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Abstract.  A hybrid approach of Particle Swarm Optimization (PSO) and Swallow Swarm Optimization 

algorithm (SSO) namely Hybrid Particle Swallow Swarm Optimization algorithm (HPSSO), is presented as 

a new variant of PSO algorithm for the highly nonlinear dynamic truss shape and size optimization with 

multiple natural frequency constraints. Experimentally validation of HPSSO on four benchmark trusses 

results in high performance in comparison to PSO variants and to those of different optimization techniques. 

The simulation results clearly show a good balance between global and local exploration abilities and 

consequently results in good optimum solution. 
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1. Introduction 
 

Natural frequencies of a structure provide useful information about the dynamic behavior of the 

system. In fact, in most of the low frequency vibration problems, the response of the structure is 

primarily a function of its fundamental frequencies and mode shapes (Grandhi 1993). In particular, 

it is sometimes desirable to control the natural frequencies of a structure in order to keep out the 

unwelcome resonance phenomenon. Frequency constraints are highly non-linear, non-convex and 

implicit with respect to the design variables. The highly nonlinear dynamic truss shape and size 

optimization with multiple natural frequency constraints has been studied since the 1980s with the 

paper of Bellagamba and Yang (Grandhi 1993). In spite of difficulties in addressing this type of 

problem, considerable progress has been achieved in solution methods, where the geometry of the 

structure is prescribed and cross-sectional areas have to be optimized, i.e., size optimization of 

trusses (Grandhi and Venkayya 1998, Khot 1985, Tong and Liu 2001, Sedaghati et al, 2002). 

However, until nowadays, relatively little technical papers (Wang et al. 2004, Lingyun et al. 2005, 

Lingyun et al. 2011, Gomes 2011, Zuo et al. 2011, Miguel and Miguel 2012, Kaveh and Zolghadr 

2013, Gholizadeh, and Barzegar 2013, Kaveh and Zolghadr 2014), among others, are available on 

structural shape and sizing optimization with multiple natural frequency constraints, in spite of the 

natural frequencies of a structure to be much more sensitive to the shape changes and combining 
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shape and sizing variables with different orders of magnitude (Miguel and Miguel 2012). 

In this paper the Particle Swarm Optimization algorithm (PSO) is hybridized with the Swallow 

Swarm Optimization algorithm (SSO), and named as Hybrid Particle Swallow Swarm 

Optimization (HPSSO). This algorithm is the applied to shape and size optimization of trusses 

with multiple natural frequency constraints. PSO incorporates swarming behaviors, from which 

the idea is emerged initially by Kennedy and Eberhart (2001). The system is initialized first as a 

set of randomly generated potential solutions and then guided random search is performed for the 

optimum one iteratively such as other population based meta-heuristic algorithms. The search is 

based on an idea that particles move through the search space from their current positions with 

velocities dynamically adjusted according to their current velocity, best self-experienced position 

and best global-experienced position with some impression of randomness. Neshat et al. (2013) 

have recently presented a new swarm intelligence-based technique, Swallow Swarm Optimization 

(SSO), which was conceptualized based on modeling swallow swarm movement and their other 

behaviors. The algorithm shares some common features with PSO, but with several significant 

differences. In this algorithm the colony is divided into internal subcolonies with a commonly best 

experienced particle as local leader. The movement velocity of individuals is altered similar to the 

PSO, with an additional component taken from the best experienced inter subcolony position 

associated with each individual. In addition SSO benefits utilizing other type of particles (aimless 

particles) as an operation for further exploration task. In the real colony these swallows increase 

the chance of finding food outside the internal areas. 
Speed of convergence and global search ability are the two important criteria for evaluating the 

performance of stochastic search techniques (Kaveh 2014). In the standard PSO, all particles learn 
from the best global-experienced particle in updating velocities and positions. Hence the algorithm 
exhibits a fast-converging behavior in the truss shape and size optimization with multiple natural 
frequency constraints due to the presence of many design variables with different orders of 
magnitude, many constraints, and large size and highly nonlinearity of the search space 
considering the frequency constraints within the shape optimization. To overcome this problem, 
the HPSSO algorithm is presented in this paper that tries to add new features of the SSO algorithm 
to the PSO. HPSSO very recently has been applied successfully by the authors in the optimizing of 
benchmark mathematical functions and sizing optimization of trusses (Kaveh et al. 2014). HPSSO 
provides a mechanism for particles to learn not only from the best global-experienced particle but 
also from other promising particles. Getting to work some particles with predetermined tasks is 
another utilized feature. For performance evaluation of the HPSSO, we do experiments on 4 
benchmark trusses taken from literature. Numerical results reveal that the HPSSO performs much 
better compared to the standard PSO, a very recently developed effective variant of PSO, and other 
search techniques available for the literature. 

The remaining sections of this paper are organized as follows. In Section 2 we will present 

HPSSO algorithm together with outlining the PSO and SSO algorithms. In subsequent section, the 

new method is implemented and applied to four benchmark truss examples. Finally the paper is 

concluded in Section 4. 

