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Abstract.  This paper presents a comparative study of analytical method and finite element method (FEM) 

for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a 

rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only 

compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the 

problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element 

model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem 

is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis 

of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses 

obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical 

results. Also, the contact areas obtained from finite element method are very close to results obtained from 

analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two 

methods. 
 

Keywords:  contact problem; finite element model; rigid punch; semi-infinite plane; singular integral 

equation 

 
 
1. Introduction 
 

Contact problem is a very important subject in both civil and mechanical engineering because 
of existing the contact between deformable bodies in industry and everyday life. So, the time span 
of the history shows that these problems continue to be of interest today. The contact problem of 
two elastic bodies was first considered by Hertz. He neglected all but the leading terms in the 
equations defining the contacting bodies, and in this way reduced the problem to that of two 
contacting elliptical paraboloids. In particular he found the solution of the plane contact problem 
for two parabolic cylinders whose axes were parallel. These results served as the basis of research 
into contact problems in the theory of elasticity. The solution of these problems was achieved by 
means of a semi-inverse method, using the expression for the potential for an elliptical disc (Galin 
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2008). Later, contact problems have been investigated using analytical methods (Alexandrov 1970, 
Weitsman 1972, Ratwani and Erdogan 1973, Adams 1978, Gecit 1986, Nowell and Hills 1988, 
Dempsey et al. 1990, Cakiroglu et al. 2001, Dini and Nowell 2004) and numerical methods (Chan 
and Tuba 1971, Francavilla and Zienkiewicz 1975, Jing and Liao 1990, Garrido et al. 1991, Satish 
Kumar et al. 1996, Garrido and Lorenzana 1998) by several researchers. Beside these studies, the 
contact pressure distribution was obtained for a square ended rigid punch, pressing normally onto 
an elastic layer, itself attached to an elastically dissimilar half-plane, under plane deformation by 
Porter and Hills (2002). The plane problem about surface loading of an elastic layer perfectly 
bonded to an elastically dissimilar half-plane was carried out by Ma and Korsunsky (2004).  

El-Borgi et al. (2006) considered the plane problem of a receding contact between an elastic 

functionally graded layer and a homogeneous half-space when the two bodies were pressed 

together. Oysu (2007) investigated finite element and boundary element contact stress analysis 

with remeshing technique. Kahya et al. (2007) solved a receding contact problem between an 

anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies were pressed 

together by means of a rigid circular stamp. Dag et al. (2009) analyzed sliding frictional contact 

between a rigid punch and a laterally graded elastic medium. The axisymmetric problem of a 

frictionless double receding contact between a rigid stamp of axisymmetric profile, an elastic 

functionally graded layer and a homogeneous half space was studied by Rhimi et al. (2011). 

Argatov (2013) carried out contact problem for a thin elastic layer with variable thickness. Long 

and Wang (2013) investigated effects of surface tension on axisymmetric Hertzian contact 

problem. The periodic contact problem of the plane theory of elasticity with taking friction, wear 

and adhesion into account was examined by Soldatenkov (2013). Adibelli et al. (2013) solved a 

receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp. 

The receding contact problem of two elastic layers supported by two elastic quarter planes was 

examined by Yaylaci and Birinci (2013). Kumar and Dasgupta (2013) investigated the mechanics 

of contact of an inflated spherical non-linear hyperelastic membrane pressed between two rigid 

plates. Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous 

substrate was considered by Comez and Erdol (2013). Li et al. (2014) studied the fundamental 

contact solutions of a magneto-electro-elastic half-space indented by a smooth and rigid half-

infinite punch. Gun and Gao (2014) presented a quadratic boundary element formulation for 

continuously non-homogeneous, isotropic and linear elastic functionally graded material contact 

problems with friction.  
In the existing literature, while contact problems have been well studied by analytically and 

numerically, comparison of two solutions in contact mechanics has not been explored completely. 
So, the main purpose of this paper is to present a comparative study of the analytical method and 
the finite element method (FEM) for analysis of a continuous contact problem. The contact 
stresses under rigid circular punch, the contact areas and normal stresses (σx and σy) along the axis 
of symmetry are obtained by using both analytical method and finite element method. Finally, 
these two solutions are compared with each other.  

