Poisson’s ratio for lower values of frequencies and Poisson’s ratios, a 
fact already observed by Luco (1971). However, the Poisson’s ratio stresses more influence on the  
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(a) horizontal and rocking impedance coefficient (b) vertical and torsional impedance coefficient 

Fig. 11 Effect of contact condition on the impedance functions (v=0.3, ξ=0.05) 
 
 

vertical and rocking compliance: at lower frequencies, the real part of the compliance increases 
along with the Poisson’s ratio; for higher frequencies and for Poisson’s ratio close to one-half, the 
compliance coefficients reduce along with the Poisson’ ratio; more importantly, the real part of the 
compliance becomes negative. For the torsional compliance, it can be observed that it does not 
change with the Poisson’s ratio, which is consistent with the analytical solutions from Reissner and 
Sagoci (Reissner et al. 1944, Sagoci 1944). The interpretations are: the displacement, related to the 
forced torsional oscillations of the surface foundation, is the circumferential displacement uθ; and 
uθ corresponds to the out-of-plane wave motion in the wavenumber domain; it involves only the 
shear modulus except Poisson’s ratio in the solution of wave motion equation, see Eq. (5). 
Therefore, the torsional motion of the surface foundation is independent of the Poisson’s ratio.  
 

5.3 Contact condition 
 
In general, a horizontal load will lead to both horizontal and vertical displacement, see Eq. (43). 

The same rule applies to the vertical load. Rigorously taking account of all components in G of Eq. 
(46) leads to the dynamic impedance matrix S(ω) for welded contact. As an approximation, only 
the diagonal terms in G are considered, all the coupling terms are omitted. This represents the 
condition of relaxed contact. Under such contact condition, the coupled impedance coefficients are 
zero and the impedance matrix S(ω) is a diagonal matrix; it is remarked that the calculation effort 
is reduced considerably. The influence of different contact conditions on the dynamic impedance 
functions is presented in Fig. 11. In the figure, the normalized spring constant and damping 
coefficient in Eq. (59) are shown. It represents the results of welded contact as line with stars and 
compares with the relaxed contact (solid line). It demonstrates very good agreement between the 
results of welded and relaxed contact is achieved; for the real part of the horizontal, vertical and 
rocking impedance some slight discrepancies exist, approximately 0~10% of the values of welded 
contact. Hence, in the practical applications, the off-diagonal terms in G could be neglected to 
reduce the calculation effort. 

It is worthwhile to note that the torsional impedance is identical for the two contact conditions. 
It can be illustrated like the influence of Poisson’s ratio that: the displacement under the forced 
torsional oscillations of the foundation corresponds to the out-of-plane wave motion ūθ(k) in the  
wavenumber domain. In Eq. (39), ūθ(k) only relates to the flexibility coefficient G  without any  
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coupling terms. Hence, if it neglects the coupling terms, it will not influence the torsional motion 
of foundation. 
 
 
6. Conclusions 
 

A numerical procedure for the analysis of the forced vibration of a rigid surface foundation has 
been presented. It is based on domain-transformation, dual vector representation of wave motion 
equation and Precise Integration Method (PIM). Numerical results have been obtained for foundation 
not only with simple geometrical configurations, such as rectangular and circular, but also the case 
of irregularly shaped foundation. Comparison with the results of previous calculations in the 
literature has been made. Very good agreement is approached. A parametric study has been made 
on the dynamic response of the foundation. The effects of material damping, Poisson’s ratio and 
contact condition of soil-foundation interface have been examined, which are illustrated as 
follows: 

Material damping tends to reduce the normalized spring constant at higher frequencies. This 
trend begins at moderate frequencies and broadens as the frequency is increased. At lower 
frequencies, the material damping has negligible influence on the normalized spring constant; 
conversely, the effect on the damping coefficient are quite remarkable at lower frequencies, and 
the damping coefficient increases along with the material damping ratio. At higher frequencies, the 
material damping tends to have less influence on the damping coefficient. 

From the analysis, the Poisson’s ratio does not significantly affect the compliance functions at 
lower frequencies. It is more pronounced at higher frequencies and Poisson’s ratio close to 0.5; the 
real part of the vertical and rocking compliance becomes negative. The torsional compliance does 
not depend on the Poisson’s ratio.  

Modifying the contact condition from welded to relaxed, it hardly affects any impedance 
functions, especially no influence on the torsional impedance. Thus, one can neglect the coupling 
terms to reduce the calculation effort in the practical applications. 
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