 

 

2. A hybrid of PSO with SSO (HPSSO) 
 

2.1 Particle swarm optimization (PSO) 
 

PSO is a population based meta-heuristic algorithm developed by Kennedy and Eberhart (2001) 
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that simulates social behaviors of animals. Similar to other meta-heuristic methods, PSO is 

initialized with a population of random designs, named particles, that is updated in each generation 

to search the optimum. Each particle is associated with a velocity vector adaptively changed in the 

optimization process. Particles move through the search space from their current positions with 

velocity vectors that are dynamically adjusted according to their current velocity, best self-

experienced position and the best global-experienced position. PSO algorithm constitutes the 

simple conduct rules for search ability of each particle as follows 

        

1 1

1

1 1 2 2( ) ( )

k k k

i i i

k k k k k k

i i i i g i

X X V

V V c r P X c r P X

 



 

    
 (1) 

The new position of particles Xi
k+1

 is obtained by adding the new velocity Vi
k+1

 to the current 

position Xi
k
. Vi

k
 , Pi

k
 and Pg

k
 are previous velocity, the best position visited by each particle itself 

and the best solution the swarm has found so far, respectively.  is an inertia weight to control the 

influence of the previous velocity, r1 and r2 are two random numbers uniformly distributed in the 

range of (0, 1), and c1 and c2 are two learning factors which control the influence of the cognitive 

and social components. 

 

2.2 Swallow swarm optimization (SSO) 
 

SSO has been developed recently by Neshat et al. (2013) as a new swarm intelligence based 

algorithm reproducing the behavior of swallow swarms. Studies conducted on various species of 

swallows revealed peculiar features that have been taken as the basis of the SSO algorithm: the 

very social life and migration of large groups; high-speed flying which can affect convergence 

speed; there are few floating swallows that fly out of the colony or between subcolonies to search 

and inform the rest of the swarm on food sources or on the attack of hunters; organization of the 

swarm in several subcolonies each of which has an experienced leader. 

SSO has common features with PSO but also several significant differences (Neshat et al. 

2013). An initial population of particles is randomly generated and progressively updated in the 

process of optimization. Three types of particles are considered: leader, explorer and aimless 

particles. Leader particles are categorized into two types: Local Leaders (LL) that conduct the 

related internal subcolonies and show a local optimum point, and Head Leader (HL) that is 

responsible for the leadership of the entire colony and indicates the global optimum point. 

Explorer particles, that represent the largest part of the population, take care of the exploration of 

design space. In each optimization iteration (k), particles play different roles according to their 

type. 

Each swallow arriving at an extreme point emits a special sound to guide the group toward 

there. If that place is the best in the design space, that particle becomes the Head Leader, HL
(k)

. If 

the particle reaches a good position (yet not the best) compared with its neighboring particles, it is 

chosen as a local leader, LL
(k)

. Otherwise, the particle is an explorer one and has to change its 

position in the search space. The new position of explorer particles, Xi
(k+1)

, is obtained by adding a 

change velocity Vi
(k+1)

 to the current position Xi
(k)

 considering VHLi
(K+1)

 (change velocity vector of 

particle toward Head Leader), and VLLi
(K+1)

 (change velocity vector of particle toward Local 

Leader). The change velocity of explorer particles toward head leader and corresponding local 

leader are dynamically adjusted according to the current velocity vector of the particle toward 

leaders (VHLi
(k)

 and VLLi
(k)

, respectively), best self-experienced position (Xbest
(k)

), and leader’s  
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Fig. 1 Types of particles and movements of the explorer particles 

 

 
position (HL

(k)
 and LL

(k)
, respectively). This is shown schematically in Fig. 1 and modeled 

mathematically as follows 
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where αHL, βHL, αLL and βLL are acceleration control coefficients adaptively defined (Neshat et al. 

2013), while rand() is a random number uniformly distributed in (0,1). 

Aimless particles o(i) also carry out exploration but have nothing to do with head leader and 

local leaders. They simply move back and forth with respect to their previous positions by 

displacing by a random fraction of the allowable step defined by the upper and lower bound of 

design variables. That is 

          

1 (min ,max )
({ 1,1})

1 ()

k k s s
i i

rand
o o rand

rand

  
    

 

 
(3) 
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2.3 Hybrid particle swallow swarm optimization 
 

Hybrid particle swallow swarm optimization (HPSSO) includes two important features of the 

SSO being added to the basic PSO formulation, considering a specific number of subcolonies and 

a certain number of particles for specific task. Similar to SSO, there are leaders (global leader and 

local leaders), explorers, and aimless particles. The size of population N is specified along with the 

number of subcolonies Nsubcolony and aimless particles Naimless; the number of explorer particles 

(Ne.p) is determined as a consequence. HPSSO starts with a set of particles randomly positioned in 

the design space and with random velocities. The position and velocity of each particle are 

progressively updated to search the optimum. In each iteration, particles are sorted based on the 

value of the cost function (usually, pseudo-cost function including penalty terms or fitness). The 

best particle is set as the head leader and Nsubcolony subsequent particles are set as local leaders 

going from top to bottom. Naimless particles are then selected from the worst ones going from 

bottom to top. The remaining particles are set as explorers. The search of each explorer particle is 

performed by adding the updated velocity vector to the current position of that particle. Compared 

with PSO, the velocity vector includes an additional term to account for the contribution of local 

leaders 

             

1 1

1

1 1 2 2 3 3 ( )( ) ( ) ( )

k k k

i i i

k k k k k k k k

i i i i g i l i i
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V V c r P X c r P X c r P X

 



 

      
 (4) 

where Pl(i)
k
 is the local leader of the subcolony including the ith particle, r3 is a uniform random 

number in the (0,1) interval and c3 is the learning factor controlling the influence of the proximity 

cognition. In each iteration, the position of a particle included in a subcolony can be changed so as 

to move away from the current local leader and join the leader of another group. The distance 

between each explorer particle and local leaders is used to determine the related subcolony so that 

each explorer particle can be placed near the closest local leader. That is: 

              

, , .