 

 

2. Analytical solution of the problem 
 

2.1 Formulation of the problem 
 

Analytical solution of the problem is obtained using theory of elasticity and integral transform 

techniques. As shown in Fig. 1, the plane strain problem consists of two infinitely long layers of  
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Fig. 1 Geometry and loading condition of the continuous contact problem 

 

 

thicknesses h1 and h2 in smooth contact with each other and semi-infinite plane. Layers and semi-

infinite plane are isotropic, homogeneous and linearly elastic. A concentrated load with magnitude 

P is subjected to upper layer by means of a rigid circular punch. It is assumed that the contact 

along the interfaces is frictionless, only normal tractions can be transmitted across the contact 

surfaces, body forces of elastic layers are taken into account, and body force of semi-infinite plane 

is neglected. Due to symmetry about y-axis, it is sufficient to consider only one-half of the 

problem geometry. Thickness in z direction is taken to be unit.   

For the case which body forces are neglected, the components of stress and displacement for 

the layers and semi-infinite plane can be written in terms of constant coefficients as (Birinci and 

Erdol 2001, 2003)  
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where i=1,2 
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where u=u(x,y) and v=v(x,y) are the x- and y- components of the displacement vector, respectively. 

χi is an elastic constant and χi=(3−4vi) for plane strain, μi 
is shear modulus, vi is Poisson’s ratio 

(i=1,…,3). The subscripts 1, 2 and 3 refer to the upper layer, lower layer and semi-infinite plane, 

respectively. Subscript h indicates the case without body forces. Ai, Bi, Ci, Di (i=1, 2) and C3, D3 

are unknown coefficients which will be determined from boundary conditions of the problem. 

The components of normal stresses for the case which body forces of the layers existing may be 

obtained as  

 1 1
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3 g
(y) 2y h h

1 2
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2yp 1 1 2 2(y) gh g(y h )           20 y h                                           (14) 

 3yp 1 1 2 2(y) ( gh gh )              y 0                                               (15) 

3xp 0                                              (16) 

where ρ1g and ρ2g are body forces acting in vertically in the layers. Subscript p indicates the case 

which body forces of layers exist. The total normal stress expressions will be the superposition of 

two cases for which body forces of the layers are taken into account and body forces of the layers 

are neglected as  

ix ixp ixh(x,y) (y) (x,y)                                            (17) 

iy iyp iyh(x,y) (y) (x,y)         (i=1, 2, 3)                  (18) 
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2.2 Boundary conditions of the problem and solution of the singular integral equation 
 

The plane contact problem outlined above as shown in Fig. 1 must be solved under the 

following boundary conditions 

   1xy x,h 0, 0 x                                       (19) 

 
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                                  (20) 
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     (28) 
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x
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    (29) 

where a is the half-width of the contact area between rigid circular punch and the upper layer, p(x) 

is the unknown contact stress under the rigid circular punch, f(x) is the derivative of the function 

F(x) which characterizes profile of the rigid punch. In case of circular punch, f(x) can be obtained 

as  

 
1/2

2 2F(x) h R x R     
  

                                          (30) 

 
 

1/2
2 2

d x
f (x) F(x)

dx R x
  


       (31) 

where δ is the maximum displacement which occurs on the  layer under the punch on the axis of 

symmetry (x=0), R is the radius of rigid circular punch. Applying the boundary conditions (19-28) 

to the stress and displacement expressions, Ai, Bi, Ci, Di (i=1, 2) and C3, D3 coefficients can be 

determined in terms of the unknown contact stress p(x), and by substituting these coefficients into 

Eq. (29), after some routine manipulations and using the symmetry condition p(x)=p(-x), one may 

obtain the following singular integral equation for p(x). 
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where the kernel k(x,t) is given by (A.1) in Appendix. The equilibrium condition of the problem 

may be expressed as  

a

a

p(t)dt P


          (33)  

In order to simplify the numerical solution of the singular integral equation, the following 

dimensionless quantities can be defined for normalizing the intervals (−a, +a) to (−1, +1) 

1

1
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P / h P / h 1
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 
  (34) 

Substituting from Eq. (34), Eqs. (32)-(33) can be obtained as  

1

1

1
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r s


 
       

     , N(s,r) = ak(as,ar)             (35) 

1

1

a
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h


                                                               (36) 

Due to the smooth contact at the end point a, the unknown function p(t) is zero. Therefore, the 

index of integral equation in (35) is -1 (Erdogan and Gupta 1972). Writing the solution 

