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Abstract.  In the paper we study dynamic response of a finite, simply supported Timoshenko beam subject 

to a moving continuously distributed forces. Three problems have been considered. The dynamic response of 

the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been 

considered as the first problem. Obtained solutions allow to find the response of the beam under the interval 

of the finite length a uniformly distributed moving load. Part of the solutions are presented in a closed form 

instead of an infinite series. As the second problem the steady-state vibrations of the beam under uniformly 

distributed mass m1 moving with the constant velocity has been considered. The vibrations of the beam 

caused by the interval of the finite length randomly distributed load moving with constant velocity is 

considered as the last problem. It is assumed that load process is space-time stationary stochastic process. 
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1. Introduction 
 

The problem of a dynamic response of a structure subjected to moving loads is interesting and 

important. This problem occurs in dynamics of bridges, roadways, railways and runways as well 

as missiles and aircrafts. Different types of structures and girders like beams, plates, shells, frames 

have been considered. Also different models of moving loads have been assumed (Kryloff 1905, 

Fryba 1999, Klasztorny and Langer 1990, Michaltsos 2002, Podwórna 2011). Deterministic and 

stochastic approaches have been presented (Tung 1969, Fryba 1976, Sieniawska and Śniady 

1990). It would be interesting to study the problem of the dynamic response of Timoshenko (1921) 

beam to moving loads. This problem has been considered, among others, in the papers 

(Timoshenko 1922, Achenbach and Sun 1965, Florence 1965, Steel 1968, Tang 1966, Bogacz et 

al. 1986, Szcześniak, Katz et al. 1988, Zu and Han 1994, Lee 1995, Felszeghy 1996a, b, Wang 

1997, Chen et al. 2011, Ariaei et al. 2011). Both the moving forces (Timoshenko 1922, 

Achenbach and Sun 1965, Florence 1965, Felszeghy 1996b, Chen et al. 2011) and the moving 

masses (Bogacz et al. 1986) have been assumed as the model of moving load. Also vibration  
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Fig. 1 Scheme of Timoshenko beam under moving load. Phase of entry of load 
 
 

multi-span Timoshenko beam due to moving load have been considered (Wang 1997, Ariaei et al. 
2011). The problem of vibration of the Euler-Bernoulli beam caused by uniform partially 
distributed moving mass has been presented in (Esmailzadeh and Ghorasi 1995). In the paper we 
study dynamic response of a finite, simply supported Timoshenko beam subject to a moving 
continuously distributed forces. Three problems have been considered. The dynamic response of 
the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been 
considered as the first problem. Obtained solutions allow to find the response of the beam under 
the interval of the finite length a uniformly distributed moving load. Part of the solutions are 
presented in a closed form instead of an infinite series. The problems of finding the closed 
solutions in dynamics of string, beams and frames loaded by moving force is presented in the 
papers (Kączkowski 1963, Reipert 1969, 1970, Śniady 2008, Rusin et al. 2011). For a finite, 
simply supported Timoshenko beam closed forms of the solutions take different forms whether the 
velocity of the moving force is smaller or bigger than the velocities of shear and bending waves of 
the beam. This follows from the fact that for Timoshenko beam (contrary to Euler-Bernoulli beam) 
wave phenomena can occur. As the second problem the steady-state vibrations of the beam under 
uniformly distributed mass m1 moving with the constant velocity has been considered. The 
vibrations of the beam caused by the interval of the finite length randomly distributed load moving 
with constant velocity is considered as the last problem. It is assumed that load process is space-
time stationary stochastic process. The problems just mentioned may be applied to the vibration of 
highway and railway bridges. 
 
 
2. Vibration of a Timoshenko beam under a moving force 
 

We consider vibrations of a simply supported Timoshenko beam of finite length L subjected to 
a uniform partially distributed load moving with a constant velocity v (Fig. 1)  

Vibrations of a beam are described by the equations  
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where A and J denote the cross-section area and inertia momentum, respectively, E and G are 
Young modulus and shear modulus, respectively, κ is the shear coefficient, ρ is the mass density, 
H( ) is Heaviside’a step function. 
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The functions w(x,t) and φ(x,t) describe the transverse displacement and the rotation of the 
cross-section of the beam. The bending moment M(x,t) and the shear force Q(x,t) are described by 
the relations 
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For a finite, simply supported beam the boundary conditions have forms 
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where L is the span length. 
After introducing the dimensionless variables  
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the Eqs. (1), (2) take the form 
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Roman numerals denote differentiation with respect to the spatial coordinate ξ, and dots denote 
differentiation with respect to time T. For elastic materials the inequality vg≥vs(γ≥1) holds true. 
Respectively the quantities vs and vg represent the shear wave velocity and bending wave velocity. 