1 1 2 2 2 2 2

, , , ,

, 1, 2, , , 1, 2, ,

( ) ( ) ( )

i j i l j e p sub colony

ng ng

i j i l j i l j i l j

dist X P i N j N

dist X P X P X P

   

      

 (5) 

where ng is the number of design variables, disti,j is the distance between the ith explorer particle, 

and jth local leader. 

Three possible options can be considered for aimless particles: (i) they perform just a random 

search in the same way as it is done in SSO; (ii) they perform a local search in the neighborhood of 

local leaders; (iii) they perform a dynamic search in the neighborhood of the global leader. If 

option (ii) is chosen, the number of aimless particles coincides with the number of subcolonies and 

hence an aimless particle should be defined for each subcolony. In this case, the distance between 

the worst particles and local leaders is the criterion to assign each aimless particle to its 

corresponding subcolony. This strategy is most effective in truss optimization problems (Kaveh et 

al. 2014). 

Aimless particles perform their search in the neighborhood of the local leader of their 

subcolony according to the following rule 
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1

( ) ( 1,1) (max min ) , 1,2,3,...,k k k

i l i s s aimlesso P rand i N           (6) 

where: rand(−1,1) is a uniform random number between −1 and 1; mins and maxs, respectively,  

are the lower and upper bound of design variables; λ
k
 is a parameter defined to generate the 

effective search range about local leaders. That is 

          max max min max( ) /k iter iter        (7) 

where λmax and λmin, respectively, are the values of λ in the first and last iterations of the algorithm, 

set in the present study as 0.01 and 0.001; iter is the number of the current iteration; itermax is the 

total number of optimization iterations. 

Fig. 2 illustrates the transition between two consecutive generations. The population is updated 

by: (i) copying first the head leader and local leaders from one generation to the subsequent (in 

some way, this can be interpreted as an elitist strategy); (ii) performing search with explorer 

particles to move population toward the best regions of design space (exploration phase or global 

search); (iii) performing a dynamic local search with aimless particles in the neighborhood of the 

head leader or local leaders. The flowchart of the HPSSO algorithm is presented in Fig. 3. 

 

 

3. Numerical examples 
 

The HPSSO algorithm presented in this research was tested in four truss shape and size 

classical optimization problems with multiple natural frequency constraints of a planar 10-bar  
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(k), i=1:Nsub-colony

Xi
(k), i=1:Nep
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Ellitisim, Copy

Global search, 

update using Eq. 4 
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Evaluation
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The Best
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Fig. 2 Schematic representation of the transition from the current iteration to the subsequent iteration 
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Initialize the problem and algorithm parameters, randomly initialize positions and 

velocities of all particles, determine the objective function of particles, K=1

Form HL(k), LL(k)zand o(k) From initial population

The termination 

criteria satisfied?

For i=1:Nep

Update Xi
k. Vi

k, using Eq. 4, Handle variable boundary

Evaluate each explorer particle

End For

For i=1:Naimless

Determine the corresponding local leader

Update oi
k, using Eqs. 6 and 7, Handle variable boundary

Evaluate each aimless particle

End For

Sort particles based on objective function

Form HL(k), LL(k)zand o(k) From current population

No

Output : HLYes
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Fig. 3  Flowchart of the HPSSO algorithm 
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Table 1 Properties of problems 1 and 4 considered from the literature 

 planar 10-bar truss 72-bar space truss 

 E (GPa) ρ (kg/m
3
) additional Mass (kg) E (GPa) ρ (kg/m

3
) Additional Mass (kg) 

PSO 69.8 2770.0 454.0 69.8 2770.0 2270 

CSS 69.8 2770.0 454.0 69.8 2770.0 2270 

FA 68.95 2767.99 453.6 68.95 2767.99 2268 

HS 68.95 2767.99 453.6 68.95 2767.99 2268 

DPSO 68.9 2770.0 454.0 - - - 

 

 

truss, a simply supported 37-bar plane truss, a 52-bar space dome shaped truss, and a spatial 72-

bar space truss. These test cases were frequently used in structural design optimization to test 

optimization algorithms as follows among many others: by, Grandhi (1993) using evolutionary 

node shift methods, Grandhi and Venkaya (1998) using an optimality algorithm, Sedaghati et al. 

(2002) utilizing a sequential quadratic programming and finite element force method, Wang et al. 

(2004) employing a niche hybrid genetic algorithm, Lingyun et al. (2005) using Niche Hybrid 

Genetic Algorithm (NHGA), Lingyun et al. (2011) based on parallel genetic algorithm, Gomes 

(2011) utilizing standard PSO, Zuo et al. (2011) using adaptive eigenvalue reanalysis methods, 

Miguel and Miguel (2012) employing both harmony search (HS) and firefly algorithm (FA) 

methods, Kaveh and Zolghadr (2011, 2013, 2014) utilizing Democratic PSO algorithm (DPSO) as 

an advanced variant of PSO and standard and enhanced charged system search algorithm (CSS). 

Optimization results were compared with recently presented studies using new effective 

optimization methods which: FA, HS, CSS, and in particular with standard PSO and with an 

advanced PSO variant. Kaveh and Zolghadr (2013) have recently developed a Democratic Particle 

Swarm Optimization (DPSO) which enables all eligible particles have the right to be involved in 

decision making to enhance exploration capabilities with respect to standard PSO. It should be 

noted the first and last problems have been considered slightly different in these studies. Table 1 

represents the details (elastic modulus (E); specific mass (ρ); and additional mass) considered for 

these problems. Considering lower specific and additional mass and bigger modulus of elasticity 

will generally result in relatively lighter structures. For comparing the proposed method with all of 

these algorithms (PSO (Gomes 2011), CSS (Kaveh and Zolghadr 2011), FA and HS (Miguel and 

Miguel 2012), and DPSO (Kaveh and Zolghadr 2014)) we will consider the properties according 

to each study listed in Table 1. 