2 1/2(r) g(r)(1 r ) , ( 1 r 1)                                        (37) 

and using the appropriate Gauss-Chebyshev integration formula, Eqs. (35) and (36) may be 

reduced to the following forms. 
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                 (38) 

where 

i

i
r cos , (i 1,...,n)

n 1

 
  

 
                                     (39) 

j

2j 1
s cos , ( j 1,...,n 1)

n 1 2

  
   

 
                             (40) 

The extra equation in (38) corresponds to the consistency condition of the original integral 

equation in (35). In this case, the (n+1/2)
th 

equation in (38) satisfied automatically. Hence, the 

equations in (38) constitute a system of n+1 equations for n+1 unknowns. Note that the system is 
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highly non-linear in a and an interpolation scheme is required to determine this unknown. Solving 

this system of equations and using Eq. (37), ϕ(r) normalized contact stress distribution and half-

width of contact area (a) are obtained. By using (37), substituting the results into Eqs. (17) and 

(18) and using Gauss integration formula, the dimensionless normal stresses along the axis of 

symmetry σx(0, y)/(P/h) and σy(0, y)/(P/h) are determined.  

 

 

3. Modelling with finite elements in ANSYS 
 

Contact is a phenomenon that occurs in many engineering applications. Additionally, the 

analysis on contact parameters and stresses is important to engineering design. Contact problems 

present significant difficulty, contacting surfaces change unpredictably.  

With the development of computer technology, attention in solution of contact problems has 

shifted from traditional analytic solution towards finite element analysis (FEA). The FEM is a 

numerical method effectively used to resolve complex engineering problems. The FEM versatility 

lies in its ability to model arbitrary shaped structures, work with complex materials, and apply 

various types of loading and boundary conditions. The method can easily be adapted to different 

sets of constitutive equations, which makes it particularly attractive for coupled physics 

simulation. 

 The main problem of the FEM in the contact problems is to compute the fields of contact area 

and contact pressure. The structure to be analyzed is discretized with a number of elements and 

then assembled at nodes. In FEM, the function in question is piecewise approximated by means of 

polynomials over every element and expressed in terms of nodal values. The elements of different 

type and shape with complex loads and boundary conditions can be used simultaneously. In the 

structural analysis, the degrees of freedom are defined as nodal displacements. The equations for 

every element are assembled as 

    D u F                                                               (41) 

where [D] is the global stiffness matrix, {u} the structural nodal displacement vector and {F} is 

the vector of structural nodal loads. This equation system can be solved for {u} (Zhang and Meng 

2006).  

 In this paper we shall study a very simple case using the well-known finite element software 

ANSYS (2008). The geometrical model is created with standard tools in the ANSYS software. 

Plain strain problems were modelled as the two dimensional (2D) instead of the three dimensional 

(3D) in the literature because of obtaining very close results to each other in both cases (Etsion et 

al. 2005, Brizmer et al. 2006, Rončević and Siminiati 2010). Therefore, axisymmetric 2D model 

has been used in this study. The model shown in Fig. 2 had a finite element mesh that consisted of 

41526 eight-node triangular elements of type PLANE183 comprising a total of 82896 nodes. 

PLANE183 is defined by eight nodes having two degrees of freedom at each node: translations in 

the nodal x and y directions. In addition this element has the capability, plasticity, elasticity, creep, 

swelling, stress stiffening, large deflection, and large strain capabilities.  2-D finite contact 

(CONTA172) and target (TARGE169) elements have been used as a surface-to-surface 5045 

contact pair. CONTA172 is used to represent that of the mechanical contact analysis. The target 

surface, defined by TARGE169, was therefore used to represent 2-D “target” surfaces for the 

associated contact elements CONTA172.  Frictionless surface-to-surface contact elements are used 

to model the interaction between the lower surface and the top surface of the layers and semi- 
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Fig. 2 Schematic model of the contact problem (symmetric finite element model) 

 

 

infinite plane. The layers and semi-infinite plane are assumed elastic and isotropic. In the analyses, 

geometric properties are taken as L=1 m (length of the layer in x direction), h1=h2=10 cm 

(thicknesses of the layers in y direction) and R=0.5 m (radius of the punch) and material properties 

are taken as E1=25000 MPa, v1=0,25, E2=50000 MPa, v2=0,25 and E3=100000 MPa, v3=0,25. 