The boundary conditions have forms 
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Let the initial conditions have forms 
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The response of the beam w(ξ,T) and φ(ξ,T) for boundary conditions (8) are assumed to be in 
the form of sine and cosine series 
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By substituting expressions (10), (11) into the system of the Eqs. (6), (7) the solutions are sums 
of the particular integrals wA=(ξ,T), φA=(ξ,T) and general integrals wS=(ξ,T) and φS=(ξ,T) 
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The constants An, Bn, Cn, Dn can be found from the initial conditions (9), and have the forms 
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Fig. 2 Scheme of Timoshenko beam under moving load. Full load of the beams 
 
 
Let consider the case when T≥1 (Fig. 2).  
The solution have forms Eqs. (12) and (13), where aperiodic part are equal 
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The general integrals can be presented in the forms,  
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where functions wS1=(ξ,T) and φS1=(ξ,T) are given by expressions (16)-(21), respectively, assuming 
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3. Closed form solutions 

 
The functions wA=(ξ,T) and φA=(ξ,T) are aperiodic vibrations and satisfy the nonhomogeneous 

differential Eqs. (6)-(7). These functions do not satisfy the initial conditions of motion (9). The 
functions wS=(ξ,T) and φS=(ξ,T) are free vibrations of the Timoshenko beam which satisfy the 
homogeneous differential Eqs. (6)-(7) (p0=0) and together with the aperiodic functions the initial 
conditions of motion (9) are satisfied. Now we will present the aperiodic solution wA=(ξ,T) in 
closed forms. 

Let notice that the first and second series in the expressions (14) have forms 
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are solutions of the ordinary equations 
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for the boundary conditions  
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where i=3,4. 
The variable T in Eqs. (36) and (37) is the only parameter which describes the location of the 

moving force on the beam. After solving the Eqs. (36) and (37) using, for example, the Laplace 
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transform we can obtain the functions wA3=(ξ,T) and wA4=(ξ,T) in the closed form instead of a 
series. The function wA3=(ξ,T) has the form 
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The closed form of the solutions wA4=(ξ,T) depends on the velocity of moving force. In the case 
if η<1 or η>γ when the velocity of the force is smaller than the velocity of the shear wave (η<1) or 
larger than the velocity of the bending wave (η>γ) the solutions have forms 
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The part of the closed solution for angle is given at the section 5. 
In the case if T≥1 the closed solutions have forms 
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Let the vibrations of the beam be caused by the interval of the finite length a uniformly 
distributed moving load. (Fig. 3(a)). The solution of the problem can be obtained by superposition  
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(a) 

(b) 

Fig. 3 Interval uniformly distributed moving load 
 

(a) (b) 

Fig. 4 Phases of moving interval uniformly distributed load 
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of the solutions which are given above (see Fig. 3(b)). We consider three phases, namely, the load 
drive on the beam, the full load process on the beam and drive off of the load (see Fig. 4) 

For example for the case a<L and a≤vt≤L,  1
a

T
L
   (Fig. 4(a)) the solutions have forms 

0 0( , ) ( , ) ( , ) ( , ) ( , ),A S A Sw T w T w T w T T w T T                                  (44) 

0 0( , ) ( , ) ( , ) ( , ) ( , ),A S A ST T T T T T T                                        (45) 

where 
0

a
T

L
  and the functions wA=(ξ,T), wS=(ξ,T), φA=(ξ,T) and φS=(ξ,T) are given in the sections 

2 and 3 (see Eqs. (14)-(21) and also (32), (33), (39)-(41)). 
 
 
4. The inertial moving load 

 
Let us consider the vibrations of the beam under uniformly distributed moving mass m1. 