The best combination of internal parameters was determined by carrying out a sensitivity 

analysis on the 37-bar plane truss: population included 30 particles and 5 subcolonies, 5 aimless 

particles; c1 and c3 were set equal to 0.8, c2 was set equal to 2, the inertia weight decreased from 

0.9 to 0.7. Table 2 presents the results of sensitivity analysis of 30 independent runs, carried out 

for adjusting the population parameters. As it is clear, considering the number of subcolonies at 

least as one tenth of the population size, leads to lighter designs. The lightest design is obtained for 

N=30 and Nsubcolony=5. Learning parameters are adjusted considering various amounts of each one: 

(0.3, 0.6, 0.8, 1.0, 1.3, 1.5, 1.7, 2.0, 2.5). Table 3 tabulates the best optimum weight achieved from 

30 independent runs for each combination case of learning parameters and two adjacent 

combinations. The best optimum design is obtained for c1=c3= 0.8, and c2= 2. By proper selection 

of , it is possible to achieve a good balance between global and local exploration abilities, thus  

finding better designs. The inertia weight   can range between 0 and 1 and strongly affects the  
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Table 2 Results of sensitivity analysis carried out to find the best combination of internal population 

parameters of HPSSO for the 37-bar plane truss 

 Nll=2 Nll=3 Nll=5 Nll=7 Nll=10 Nll=15 Nll=20 

N=20 360.3409 360.1410 360.2016 360.5238 ─ ─ ─ 

N=30 360.9523 360.5205 360.0889 360.5217 361.0257 ─ ─ 

N=50 364.5873 362.5915 361.3069 360.3522 360.3533 360.6950 361.4856 

N=100 382.1692 372.0556 367.4492 361.6171 361.0441 361.0816 361.5903 

N=150 387.4601 379.7737 379.1532 372.6632 366.3754 363.2179 367.3366 

 
Table 3 Results of sensitivity analysis carried out to find the best combination of 

learning parameters of HPSSO for the 37-bar plane truss 

C1=0.6 C3=1.3 C3=1.5 C3=1.7 

C2=1.5 360.9940 360.3556 360.4090 

C2=1.7 360.2080 360.1403 360.3280 

C2=2.0 360.2069 360.7642 360.4093 

C1=0.8 C3=0.6 C3=0.8 C3=1 

C2=1.7 360.4796 360.3226 360.6734 

C2=2.0 360.4262 360.0985 360.507 

C2=2.5 360.5259 360.7922 360.6627 

C1=1.0 C3=0.3 C3=0.6 C3=0.8 

C2=1.7 360.4494 360.6422 360.3555 

C2=2.0 360.3747 360.1526 360.3601 

C2=2.5 360.5217 360.3193 360.3951 

 

 

convergence behavior. As shown by Eberhat and Shee (2000), considering a reducing  linearly 

from 0.9 to 0.7 is an efficient approach. In this study, reducing   linearly from 0.9 to 0.7 during 

the optimization process leads to better results. 

The stopping criterion was based on the maximum number of optimization iterations (itermax) 

set equal to 200, 300 and 400 depending to the test cases size. In order to investigate the effect of 

the initial population on the optimization process, each test problem was solved independently 30 

times starting from a different population randomly generated. This allows to account for the 

random nature of the HPSSO algorithm. The optimization and finite element structural analyses 

code were coded in the MATLAB software environment. 

 

3.1 Problem statement 
 

In a frequency constraint truss layout and size optimization problem, the aim is to minimize the 

weight of the structure while satisfying some constraints on natural frequencies. The design 

variables are considered to be the cross-sectional areas of the members and/or the coordinates of 

some nodes. Prescribing the truss topology and assuming to be unchanged, the optimization 

problem can be stated as follows 
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Fig. 4 Schematic of the planar 10-bar truss structure 
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*{V}: for some natural frequencies j1 j jg 0    (9) 

          
*{V}: for some natural frequencies jj2 jj jjg 0  

 

(10) 

where {V} is the set of design variables; k is the number of independent design variables, vi, 

including either a shape or sizing variable must take a value between its lower bound vmin and 

upper bound vmax, respectively. W is the total weight of truss, and total number of elements is 

denoted by n. Le, ρe and Ae are respectively length, material density, and cross sectional area of the 

eth element. First frequency constraint (g1) represents that some natural frequencies ωj, should 

exceed the prescribed lower limits. Second frequency constraint (g2) represents that other natural 

frequencies, should be less than the prescribed upper limits. In order to handle optimization 

constraints, a penalty approach is utilized in this study by introducing the following pseudo-cost 

function (Kaveh and Bakhshpoori 2013) 

             

     cos V ( . )  V ,    = max ,  g ({V})2

2

t 1 j

j 1

f 1 W 0  


       (11) 

where υ is the total constraint violation. Constants ε1 and ε2 must be selected considering the 

exploration and the exploitation rate of the search space. In this study, ε1 was set equal to one 

while ε2 was selected so as to decrease the total penalty. Thus, ε2 increased from the value of 1.5 

set in the first steps of the search process to the value of 3 set toward the end of the optimization 

process. 