Other parameters are chosen such that R/h, μ1/(P/h), μ2/μ1, μ3/μ2 ratios are compatible with 

analytical values. Several numerical solution methods have been proposed to solve the variational 

equation of the elastic contact problem, including penalty method, augmented Lagrangian method, 

Lagrange multiplier method and augmented Lagrangian multiplier method. These methods, 

incorporated to general finite element analysis (FEA) technology, are applied to solve the contact 

problem that involves complex geometry shapes. In the penalty method, the accuracy of the 

solution depends on the choice of the penalty parameter. Too small a penalty parameter may cause 

unacceptable error in the solution. Also, the penalty method suffers from ill conditioning as the 

penalty parameter becomes large. The augmented Lagrangian method is an iterative series of 

penalty methods. The contact tractions (pressure and frictional stresses) are augmented during 

equilibrium iterations so that the final penetration is smaller than the allowable tolerance. 

Compared to the penalty method, the augmented Lagrangian method usually leads to better 

conditioning and is less sensitive to the magnitude of the contact stiffness. The Lagrange 

multiplier method introduces new unknowns for each constraint. Therefore, it always increases the 

dimension of the system equations to be solved. For large-scale problems where the contact 

surface consists of a large number of nodes, the number of unknowns introduced by the Lagrange 

multiplier method is also large. This increases the CPU time to solve the problem. For the 

augmented Lagrangian multiplier method, both penalty parameters and Lagrangian multipliers are  
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Fig. 3 Deformation shape after the analysis 

 
Table 1 Variation of half-width of the contact area (a/h) with (R/h) (μ1/(P/h)=100, h2/h1=1, μ2/μ1=2, μ3/μ2=2) 

 

PARAMETER 

R/h=50 R/h=100 R/h=550 R/h=500 

a/h a/h a/h a/h 

Analytical 0.4762 0.6541 0.9747 1.3043 

ANSYS 0.475 0.65 0.975 1.3 

Difference (%) 0.25 0.63 0.03 0.33 

 
Table 2 Variation of half-width of the contact area (a/h) with μ1/(P/h). (R/h=500, h2/h1=1, μ2/μ1=2, μ3/μ2=2) 

 

PARAMETER 
 

1 100
P

h


  

 
1 250

P
h


  

 
1 500

P
h


  

 
1 1000

P
h


  

a/h a/h a/h a/h 

Analytical 1.3043 0.8861 0.6541 0.4762 

ANSYS 1.3 0.8875 0.65 0.475 

Difference (%) 0.33 0.16 0.63 0.25 

 

 

applied, and penetration is admissible but controlled by allowable tolerance (Liao and Wang 

2007).  In this study, Aughment Lagrangian method is used for contact modelling and the 

deformation shape after analysis is shown in Fig. 3. 

 

 
4. Numerical results and discussion 
 

The variations of contact stresses under rigid circular punch, the contact areas, normal stresses 

(σx and σy) along the axis of symmetry are obtained for various dimensionless quantities such as  
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Table 3 Variation of half-width of the contact area (a/h) with (μ2/μ1). (R/h=500, μ1/(P/h)=100, h2/h1=1, 

μ3/μ2=2)  

PARAMETER 
2

1
0.5


   2

1
1


   2

1
2


   2

1
4


   

a/h a/h a/h a/h 

Analytical 0.8687 0.7336 0.6541 0.6098 

ANSYS 0.875 0.725 0.65 0.6 

Difference (%) 0.73 1.17 0.63 1.61 

 
Table 4 Variation of half-width of the contact area (a/h) with (μ3/μ2). R/h=500, μ1/(P/h)=100, h2/h1=1, 

μ2/μ1=2) 

PARAMETER 2

3 0.5

   3

2
1


   3

2
2


   3

2
4


   

a/h a/h a/h a/h 

Analytical 0.7585 0.6906 0.6541 0.6347 

ANSYS 0.75 0.6875 0.65 0.6375 

Difference (%) 1.12 0.45 0.63 0.44 

 

 

R/h, μ1/(P/h), μ2/μ1, μ3/μ2 using both analytical method and finite element method (FEM). 

Analytical results are verified by comparison with FEM results. (χ1=χ2=χ3=2) 

In Tables 1-4, variations of half-width of the contact area (a/h) depending on geometry and 

material properties are given. The variation of half-width of the contact area (a/h) with radius of 

circular punch (R/h) is shown in Table 1. It appears that, with increasing radius of punch, half-

width of the contact area (a/h) increases. This is an expected result. Table 2 presents variation of 

half-width of the contact area (a/h) with load ratio μ1/(P/h). When Table 2 is examined, it can be 

seen that half-width of the contact area (a/h) decreases with increasing load ratio μ1/(P/h). Table 3 

shows variation of half-width of the contact area (a/h) with ratio of the elastic constants (μ2/μ1).  

