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Abstract. In the paper we study dynamic response of a finite, simply supported Timoshenko beam subject
to a moving continuously distributed forces. Three problems have been considered. The dynamic response of
the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been
considered as the first problem. Obtained solutions allow to find the response of the beam under the interval
of the finite length a uniformly distributed moving load. Part of the solutions are presented in a closed form
instead of an infinite series. As the second problem the steady-state vibrations of the beam under uniformly
distributed mass m; moving with the constant velocity has been considered. The vibrations of the beam
caused by the interval of the finite length randomly distributed load moving with constant velocity is
considered as the last problem. It is assumed that load process is space-time stationary stochastic process.

Keywords: Timoshenko beam; moving force; vibrations

1. Introduction

The problem of a dynamic response of a structure subjected to moving loads is interesting and
important. This problem occurs in dynamics of bridges, roadways, railways and runways as well
as missiles and aircrafts. Different types of structures and girders like beams, plates, shells, frames
have been considered. Also different models of moving loads have been assumed (Kryloff 1905,
Fryba 1999, Klasztorny and Langer 1990, Michaltsos 2002, Podwdérna 2011). Deterministic and
stochastic approaches have been presented (Tung 1969, Fryba 1976, Sieniawska and Sniady
1990). It would be interesting to study the problem of the dynamic response of Timoshenko (1921)
beam to moving loads. This problem has been considered, among others, in the papers
(Timoshenko 1922, Achenbach and Sun 1965, Florence 1965, Steel 1968, Tang 1966, Bogacz et
al. 1986, Szczesniak, Katz et al. 1988, Zu and Han 1994, Lee 1995, Felszeghy 1996a, b, Wang
1997, Chen et al. 2011, Ariaei et al. 2011). Both the moving forces (Timoshenko 1922,
Achenbach and Sun 1965, Florence 1965, Felszeghy 1996b, Chen et al. 2011) and the moving
masses (Bogacz et al. 1986) have been assumed as the model of moving load. Also vibration
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Fig. 1 Scheme of Timoshenko beam under moving load. Phase of entry of load

multi-span Timoshenko beam due to moving load have been considered (Wang 1997, Ariaei et al.
2011). The problem of vibration of the Euler-Bernoulli beam caused by uniform partially
distributed moving mass has been presented in (Esmailzadeh and Ghorasi 1995). In the paper we
study dynamic response of a finite, simply supported Timoshenko beam subject to a moving
continuously distributed forces. Three problems have been considered. The dynamic response of
the Timoshenko beam under a uniform distributed load moving with a constant velocity v has been
considered as the first problem. Obtained solutions allow to find the response of the beam under
the interval of the finite length a uniformly distributed moving load. Part of the solutions are
presented in a closed form instead of an infinite series. The problems of finding the closed
solutions in dynamics of string, beams and frames loaded by moving force is presented in the
papers (Kaczkowski 1963, Reipert 1969, 1970, Sniady 2008, Rusin et al. 2011). For a finite,
simply supported Timoshenko beam closed forms of the solutions take different forms whether the
velocity of the moving force is smaller or bigger than the velocities of shear and bending waves of
the beam. This follows from the fact that for Timoshenko beam (contrary to Euler-Bernoulli beam)
wave phenomena can occur. As the second problem the steady-state vibrations of the beam under
uniformly distributed mass m; moving with the constant velocity has been considered. The
vibrations of the beam caused by the interval of the finite length randomly distributed load moving
with constant velocity is considered as the last problem. It is assumed that load process is space-
time stationary stochastic process. The problems just mentioned may be applied to the vibration of
highway and railway bridges.