 

3.2 Planar 10-bar truss 
 

Truss geometry including node and element numbering, non-structural mass of 453.6 kg (1000  
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Table 4 Optimization results (cm
2
) obtained by other meta-heuristic methods in the 10-bar truss problem 

Member FA HS CSS PSO DPSO 

1 36.198 34.282 38.811 37.712 35.944 

2 14.030 15.653 9.0307 9.959 15.530 

3 34.754 37.641 37.099 40.265 35.285 

4 14.900 16.058 18.479 16.788 15.385 

5 0.654 1.069 4.479 11.576 0.648 

6 4.672 4.740 4.205 3.955 4.583 

7 23.467 22.505 20.842 25.308 23.610 

8 25.508 24.603 23.023 21.613 23.599 

9 12.707 12.867 13.763 11.576 13.135 

10 12.351 12.099 11.414 11.186 12.357 

Mass (kg) 531.28 534.99 531.95 537.98 532.39 

 
Table 5 Optimization results (cm

2
) obtained by HPSSO in the 10-bar truss problem 

 HPSSO 

According to FA and HS CSS and PSO DPSO 

Member itermax=200 itermax=300 itermax=200 itermax=300 itermax=200 itermax=300 

1 35.91463 35.44069 35.10490 35.14366 35.95107 35.81050 

2 14.74970 14.80652 14.51721 14.78617 14.61329 14.97440 

3 35.13693 35.71416 35.06363 35.44331 35.51132 35.37693 

4 15.00478 14.97475 14.74008 14.67259 15.03865 14.76242 

5 0.64503 0.64500 0.64586 0.64526 0.64500 0.64502 

6 4.62533 4.62048 4.57284 4.55385 4.63732 4.63220 

7 23.78835 23.81563 23.51944 23.83466 23.71204 24.33330 

8 24.31428 24.25257 24.03368 23.58726 24.62326 23.88956 

9 12.60807 12.59062 12.50740 12.20288 12.57024 12.62065 

10 12.58117 12.52555 12.36574 12.37694 12.40856 12.60052 

Mass (kg) 530.8289 530.7610 524.4870 524.4868 532.1052 532.0762 

Number of structural 

analyses 
4,806 6,894 4,806 7,206 4,806 7,206 

 

 

lb) is attached to all free nodes (1-4), and kinematic constraints is shown in Fig. 4. The material is 

aluminum, with elastic modulus equal to 68.95 GPa and specific mass of 2767.99 kg/m
3
. These 

properties are according to study by Miguel and Miguel (2012) using FA and HS. The natural 

frequency constraints are ω1≥7 Hz, ω2≥15 Hz, and ω3≥20 Hz. The allowable lower and upper 

bound of the cross sectional area (m
2
) is 0.645×10

-4
 and 50×10

-4
. 

Table 4 presents the best optimized designs and the corresponding masses found by different 

methods (FA, HS, CSS, standard PSO and DPSO), and Table 5 lists the optimized designs, the 

required number of structural analyses and the corresponding masses obtained by HPSSO 

according to the details reported using other methods. Table 6 represents the corresponding natural 

frequencies. Table 7 presents the optimization results based on the HPSSO obtained for 30 

independent runs carried out from different initial populations randomly generated and other 

methods. The number of independent runs considered as 5 for FA and HS, 10 for CSS and 30 for 

PSO and DPSO. 
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Table 6 Optimum design of natural frequencies (HZ) for the 10-bar truss from various methods 

Frequency 

number 
FA HS CSS PSO DPSO 

HPSSO
* 

itermax=200 itermax=300 

1 7.0002 7.0028 7.000 7.000 7.000 7.000 7.000 

2 16.1640 16.7429 17.442 17.786 16.187 16.175 16.180 

3 20.0029 20.0548 20.031 20.000 20.000 20.004 20.001 

4 20.0221 20.3351 20.208 20.063 20.021 20.010 20.008 

5 28.5428 28.5232 28.261 27.776 28.470 28.568 28.545 

6 28.9220 29.2911 31.139 30.939 29.243 28.977 28.957 

7 48.3538 49.0342 47.704 47.297 48.769 48.535 48.556 

8 50.8004 51.7451 52.420 52.286 51.389 51.045 51.057 
*
According to the details used by FA and HS (Miguel and Miguel 2012) 

 
Table 7 Comparison (kg) of robustness and reliability of HPSSO and other meta-heuristic methods in the 10-

bar truss problem 

Algorithm According to Best Average Worst SD 

FA  - 535.07 - 3.64 

HS  - 537.68 - 2.49 

CSS  - 536.39 - 3.32 

PSO  - 540.89 - 6.84 

DPSO  - 537.80 - 4.02 

HPSSO (itermax=200) FA and HS 530.8289 535.97 539.14 2.72 

HPSSO (itermax=200) CSS and PSO 524.4870 528.72 532.44 2.98 

HPSSO (itermax=200) DPSO 532.1052 536.25 539.75 3.13 

HPSSO (itermax=300) FA and HS 530.7610 534.16 537.78 3.07 

HPSSO (itermax=300) CSS and PSO 524.4868 527.91 531.71 2.95 

HPSSO (itermax=300) DPSO 532.0762 535.54 539.99 3.15 
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Fig. 5 Schematic of the 37-bar truss structure 

 

 