2 2

2 2

2 2 2
2

1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
[ ( 2 )] ( ),

GA w x t GA x t w x t
A

x x t

w x t w x t w x t
m g m v v H vt x

t x t x

 
 

  
   

  
  

   
                              

(46) 

0
),(

),(
),(),(

2

2

2

2














t

tx
Jtx

GA

x

txwGA

x

tx
EJ





                         (47)  

where g is acceleration of gravity. 
Let notice that the load process is the sum of the constant part and inertial part which changes 

in time. After using dimensionless variables (5) the Eqs. (46) and (47) have forms 

 

..
/ / / 2

2 2
1 1

( . ) ( , ) ( , )

{ [ ( , ) 2 ( , ) ( , )]} ( ),I II

w T L T w T

m gL m v
w T w T w T H T

GA GA

    

     

   

    
                       

(48) 

2 2 2( , ) ( , ) ( , ) ( , ) 0.w T T T T
r

                                             (49) 

Let consider only steady-state solution for T>1 (Fig. 5). In this case w=(ξ,T)=wsteady=(ξ) and 
φ=(ξ,T)=φsteady=(ξ) since the Eqs. (48) and (49) obtain the system of ordinary equations 

 
 

Fig. 5 Scheme of beam under moving uniformly distributed mass. 
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2 2
1 1(1 ) ( ) ( ) ,II I

steady steady

m v m gL
w L

GA GA

                                           (50) 

2
2 2( ) ( ) ( ) 0.I II

steady steady steadyw
L

                                             (51)  

The response of the beam wsteady=(ξ) and φsteady=(ξ) for boundary conditions (8) are assumed to 
be in the form of sine and cosine series 

1

( ) sin ,steady n
n

w y n 




                                                    (52) 

1

( ) cos .steady n
n

n   




                                                    (53) 

By substituting expressions (52), (53) into the system of the Eqs. (50), (51) the solutions have 
forms 

2 2 2 2 2

2 3 2 2 2 2 2
1

[1 ( 1) ][ ( ) ]sin
( ) 2 ,

( ) [(1 ) ( ) ]

n

steady
n

gL n n
w

v n n

    
     





  


                            (54) 

2 2

2 2 2 2 2 2 2
1

[1 ( 1) ]cos
( ) 2 ,

( ) [(1 ) ( ) ]

n

steady
n

gL n

v n n

   
     





 


                         (55) 

where 1m

A



  is ratio of moving mass to the beam mass. 

The critical velocity vcr of moving mass is equal to 

2 2 2
2 2

1
.

( ) [ ( ) ]
cr g gv v v


     


 
 

                                   (56) 

The closed solutions have forms if μη2<1 
1

( ),sv v


 than 

2 2

2 2 2

sin sin sin (1 ) 1
( ) { [ ] (1 )},

sin 2steady

gL b b b
w

v b

    
 

  
                       (57) 

2

cos cos (1 ) 1
( ) [ ],

sin 2steady

gL b b

v b b

    
                                       (58) 

where 
2 2 21g s

v v
b

v v v
 

 
   

  
. 

In the case if μη2>1  1
( ),sv v


 than 

2 2

2 2 2

sinh sinh sinh (1 ) 1
( ) { [ ] (1 )},

sinh 2steady

gL b b b
w

v b

    
 

  
                    (59) 
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Fig. 6 Beam loaded by a randomly distributed load moving with a constant velocity. 
 
 

2

cosh cosh (1 ) 1
( ) [ ],

sinh 2steady

gL b b

v b b

    
                                    (60) 

where 
2 2 2

.
1g s

v v
b

v v v

   
  

 
 

 

If the influence of the inertial part of the load (moving mass) is omitted than the solutions are 
given by Eqs. (24), (25) or (42), (43). Let notice that the closed solutions depends not only since 
the velocity parameter η=v/vs but also since proportion of moving mass m1 to the beam mass 
m=ρA. 
 
 
5. Random vibrations of the beam 

 
In many cases the moving loads obey laws that are of random character, particularly the effects 

of random motion of vehicles on irregularities of surface of bridge (Fryba 1976). Let the vibrations 
of the beam be caused by randomly distributed load p(x−vt) moving with constant velocity v (Fig. 6). 

In this case the Eq. (1) has form 
2 2

2 2

( , ) ( , ) ( , )
( ).

GA w x t GA x t w x t
A p x vt

x x t

 
 

  
    

  
                             (1a) 

Let us notice that the load process p(x−vt)=p[L(ξ−T)]=p(L τ), (ξ−T =τ), is a weak space-time 
stationary stochastic process and can be assumed as sum deterministic and random parts 

( ) ( ) ( ),p x vt p p x vt p p L                                                (61) 

where .p const , [ ( )] 0E p x vt   and a symbol E[ ] means expectation. 

The solution for deterministic part of the load .p const  has been presented in the sections 2 
and 3 for this reason we consider only vibration of the beam due to stochastic part.  