2. Vibration of a Timoshenko beam under a moving force

We consider vibrations of a simply supported Timoshenko beam of finite length L subjected to
a uniform partially distributed load moving with a constant velocity v (Fig. 1)
Vibrations of a beam are described by the equations

2 2
_ G4 0"w(x,1) +% 0d(x,t) +Ap o w(x,t)

= pH (vt — 1
K ox K Ox or’ PHOE=) v
2 2
EJa ¢(f’t)+%M_@¢(x’t)_JpaLf’t):O (2)
Ox K Ox K ot

where 4 and J denote the cross-section area and inertia momentum, respectively, £ and G are
Young modulus and shear modulus, respectively, « is the shear coefficient, p is the mass density,
H( ) is Heaviside’a step function.
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The functions w(x,f) and ¢(x,f) describe the transverse displacement and the rotation of the
cross-section of the beam. The bending moment M(x,t) and the shear force QO(x,t) are described by
the relations

6go(x t) L O(x1) = GA[GW(gx ,1)
08

For a finite, simply supported beam the boundary conditions have forms

dp(x.0)|  _op(xt)| _,

M(x,t)=—-E] ———— —p(x,1)]. 3)

w(0,t) =w(L,t)=0, 4
(0,2) = w(L,1) x |l o | 4)
where L is the span length.
After introducing the dimensionless variables
X vt
=—, T=—, £€[0,1], T €][0,1], 5
S 7 I ¢ €[0,1] [0,1] ®)
the Egs. (1), (2) take the form
W (&) + Ly (& T)+ 7" w&.T) = p,H(T = &), (©)
l "
7W(§,T)—/12(0(§,T)+72 ¢"(&.T)~1"P(&,T)=0 (7
v 2
Where:nzl,j/:—g,r= i, Do = pL \/7
2 2 A \ &

L . .
A =— is slenderness ratio of the beam.
r

Roman numerals denote differentiation with respect to the spatial coordinate &, and dots denote
differentiation with respect to time 7. For elastic materials the inequality v,>vy(y>1) holds true.
Respectively the quantities v, and v, represent the shear wave velocity and bending wave velocity.

The boundary conditions have forms

w(0,7) =w(,T)=0, ¢'(0,7) =¢'(1,T)=0. (®)
Let the initial conditions have forms

wE0) =0, W(E0)=0, @(£,0)=0, ¢(&,0)=0. )

The response of the beam w(¢&,T) and ¢(&,T) for boundary conditions (8) are assumed to be in
the form of sine and cosine series

WET) = Yy, (T)sin nze, (10)

O(ET) = 2% (T)cosnzt, (an
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By substituting expressions (10), (11) into the system of the Egs. (6), (7) the solutions are sums
of the particular integrals w,=(¢,T), p.~(,T) and general integrals ws=(&,T) and ps=(&,T)

w(&, T)=w, (&, T)+w(E,T), (12)
(&, 1) =9, T)+os(5.T), (13)
where
A* & sinnré 2 sinnzé 2p, & cosnaT sinnmé
(& T)=2py— ) —= 0 - 2 -
ED=2 G P Gy e s Gy .
_2pA° cos nxT sin nmé

M

2

1-1" & x) [(nz) A=) 7" =1") - A°T

1l
—_

o0

Z cosnxT
'y S () () A=n )" =n*)—n°A7]

@,(&.T)= 2Po—{i Yeosnaé.  (15)

and

we(&E,T) = Z[An cosr, T+ B, coss, T']sinnré, (16)

n=l1

os(&,T)= Z[Cn cosr, T+ D, coss,T'|cosnng, (17)

where 7,5, = —2\//12 +(nr) (1 +7%) i\/[ﬂz + () A=)’ [A° + ()’ (1+ )] .
2n

The constants A4, B,, C,, D, can be found from the initial conditions (9), and have the forms

2
A A R

Yu(0)  L(n7) ¢,(0)

_{r +77L[7/ (mz) +ﬂ,2]} ysn(o) +L(}’lﬂ') (DW(O) (18)