3.3 Planar 37-bar truss 
 

The second optimization problem solved in this study regards the simply supported planar 37-

bar truss shown in Fig. 5. A non-structural mass of m=10 kg is attached at each of the free nodes 

on the lower chord. The truss is made of steel with modulus of elasticity of 210 Gpa and material 

density of 37800 kg/m
3
. The truss is optimized on shape and size for its mass minimization with 

multiple frequency constraints. Nodal coordinates in the upper chord and cross-sectional areas of  
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Table 8 Comparison of optimization results (Y coordinates: m; and areas: cm
2
) obtained by HPSSO and 

other meta-heuristic methods in the 37-bar truss problem 

Member FA HS CSS PSO DPSO 
HPSSO 

itermax=300 itermax=400 

Y3, Y19 0.9392 0.8415 0.8726 0.9637 0.9482 1.00000 1.00000 

Y5, Y17 1.3270 1.2409 1.2129 1.3978 1.3439 1.347531 1.357692 

Y7, Y15 1.5063 1.4464 1.3826 1.5929 1.5043 1.50689 1.531195 

Y9, Y13 1.6086 1.5334 1.4706 1.8812 1.6350 1.63223 1.666696 

Y11 1.6679 1.5971 1.5683 2.0856 1.7182 1.705748 1.734591 

A1, A27 2.9838 3.2031 2.9082 2.6797 2.6208 2.821098 2.911875 

A2, A26 1.1098 1.1107 1.0212 1.1568 1.0397 1.001201 1.00000 

A3, A24 1.0091 1.1871 1.0363 2.3476 1.0464 1.00000 1.00000 

A4, A25 2.5955 3.3281 3.9147 1.7182 2.7163 2.624512 2.539312 

A5, A23 1.2610 1.4057 1.0025 1.2751 1.0252 1.248281 1.268065 

A6, A21 1.1975 1.0883 1.2167 1.4819 1.5081 1.277638 1.135538 

A7, A22 2.4264 2.1881 2.7146 4.6850 2.3750 2.750126 2.546305 

A8, A20 1.3588 1.2223 1.2663 1.1246 1.4498 1.251069 1.392601 

A9, A18 1.4771 1.7033 1.8006 2.1214 1.4499 1.3896 1.432117 

A10, A19 2.5648 3.1885 4.0274 3.8600 2.5327 2.763805 2.492398 

A11, A17 1.1295 1.0100 1.3364 2.9817 1.2358 1.174415 1.174892 

A12, A15 1.3199 1.4074 1.0548 1.2021 1.3528 1.333822 1.352078 

A13, A16 2.9217 2.8499 2.8116 1.2563 2.9144 2.509497 2.57735 

A14 1.0004 1.0269 1.1702 3.3276 1.0085 1.00000 1.00000 

Mass (kg) 360.05 361.50 362.84 377.20 360.40 360.0752 359.975 

Number of 

structural 

analyses 

- - - - - 7,038 9,342 

 
Table 9 Optimum design of natural frequencies (HZ) for the 37-bar truss from various methods 

Frequency 

number 
FA HS CSS PSO DPSO 

HPSSO 

itermax=300 itermax=400 

1 20.0024 20.0037 20.0000 20.0001 20.0194 20.0065 20.0092 

2 40.0019 40.0050 40.0693 40.0003 40.0113 40.0194 40.0222 

3 60.0043 60.0082 60.6982 60.0001 60.0082 60.0054 60.0186 

4 77.2153 77.9753 75.7339 73.0440 76.9896 77.1575 76.2377 

5 96.9900 99.2564 97.6137 89.8240 97.2222 95.3689 95.5098 

 

 

members are considered as design variables. All members on the lower chord have fixed cross 

sectional areas of 4×10
-3

 m
2
 and the others have initial cross sectional areas of 1×10

-4
 m

2
 (also as 

the lower bound). In the optimization process, nodes on the upper chord can be shifted vertically. 

In addition, nodal coordinates and member areas are linked to maintain the structural symmetry. 

Therefore, only five shape variables and fourteen sizing variables will be redesigned for 

optimization. The natural frequency constraints are ω1≥20 Hz, ω2≥40 Hz, and ω3≥60 Hz. 

Table 8 presents the best optimized designs and the corresponding masses found by HPSSO 

and different methods (FA, HS, CSS, standard PSO and DPSO), and Table 9 represents the  
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Table 10 Comparison (kg) of the robustness and reliability of the HPSSO and other meta-heuristic methods 

for the 37-bar truss problem 

Algorithm Best Average Worst SD 

FA - 360.37 - 0.26 

HS - 362.04 - 0.52 

CSS - 366.77 - 3.742 

PSO - 381.2 - 4.26 

DPSO - 362.21 - 1.68 

HPSSO (itermax=300) 360.0752 367.212 400.7903 8.907 

HPSSO (itermax=400) 359.975 364.1593 398.4291 7.864 

 
Table 11 Comparison of the optimization results (Y coordinates: m; and areas: cm

2
) obtained by HPSSO and 

other meta-heuristic methods in the 52-bar truss problem 

Member FA HS CSS PSO DPSO 
HPSSO 

itermax=200 itermax=300 

Z1 6.4332 4.7374 5.2716 5.5344 6.1123 5.787564 5.908632 

X2 2.2208 1.5643 1.5909 2.0885 2.2343 2.181542 2.210574 

Z2 3.9202 3.7413 3.7093 3.9283 3.8321 3.714817 3.774155 

X6 4.0296 3.4882 3.5595 4.0255 4.0316 3.916504 3.985947 

Z6 2.5200 2.6274 2.5757 2.4575 2.5036 2.502532 2.50074 

A1 1.0050 1.0085 1.0464 0.3696 1.0001 1.000000 1.000000 

A2 1.3823 1.4999 1.7295 4.1912 1.1397 1.189154 1.17997 

A3 1.2295 1.3948 1.6507 1.5123 1.2263 1.268856 1.26862 

A4 1.2662 1.3462 1.5059 1.5620 1.3335 1.502314 1.426836 

A5 1.4478 1.6776 1.7210 1.9154 1.4161 1.447167 1.438013 

A6 1.0000 1.3704 1.0020 1.1315 1.0001 1.000000 1.000000 

A7 1.5728 1.4137 1.7415 1.8233 1.5750 1.702234 1.555282 

A8 1.4153 1.9378 1.2555 1.0904 1.4357 1.282983 1.408335 

Mass (kg) 197.53 214.94 205.237 228.38 195.351 195.4308 195.1085 

 