In the event of decreasing ratio of the elastic constants (μ2/μ1), it is indicated that (a/h) 

increases. Variation of half-width of the contact area (a/h) with ratio of the elastic constants (μ3/μ2) 

is given in Table 4. It may be observed clearly in the Table 4 that as (μ3/μ2) increases, half-width of 

the contact area (a/h) decreases. It can be seen from all tables that contact areas obtained from 

ANSYS software are very close to analytical results and a good agreement between two method is 

observed during this comparison, disagree by 0.03-1.61%. 

The contact stress distributions for various values of R/h, μ1/(P/h), μ2/μ1, μ3/μ2 are given in Figs. 

4-7. The contact stress distribution for various values of R/h is shown in Fig. 4. As seen in Fig. 4, 

with increasing radius of punch, the contact stress distribution p(x)/(P/h) decreases. Fig. 5 shows 

the variation of p(x)/(P/h)with load ratio μ1/(P/h). In the event of increasing load ratio, it is 

indicated that contact stress distribution under the punch increases. The contact stress distributions 

for various values of (μ2/μ1) and (μ3/μ2) are given in Figs. 6-7. As seen in Figs. 6-7, the contact 

stress distribution p(x)/(P/h) increases with increasing of (μ2/μ1) and (μ3/μ2). Furthermore, all 

figures show that contact stress distribution under rigid punch is symmetrical, its maximum value 

occurs at x=0 and its value is zero at the end points of contact (−a, +a). When the analytical and 

FEM results are compared with each other, it can be clearly seen that there is a good agreement 

between two methods. 
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(μ1/(P/h)=100, h2/h1=1, μ2/μ1=μ3/μ2=2 (R/h)=500, h2/h1=1, μ2/μ1=μ3/μ2=2 

Fig. 4 The effect of  (R/h) on dimensionless 

contact stress distribution under the punch 

Fig. 5 The effect of μ1/(P/h) on dimensionless 

contact stress distribution under the punch 

 

  
(R/h)=500, μ1/(P/h)=100, h2/h1=1, μ3/μ2=2 (R/h)=500, μ1/(P/h)=100, h2/h1=1, μ2/μ1=2 

Fig. 6 The effect of  (μ2/μ1) on dimensionless 

contact stress distribution under the punch 

Fig. 7 The effect of (μ3/μ2)  on dimensionless 

contact stress distribution under the punch 

 

 

Figs. 8-9 show the dimensionless normal stress distributions σx(0,y)/(P/h) and σy(0,y)/(P/h) 

along the axis of symmetry for various value of R/h. As it can be observed in the figures that 

σx(0,y)/(P/h) and σy(0,y)/(P/h) decrease with increasing R/h. The dimensionless normal stress 

distributions σx(0,y)/(P/h)  and σy(0,y)/(P/h) along the axis of symmetry for various value of 
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μ1/(P/h)=100, h2/h1=1, μ2/μ1= μ3/μ2=2, ρ1ghh1/P=0.2, 

ρ2/ρ1=1 

μ1/(P/h)=100, h2/h1=1, μ2/μ1= μ3/μ2=2, ρ1ghh1/P=1, 

ρ2/ρ1=1 

Fig. 8 The dimensionless normal stress distribution 

σx(0,y)/(P/h) along the axis of symmetry for (R/h) 

Fig. 9 The dimensionless normal stress distribution 

σy(0,y)/(P/h) along the axis of symmetry for (R/h) 

 

  
(R/h=500, h2/h1=1, μ2/μ1=μ3/μ2=2, ρ1ghh1/P=0.2, 

ρ2/ρ1=1) 

(R/h=500, h2/h1=1, μ2/μ1=μ3/μ2=2, ρ1ghh1/P=1, 

ρ2/ρ1=1) 

Fig. 10 The dimensionless normal stress distribution 

σx(0,y)/(P/h) along the axis of symmetry for μ1/(P/h) 

Fig. 11 The dimensionless normal stress distribution 

σy(0,y)/(P/h) along the axis of symmetry for μ1/(P/h) 

 

 

μ1/(P/h) are shown in Figs. 10-11. As it can be seen in the figures, σx(0,y)/(P/h) and  

σy(0,y)/(P/h)increase with increasing μ1/(P/h). Furthermore, when Figs. 8 and 10 are examined, it 

can be observed that tension and compression zones occur for each layer. Similar to beams under 
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bending, the upper regions of layers are in compression and the lower regions are in tension. For 

semi-infinite plane, the dimensionless normal stress σx(0,y)/(P/h) is in compression everywhere, 

takes the maximum value on contact surface (lower layer-semi infinite plane), and approaches to 

zero as getting deeper.   