B, =—{s, +—[7 (nz)* + 2’135 e (19)
77 Sn ’/;1 77 sn _rn
C - /I(nﬁ) y;”(O) NE (_) ]cow( ) 20)
]/77 S/‘l _]/;1 n n
D, =2 2O o, 17212, 1)
I’?] Sn —I”n 7] .
where
b (0) = 2p, {Mz(l—nz)—nzyz(nﬂ)z][(nﬂ)z(l—772)(72—nz)—nzﬂuz]—lzyz(nﬂ)z}
" (A-n*)y? (nz) [(nz)*(A=n*)y* —n*A*] ’
A 1 1

?,,(0)= 2po =

() () () A=) (7" =) - 772/12]}'
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Fig. 2 Scheme of Timoshenko beam under moving load. Full load of the beams

Let consider the case when 7>1 (Fig. 2).
The solution have forms Eqs. (12) and (13), where aperiodic part are equal

(-3l —(D”][yz(?:;;: Plsinnag

2poﬂu2 [1-(D)" cosn;rf
9,(&) = Zl: =

The general integrals can be presented in the forms,

wy (&, T) = wg, (&, T) +wy, (8,7 -1),
¢S(§7T):¢S1(§aT)+¢Sz(§’T_l)e

9

775

(22)

(23)

24
(25)

where functions wg=(¢,T) and ¢s1=(&,T) are given by expressions (16)-(21), respectively, assuming

that 7>1. The functions ws,=(&,7—1) and ¢5=(£,7—-1) have forms

W, (E,T=1) =Y [E, cosr, (T —1)+ F, coss, (T —1)]sin nzé,

n=1

¢S2(§,T—1):i[Gn cosr(I'-1)+ H, coss, (T —1)]cosnn&,

n=1

where

1 y (0) L(nr) ¢@_ (0
E, =12 41y 4 27y 2o 20D 2,0),
S, =1, n S, —r,

1 Y, (0)  L(nz) @ (0
F,=—{s; +—I[r’(nn)* + 1} 5— - (2 ) €”2sn( 2,
n S, —r, n s =7

_Am) 3,0 ,,(0)

+[r°+ ,
" an Sj —Vnz [rn ( 77 ) ] n rn2
A (nrx 0 ?,,(0 )

H, =200 5.0 o SR
Ln S}'l - n "l n

where

(26)

27)

(28)

(29)

(30)

€2))
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2%U (D"Il(nz)’y* + A7)

~Sn (0) - (nﬂ_)s B
- oy 2PAT 1= (=D)"]
,,(0) = AL a)

3. Closed form solutions

The functions w,=(&,T) and ¢,4=(¢,T) are aperiodic vibrations and satisfy the nonhomogeneous
differential Eqgs. (6)-(7). These functions do not satisfy the initial conditions of motion (9). The
functions ws=(¢&,T) and ¢s=(&,T) are free vibrations of the Timoshenko beam which satisfy the
homogeneous differential Egs. (6)-(7) (po=0) and together with the aperiodic functions the initial
conditions of motion (9) are satisfied. Now we will present the aperiodic solution w,=(&,T) in

closed forms.
Let notice that the first and second series in the expressions (14) have forms

A7 sin naé _§ 95 f_ £
na& = Zl nzy 1y [120 21 18 45"
#a@=2n T IR D)
The next two series in Eq. (14)
w(ET)=— 2p, Z”:cosn;szinn;rgE

1_77 n=1 (nﬂ-)3

and

2 p0/12 - cos nzT sin nwé
46 T)=—
W)= e (U= ) 2T

are solutions of the ordinary equations
wis (&, T)— 5(5 T),

and

2192

WhET) T e P s,

- -n") A=Y (" -n*)

for the boundary conditions

w,(0,T)=w,(1,T)=0, w/(0,7)=w(1,T)=0, w,(0,7)=w",(1,T)=0,

where i=3,4.