 

corresponding natural frequencies. Table 10 presents the statistical results based on the HPSSO 

obtained for 30 independent runs carried out from different initial populations randomly generated 

and other methods. The number of independent runs considered as 5 for FA and HS, 10 for CSS 

and 30 for both standard and democratic PSO. 

 

3.4 The 52-bar dome shaped truss 
 

Simultaneous layout and size optimization of a 52-bar domelike truss is considered as the third 

example. Initial layout of the structure is depicted in Fig. 6. This test case, is described in detail in 

Miguel and Miguel (2012). The optimized designs found by the different algorithms are compared 

in Table 11 that shows also the corresponding structural weights, and Table 12 represents the 

corresponding natural frequencies. Statistical results of independent optimization runs are 

presented in Table 13. 
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Fig. 6 Schematic of the dome shaped 52-bar truss structure 

 

Table 12 Optimum design of natural frequencies (HZ) for the 52-bar truss from various methods 

Frequency 

number 
FA HS CSS PSO DPSO 

HPSSO 

itermax=200 itermax=300 

1 11.3119 12.2222 9.246 12.751 11.315 11.21629 11.4099 

2 28.6529 28.6577 28.648 28.649 28.648 28.6521 28.6483 

3 28.6529 28.6577 28.699 28.649 28.648 28.67663 28.6490 

4 28.8030 28.6618 28.735 28.803 28.650 28.71777 28.7166 

5 28.8030 30.0997 29.223 29.230 28.688 29.13155 29.1050 

 

 

3.5 The 72-bar space truss 
 

The spatial 72-bar truss optimized in the last test problem is schematized in Fig. 7. In the four 
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nodes on the top of the structure (nodes 1-4) a non-structural mass of 2270 kg is attached. The 

design variables are the member cross sectional areas, treated as continuous design variables, 

which are linked into 16 groups in order to maintain the structural symmetry. Member linking 

detail is available in Table 14 from Miguel and Miguel (2012).The material is aluminum, with 

elastic modulus being equal to 68.95 GPa and specific mass of 2770 kg/m
3
. These properties are 

according to the study made by Miguel and Miguel (2012) using FA and HS. The natural 

frequency constraints are ω1=4 Hz and ω3≥6 Hz. The allowable minimum area of the cross 

sectional is 0.645×10
-4

 m
2
. 

 

 
Table 13 Comparison (kg) of the robustness and reliability of HPSSO and other meta-heuristic methods in 

the 52-bar truss problem 

Algorithm Best Average Worst SD 

FA - 212.80 - 17.98 

HS - 229.88 - 12.44 

CSS - 213.101 - 7.391 

PSO - 234.3 - 5.22 

DPSO - 198.71 - 13.85 kg 

HPSSO (itermax=200) 195.4308 241.8956 389.2015 53.2531 

HPSSO (itermax=300) 195.1085 214.0870 270.0908 19.8910 
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Fig. 7 Schematic of the spatial 72-bar truss structure 
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Table 14 Optimization results (cm
2
) obtained by different meta-heuristic methods for the 72-bar truss 

problem 

Member FA HS CSS PSO 

1 3.3411 3.6803 2.528 2.987 

2 7.7587 7.6808 8.704 7.849 

3 0.6450 0.6450 0.645 0.645 

4 0.6450 0.6450 0.645 0.645 

5 9.0202 9.4955 8.283 8.765 

6 8.2567 8.2870 7.888 8.153 

7 0.6450 0.6450 0.645 0.645 

8 0.6450 0.6461 0.645 0.645 

9 12.0450 11.4510 14.666 13.45 

10 8.0401 7.8990 6.793 8.073 

11 0.6450 0.6473 0.645 0.645 

12 0.6450 0.6450 0.645 0.645 

13 17.3800 17.4060 16.464 16.684 

14 8.0561 8.2736 8.809 8.159 

15 0.6450 0.6450 0.645 0.645 

16 0.6450 0.6450 0.645 0.645 

Mass (kg) 327.691 328.334 328.814 328.823 

 
Table 15 Optimization results (cm

2
) obtained by other meta-heuristic methods for the 72-bar truss problem 

 HPSSO 

According to FA, HS CSS and PSO 

Member itermax=200 itermax=300 itermax=200 itermax=300 

1 3.5330 3.5329 4.0983 3.4041 

2 7.8391 8.0157 7.9589 7.5881 

3 0.6450 0.6450 0.6450 0.6451 

4 0.6450 0.6450 0.6501 0.6451 

5 8.0181 8.0510 8.5625 8.2960 

6 7.9707 7.9363 8.2050 7.7144 

7 0.6450 0.6450 0.6450 0.6450 

8 0.6450 0.6450 0.6450 0.6450 

9 12.4962 12.6954 12.8024 12.4260 

10 8.0792 8.0952 7.5955 8.2415 

11 0.6450 0.6450 0.6450 0.6450 

12 0.6450 0.6470 0.6450 0.6455 

13 17.6322 17.3953 15.9458 17.0557 

14 8.2570 8.0887 8.0497 8.2833 

15 0.6450 0.6455 0.6450 0.6450 

16 0.6452 0.6450 0.6569 0.6450 

Mass (kg) 327.7704 327.6923 325.0476 324.7630 

Number of structural 

analayses 
4,806 7,206 4,806 7,206 
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Table 16 Optimum design of natural frequencies (HZ) for the 72-bar truss from various methods 