When Figs. 9 and 11 are analyzed, it can be seen that maximum value of σy(0,y)/(P/h) along the 

axis of symmetry is obtained on the contact surface (lower layer-semi infinite plane) and it 

increases for the layers while moving away from the punch (as going deeper). σy(0,y)/(P/h) 

dimensionless stresses get the same values on the contact surface of the layers and on the contact 

surface between semi-infinite plane and lower layer. This result shows that the boundary 

conditions (23) and (27) given in the definition of the problem are provided. As long as the contact 

surface between punch and upper layer becomes smaller, the dimensionless normal stress 

σy(0,y)/(P/h) increases rapidly as getting closer to the contact region due to a singularity similar to 

concentrated load singularity. For the semi-infinite plane, σy(0,y)/(P/h) approaches to zero as 

getting deeper since its body force is neglected. 

 

 

5. Conclusions 
 

The main objective of this study is to present comparison between analytical and FEM 

calculations of a continuous contact problem. In the paper, the contact areas, contact stress 

distributions under rigid circular punch and normal stress distributions (σx and σy) along the axis of 

symmetry are calculated by using analytical method and finite element method. Finally, these two 

solutions are compared with each other. The conclusions drawn from the study can be presented as 

below:  

 • The results obtained from both solutions show that the contact areas, the contact stresses and 

the normal stresses are influenced by the compressive resultant force, the relative elastic constants 

of the layers and semi-infinite plane, the radius of rigid punch and load ratio.  

• The contact stresses and the normal stresses obtained from finite element analysis (FEA) 

provide boundary conditions of the problem as well as analytical results. When FEA results for 

contact areas are compared with analytical results, it can be clearly seen that contact areas obtained 

from FEA are very close to analytical results and a good agreement between two methods is 

observed during this comparison, disagree by 0.03-1.61%. 

 • Contact stress distribution under rigid punch is symmetrical, its maximum value occurs at 

x=0 and its value is zero at the end points of contact (–a ,+a). When the analytical and FEA results 

are compared to each other, it can be clearly seen that there is a good agreement between two 

methods. 

 • When dimensionless normal stress σx(0,y)/(P/h) along the axis of symmetry is examined, it 

can be seen that tension and compression zones occur for each layer. Similar to beams under 

bending, the upper regions of layers are in compression and the lower regions are in tension. For 

semi-infinite plane, the dimensionless normal stress σx(0,y)/(P/h) is in compression everywhere, 

takes the maximum value on contact surface (lower layer-semi infinite plane), and approaches to 

zero as getting deeper. 

 • When dimensionless normal stress σy(0,y)/(P/h) along the axis of symmetry is analyzed, it 

can be clearly seen that maximum value of σy(0,y)/(P/h) along the axis of symmetry is obtained on 

the contact surface (lower layer-semi infinite plane) and it increases for the layers while moving 

away from the punch (as going deeper). Dimensionless normal stresses σy(0,y)/(P/h)get the same 

619



 

 

 

 

 

 

Erdal Öner, Murat Yaylacı  and Ahmet Birinci 

   

  

values on the contact surface of the layers and on the contact surface between semi-infinite plane 

and lower layer. This result shows that the boundary conditions given in the definition of the 

problem are provided. As long as the contact surface between punch and upper layer becomes 

smaller, the dimensionless normal stress σy(0,y)/(P/h) increases rapidly as getting closer to the 

contact region due to a singularity similar to concentrated load singularity. For the semi-infinite 

plane, σy(0,y)/(P/h) approaches to zero as getting deeper since its body force is neglected. 

• The dimensionless normal stresses σx(0,y)/(P/h) and σy(0,y)/(P/h) decrease with increasing of 

R/h. Also, they increase with increasing of μ1/(P/h). 

 • Finally, the presented results show that finite element analysis (FEA) carried out in ANSYS 

software gives results which are in very good agreement with the analytical solution.  
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Appendix 
 

Expression of the kernel k(x,t) appearing in (32) is given below. 
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