(32)

(33)

(34)

(35)

(36)

(37

(38)

The variable T in Egs. (36) and (37) is the only parameter which describes the location of the
moving force on the beam. After solving the Eqgs. (36) and (37) using, for example, the Laplace
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transform we can obtain the functions w,3=({,7) and w44=(S,7) in the closed form instead of a
series. The function w3=(¢&,T) has the form

P f
w;(8,T) = 2(1_ )[35(1 &) —-&(1-T)*] for §<T,

w5 (&,T) = ( )[35(1 EN—-E(1-T) +(&-T)] for £>T. (39)

The closed form of the solutions w,4=(¢,T) depends on the velocity of moving force. In the case
if #<1 or >y when the velocity of the force is smaller than the velocity of the shear wave (#<1) or
larger than the velocity of the bending wave (17>y) the solutions have forms

W (ET) = Do {s1na.§cosa(1 7)

it 5(1 Ty - 6(1—62)—%5}, for £<T,

(1-n")n a sina
sina(1-&)cosal 1 1 1
wo(gmy= Loy snalzcleosal Ly oy oy Leq_ey Lagy fore=r (4
n a’sina 2 6 a
where
212
2 nA
= Cforp<1, y<n,
A=7)y* =1
and
Do sinhaécosha(1-T) 1 ) 1 1 )
—— (=T E-E—+-F1- , for £<T,
w,,(&T)= 7 - ol T enha 2( )¢ §a2 65( &)l g
sinha(l1-&)coshal 1
w6 Ty =— L Smhal=<) ~La-oe-my+
(n* -Hn’ a”sinha 2 for £>7, (41)
1
—§(l—§z)+—2(l—§)],
6 a
where
2192
a’=— 77/12 —. for y>n>1.
(" =D —n")
The part of the closed solution for angle is given at the section 5.
In the case if 7>1 the closed solutions have forms
1 §2 AL A,
w -2 + , 42
_polz __5_2 & 43
p,(8)= YR ) (43)

Let the vibrations of the beam be caused by the interval of the finite length a uniformly
distributed moving load. (Fig. 3(a)). The solution of the problem can be obtained by superposition
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of the solutions which are given above (see Fig. 3(b)). We consider three phases, namely, the load
drive on the beam, the full load process on the beam and drive off of the load (see Fig. 4)
For example for the case a<L and a<wt<L, 4 1< (Fig. 4(a)) the solutions have forms
L

w(&,T)=w, (&, 1)+ ws (&, T)=w, (&, T -T,) - ws (5, T - T), (44)
¢(59T) = (DA(‘E‘;Z’T)+gos(é::T)_¢A(55T_%)_¢S(§7T_TE))3 (45)
where T, = £ and the functions w,=(&,T), ws=(&T), 0.=(&T) and ps=(,T) are given in the sections

L
2 and 3 (see Egs. (14)-(21) and also (32), (33), (39)-(41)).
4. The inertial moving load

Let us consider the vibrations of the beam under uniformly distributed moving mass m;.

2 2
_ G4 0°w(x,1) +@ op(x,t) +Ap O w(x,t) _

K 6x;2 ( z)c a;i s 6;( ) (46)
w(x,t w(x,t wix, ?
[m,g —m,( % +2v poy +v° P )IH (vt = x),
) 2
gy TR GADUND Gy )y P00 47)
Ox K Ox ot

where g is acceleration of gravity.
Let notice that the load process is the sum of the constant part and inertial part which changes
in time. After using dimensionless variables (5) the Egs. (46) and (47) have forms

W' (ET)+ Lo (&,T)+ 1> w(&,T) =

(48)
{ gj" ’"GV E0E,T)+ 20 (&, T) +w! (&, TYVH(T =€),
fw(éf)—ﬁo(é,nwz "(&,T) =&, T) =0. (49)

Let consider only steady-state solution for 7>1 (Fig. 5). In this case w=(&,T)=Wizeuqy=(<) and
0=(&, 1) =@seaay=(<) since the Eqs. (48) and (49) obtain the system of ordinary equations

%’I. m;

VVVVVVVVJ/
G.E 0,A,Lk,p

< L >

Fig. 5 Scheme of beam under moving uniformly distributed mass.