Let us assume that covariance function of the moving load process 

1 2 1 2 1 2( , ) [ ( ) ( )] [ ( )],pp ppC E p L p L C L                                            (62) 

is known.  
For moving load modeled by space-time stationary stochastic process it is difficult to find 

solution using direct sine and cosine transformation as can be done in other stochastic excitations. 
For this reason we introduce the dynamic influence functions Hw(ξ,T) and Hφ(ξ,T) which are the 
responses of the Timoshenko beam loaded by a moving point force equal to one. These dynamic 
influence functions are solutions of the equations (see Śniady 2008). 
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2( , ) ( , ) ( , ) ( ),w w oH T LH T H T P T                                            (63) 

 2 2 2( , ) ( , ) ( , ) ( , ) 0,wH T H T H T H T
r   
                                        (64) 

where δ(.) Dirac delta and 
oP = .

AG

L   

The dynamic influence functions can be found in similar way, like it has been done in section 2 
for the uniform distributed load and have forms (see Śniady 2008) 
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B
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A
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The closed solutions of the functions HwA(ξ,T) and HφA(ξ,T) are given in the paper (Śniady 
2008) and have, in the case η<1, forms 







 )1(
sin

sin)1(sin

)1(
),(

2
0

22
0 T

PTP
TH wA 




  for ,T  

)1(
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)1(sinsin

)1(
),(

2
0

22
0 
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


 




 T
PTP

TH wA  for ,T                 (68) 

and 
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(a) 

(b) 

(c) 

Fig.7 Phases of the moving random load on the beam 
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where 
))(1( 2222

22
2







r

L . 

Let the vibrations of the beam be caused by the interval of the finite length a<L randomly 
distributed load p(x−vt) moving with constant velocity v. Using dynamic influence functions the 
response of the beam under moving load ( )p L can be presented in the integral forms 

(a) if 0
a

T
L

   (Fig. 7(a)) 

 
0

( , ) ( , ) ( ) ,
T

w

L
w T H T p L d

v
                                                  (70) 

 
0

( , ) ( , ) ( ) ,
TL

T H T p L d
v                                                     (71)  

(b) if 1,
a

T
L
   (Fig. 7(b))  

783



 
 
 
 
 
 

Olga Szyłko-Bigus and Paweł Śniady 

 

 ( , ) ( , ) ( ) ,
T

w
a

T
L

L
w T H T p L d
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(c) if 1 1 ,
a

T
L

    (Fig. 7(c)) 
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                                             (75) 

The Eqs. (70)-(75) can be used to obtain covariance function of the beam response. For 
example in the case b) the covariance functions have forms 

Let us assume the moving excitation process to be stationary “white noise”. The covariance 
function of load process has form 2

1 2[ ( )]pp pC L     where 2
p  is variance of load. Since the 

Eqs. (76), (77) the variance of the Timoshenko beam are given by integral formulas 
2

2 2
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T H T d
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2
2 2
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T
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T H T d
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
    



                                                (79) 

for 1.
a

T
L
   

The variance of the beam response can be obtained since the integral formulas (78), (79) using 
numerical procedure. 
 

Remark 
Let notice that for p(x−vt)=p=const. after putting the (66) and (69) into (71) the part of the 

function φ=(ξ,T) can be obtained in closed form. In this case instead the solutions (13), (15), (17) 
(20) and (21) we have 

 1 2( , ) ( , ) ( , ),T T T                                                          (80) 

where 

1 2

1 2
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ww w w pp
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L L

L
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Dynamic response of a Timoshenko beam to a continuous distributed moving load 

 

It is worth pointing out that when the velocity of the mass is bigger than the critical velocity, 
the beam displacement is opposite to the direction of the gravity force which is consistent with our 
intuition (Figs. 22, 23). 
 
 
7. Conclusions 
 

The dynamic response of a finite, simply supported Timoshenko beam loaded by a 
continuously distributed load moving with a constant velocity has been considered. Three 
problems have been considered. The dynamic response of the Timoshenko beam under a uniform 
distributed load moving with a constant velocity v has been considered as the first problem. 
Obtained solutions allow to find the response of the beam under the interval of the finite length a 
uniformly distributed moving load. Part of the solutions are presented in a closed form instead of 
an infinite series. As the second problem the steady-state vibrations of the beam under uniformly 
distributed mass m1 moving with the constant velocity has been considered. The vibrations of the 
beam caused by the interval of the finite length randomly distributed load moving with constant 
velocity is considered as the last problem. It is assumed that load process is space-time stationary 
stochastic process. The last problem has been solved using dynamic influence function. The 
solutions are presented using dimensionless parameters making it easier to analyze the response of 
the beam. 
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