A
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S L’k
TN )+ L) () =2 (50)
LZW[ (&)= 2Pty () + 7V P (§) =0 (D
L steady steady steady *

The response of the beam Wyeqq,=(<) and @eaq=(<) for boundary conditions (8) are assumed to
be in the form of sine and cosine series

Woeaay (6) = i ¥y, sinnzé, (52)
Preaay (&) = i(ﬁn cosnrué. (53)

By substituting expressions (52), (53) into the system of the Egs. (50), (51) the solutions have
forms

1—(=D"][A* + y*(nx)*]sin nx
\m}(f)— /177 Z[ (=D"IL : 72( 2] L f (54)
F(na) (= un)y* (nz)’ — un A%
LA [1—(=1)"]cos nr
(pstcady(é:)_ g 2/u77 Z ( 2) 2 2 é: 21727 (55)
Vi S ()’ [(= un?)y (n)? — um® A7
where = % is ratio of moving mass to the beam mass.
Yo
The critical velocity v, of moving mass is equal to

S SN S (56)
VG2 2 Ly

The closed solutions have forms if un’<1 (v <v, \/I), than
u

ng 7 sinb&—sinb+sinb(1- f) 1

Woeaty (6) = =51 T [ b 5(1 s (57
B g_L cosbg—cosb(1-8) 1
:teady (5) b SlI’l b 2 + 98]3 (58)

where h =—
\/ \j v — ,uv

In the case if ,u;72>1 (v>v, \/:), than
7,

ng y*  _sinhb&—sinhb +sinh b (1- 5) 1

[

e o SEa-6)3, (59)

Woeary (6) =
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Fig. 6 Beam loaded by a randomly distributed load moving with a constant velocity.

_coshl;f—coshl;(l—é)_l
b sinhb 2

Qs‘teady (5) = i_f[ + f]a (60)

where E:E ’L; =ﬁ %
v Nun’ =1y =]

If the influence of the inertial part of the load (moving mass) is omitted than the solutions are
given by Egs. (24), (25) or (42), (43). Let notice that the closed solutions depends not only since
the velocity parameter #=v/v, but also since proportion of moving mass m; to the beam mass
m=pA.

5. Random vibrations of the beam

In many cases the moving loads obey laws that are of random character, particularly the effects
of random motion of vehicles on irregularities of surface of bridge (Fryba 1976). Let the vibrations
of the beam be caused by randomly distributed load p(x—vf) moving with constant velocity v (Fig. 6).

In this case the Eq. (1) has form

64 O*w(x,1) +@ op(x,t) +Ap o*w(x, 1) _
Kk ox K Ox ot

Let us notice that the load process p(x—vi)=p[L(E—T)]=p(L 1), ((—T =1), is a weak space-time
stationary stochastic process and can be assumed as sum deterministic and random parts

p(x—vt)=p+p(x—vt) = p+ p(L7), (61)

where p = const., E[ p(x—vt)]=0 and a symbol E[ ] means expectation.

p(x—vt). (1a)

The solution for deterministic part of the load p = const. has been presented in the sections 2

and 3 for this reason we consider only vibration of the beam due to stochastic part.
Let us assume that covariance function of the moving load process

C,,(7,7y) = E[p(L7)) p(L7,))] = C [ L(7, —7,)], (62)

is known.

For moving load modeled by space-time stationary stochastic process it is difficult to find
solution using direct sine and cosine transformation as can be done in other stochastic excitations.
For this reason we introduce the dynamic influence functions H,(¢,7) and H,(¢,7) which are the
responses of the Timoshenko beam loaded by a moving point force equal to one. These dynamic
influence functions are solutions of the equations (see Sniady 2008).
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—H(&,T)+LH (&, T)+7°H (£, T) = P6(£ - T), (63)

A

r

H,(&T)~AH (&, T)+y Hy(&,T)~n*H (&) =0, (64)

where d(.) Dirac delta and p, =Lix
AG

The dynamic influence functions can be found in similar way, like it has been done in section 2
for the uniform distributed load and have forms (see Sniady 2008)

H,(.T)=H,,(5T)+H,(5T)=

&) (P - +]sinnaT sinngé & . . . (65)
= 2]30”2:; D T A PG 1) =] +;[AnP sinr,T + B,, sins, T]sinnzé,
and
H,(&.T)=H,(5T)+H(T)=
_ S sinnzl cosné S . . (66).
= 2130; L) A=D1 =] + ;[C,ﬂ, sinr,T+D,,sins, T]cosnx&,
where
_ 2R ({[(nm)’ —n’s, [(n7)* 2 (y* —n*) + 1] - (n7)*}
SN2y N A Gt (N (S Y Ve T
(67)
_2R({[(n7)’ —n’r ()’ A (r* —1°) +1] - (n7)*}
" myp?s, () —slnn)* (A=) 2 (P =n*) -]
and

[(nm)* —r,/n’]

nP L(I’lﬂ') nP»>
2 2.2

Loy sl
L(nr)

The closed solutions of the functions H,,(¢,7) and H,4(¢,T) are given in the paper (Sniady
2008) and have, in the case 7<1, forms

H, (& T)=—b _ Smo0=Dsnoe L pys o <1,
(1-n")n osino n
H(&T)= Py sinoT sino(1-¢) —igT(l _E) for E2T) 63)

(1-n>)n* osinoc

and
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< L >
(a)
| vt 5> PVl
| e ——-_..;_/ 4 L
xé«« <= a => T
< L >
(b)
L-asvt< L

Fig.7 Phases of the moving random load on the beam

F, +Posmo-(l—T)cosof for £ < T,

H_(&£T)=-
v (&) 2Ln’ Ln’sinc
P P sinoT coso(1—
Hq)A(gaT): 02_ . 2 . ( 5) f0r§>T’ (69)
2Ln Ln’sinc
L2772

Whereo-2:2 L.
re(l=n")r"=n")

Let the vibrations of the beam be caused by the interval of the finite length a<L randomly
distributed load p(x—vf) moving with constant velocity v. Using dynamic influence functions the
response of the beam under moving load p(L7) can be presented in the integral forms

(@)if 0<T< % (Fig. 7(a))

w@ﬂj=%jHA;T—np@ﬂdn (70)

PET) = [ H (ET D) p(Leydr, @

@ﬁf%sTﬁL(ﬁg7®D
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w(.;‘,T):% j H (&,T-1)p(Lr)dr, (72)
PET) =2 [ H(ET- Doz, (73)

() if1<T g1+%, (Fig. 7(c))

w(&,T) =% [ H,(&T-7)p(Lo)dr, (74)

r-2
L

L g
P& 1) == [ H,(&T-7)p(Lr)de, (75)
v
L
The Egs. (70)-(75) can be used to obtain covariance function of the beam response. For

example in the case b) the covariance functions have forms
Let us assume the moving excitation process to be stationary “white noise”. The covariance

function of load process has form C, = 0;5[L(T1 —17,)] where 0[2, is variance of load. Since the

Egs. (76), (77) the variance of the Timoshenko beam are given by integral formulas

o.(&.T)= U’;L [ HXET-7)dr, (78)
v a
oL ¥
ol (&) === | H)(ET-7)dr. (79)
v a

for L<1<1.
L

The variance of the beam response can be obtained since the integral formulas (78), (79) using
numerical procedure.

Remark

Let notice that for p(x—vf)=p=const. after putting the (66) and (69) into (71) the part of the
function ¢=(&,T) can be obtained in closed form. In this case instead the solutions (13), (15), (17)
(20) and (21) we have

&) =95 1) +9,(E, 1), (80)
where
Cw'm7(§l’§2’71’TZ) = (£j JL J2 Hw(gl’ji _TI)HW(é:Z’TZ _TZ)CPP[L(TI _TZ)]dTldTZ’ (76)
14 a, a

L L
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Cpp(é:6,. T T) = [ j j jzf(a, ~7)H,(&,.T, ~7,)C,, [ L(z, - 7,)ldrdz,, (77)

L

for L<71 <1, i=1,2
L 1
. %[—%+COSG(I_T)_COSGCOSGQ] E<T,
vn Gsinc
0,& N =1, Edt= (81)
vy glx T 1-coscT
- coso(1-8)]  £>T,
v AG 2 csinc
T
< l—cosr,T l1—coss, T
p& D)=L [, @ odi ==Y [, +D,p— ——Joosnng.  (82)
0 n=1 n n

6. Some numerical results.

The numerical calculations have been done using dimensionless parameter (Figs. 8-23):
n=0,04; y=1,9; p=0,5; 1=20. Also to analyse transverse displacement w(x,f) and rotation of the
cross-section of the beam ¢(x,f) depending on the velocity of the moving load the numerical
calculations have been done (Figs. 14-21). Using ratio of moving mass to the beam mass u=1 the
vibrations of the beam under uniformly distributed moving mass m,; have been presented (Figs. 22-
23).

The bending moment M(x,), the shear force Q(x,¢), the transverse displacement w(x,?) and the
rotation of the cross-section of the beam ¢(x,f) increases together with T (Figs. 8-11).
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Fig. 8 The bending moments depending on the position of the load
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Fig. 10 The transverse displacement of the beam depending on the position of the load
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Fig. 11 The rotation of the cross-section of the beam depending on the position of the load.



Dynamic response of a Timoshenko beam to a continuous distributed moving load 787

The transverse displacement w(x,?) is always the largest and the rotation of the cross-section of
the beam ¢(x,?) is always the smallest in the middle of the beam (Figs.12-13).
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Fig. 12 The chart of the transverse displacement of the beam depending on the cross-section of the beam
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Fig. 13 The rotation of the cross-section of the beam depending on the cross-section of the beam
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Fig. 14 The transverse displacement of the beam depending on the velocity of the load for 7=0, 5
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The transverse displacement w(x,f) and the rotation of the cross-section of the beam ¢(x,?)
decreases when the velocity of the load increases (Figs. 14-19) when 7<1.
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Fig. 15 The rotation of the cross-section of the beam depending on the velocity of the load for 7=0, 5
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Fig. 16 The transverse displacement of the beam depending on the velocity of the load for 7=0, 75
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Fig. 17 The rotation of the cross-section of the beam depending on the velocity of the load for 7=0, 75
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Fig. 18 The transverse displacement of the beam depending on the velocity of the load for 7=1, 0
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Fig. 20 The transverse displacement of the beam depending on the velocity of the load when
partially distributed load is moving faster than the shear wave (>1) for 7=0.5
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Fig. 21 The rotation of the cross-section of the beam depending on the velocity of the load when
partially distributed load is moving faster than the shear wave (>1) for 7=0.5
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Fig. 23 The rotation of the cross-section of the beam under uniformly distributed moving mass
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It is worth pointing out that when the velocity of the mass is bigger than the critical velocity,
the beam displacement is opposite to the direction of the gravity force which is consistent with our
intuition (Figs. 22, 23).

7. Conclusions

The dynamic response of a finite, simply supported Timoshenko beam loaded by a
continuously distributed load moving with a constant velocity has been considered. Three
problems have been considered. The dynamic response of the Timoshenko beam under a uniform
distributed load moving with a constant velocity v has been considered as the first problem.
Obtained solutions allow to find the response of the beam under the interval of the finite length a
uniformly distributed moving load. Part of the solutions are presented in a closed form instead of
an infinite series. As the second problem the steady-state vibrations of the beam under uniformly
distributed mass m; moving with the constant velocity has been considered. The vibrations of the
beam caused by the interval of the finite length randomly distributed load moving with constant
velocity is considered as the last problem. It is assumed that load process is space-time stationary
stochastic process. The last problem has been solved using dynamic influence function. The
solutions are presented using dimensionless parameters making it easier to analyze the response of
the beam.
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