Frequency 

number 
FA HS CSS PSO TLBO 

HPSSO 

itermax=200 itermax=300 

1 4.0000 4.0000 4.000 4.000 4.0000 4.0000 4.0000 

2 4.0000 4.0000 4.000 4.000 4.0000 4.0002 4.0001 

3 6.0000 6.0000 6.006 6.000 6.0000 6.0010 6.0004 

4 6.2468 6.2723 6.21 6.219 6.2567 6.2407 6.2459 

5 9.0380 9.0749 8.684 8.976 9.0984 9.0639 9.0801 
*
According to the details used by FA and HS (Miguel and Miguel 2012) 

 
Table 17 Comparison (kg) of robustness and reliability of HPSSO and other meta-heuristic methods for the 

72-bar truss problem 

Algorithm According to Best Average Worst SD 

FA  - 329.89 - 2.59 

HS  - 332.64 - 2.39 

CSS  - 337.70 - 5.42 

PSO  -  -  

HPSSO (itermax=200) FA and HS 327.7704 329.89 378.68 9.22 

HPSSO (itermax=200) CSS and PSO 325.0476 348.33 454.36 36.77 

HPSSO (itermax=300) FA and H 327.6923 331.81 390.61 14.41 

HPSSO (itermax=300) CSS and PSO 324.7630 330.98 401.68 15.57 

 
Table 18 Comparison (kg) of the best achieved optimum design by HPSSO and other meta-heuristic 

methods 

Algorithm Problem 1 Problem 2 Problem 3 Problem 4 

FA 531.28 (+0.1 %) 360.050 (+0.02 %) 197.530 (+1.2 %) 327.691 (-0.0 %) 

HS 534.99 (+0.8 %) 361.500 (+0.4 %) 214.940 (+10.2 %) 328.334 (+0.2 %) 

CSS 531.95 (+1.4 %) 362.840 (+0.8 %) 205.237 (+5.2 %) 328.814 (+1.2 %) 

PSO 537.98 (+2.6 %) 377.200 (+4.8 %) 228.380 (+17.1 %) 328.823 (+1.3 %) 

DPSO 532.39 (+0.06 %) 360.400 (+0.1 %) 195.351 (+0.1 %) - 

 

 

Table 14 presents the best optimized designs and the corresponding masses found by different 

methods (FA, HS, CSS, standard PSO and DPSO), and Table 15 lists the optimized designs and 

the corresponding masses obtained by HPSSO according to the details reported using other 

methods. Table 16 represents the corresponding natural frequencies. Table 17 provides the 

optimization results based on the HPSSO obtained for 30 independent runs carried out from 

different initial populations randomly generated and other methods. The number of independent 

runs considered as 5 for FA, HS and TLBO, 10 for CSS and 30 for PSO and DPSO. 

 

3.6 Evaluation of HPSSO and comparison with other optimization methods 
 

Table 18 compares weight (kg) of the best reported optimum design by other methods (Fire Fly 

algorithm (FA) and Harmony Search method (HS) (Miguel and Miguel 2012), Charged System 

Search (CSS) (Kaveh and Zolghadr 2011), standard Particle Swarm Optimization (PSO) (Gomes 
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2011), and Democratic Particle Swarm Optimization (DPSO) (Kaveh and Zolghadr 2014)) against 

the HPSSO. It is clear that the HPSSO is in general the most efficient algorithm except for the 72-

bar spatial truss in which HPSSO yields the optimum design 327.6923 kg which is practically 

same as the one (327.691 kg) obtained by the FA. 

In order to analyze convergence behavior, optimization histories of the best and worst particles, 

and the average optimization history of all particles corresponding to the best run of the HPSSO 

are presented in Fig. 8. Upper bound of the Y axis is limited for the sake of clarity. It appears that 

HPSSO reaches an effective balance between global search and local search. It is always seen that 

in the early optimization cycles where randomness plays the main rule, the distance between the 

average and worst particle diagrams is small. HPSSO tries to increase this distance in the next 

iterations: this demonstrates the diversification capability of the optimization search. The distance 

then decreases again as the search process progresses and finally becomes negligible upon 

reaching the optimum design: this demonstrates the intensification ability of HPSSO. The big 

distance between the best particle and both average and worst particle diagrams can be due to the 

constrained nature of the problem. Such a behavior is observed in all test problems. The previous 

discussion demonstrates that HPSSO achieves an effective balance between diversification and 

intensification. 

In order to further evaluate the performance of the algorithm, Fig. 9 shows the optimization 

histories of the first and third test problems for the best run seen for the HPSSO, standard PSO 

(Gomes 2011) and Democratic PSO (Kaveh and Zolghadr 2014). HPSSO performs better from 
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Fig. 8 Convergence curves of the best run recorded for test problems: Comparison of the best and worst 

particles and average of all particles 
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Fig. 9 Convergence curves recorded for the first and third trusses, comparing the convergence rates of 

the algorithms 

 

 

accuracy point of than both standard and democratic PSO. The HPSSO diagrams show how this 

algorithm benefits all of its defined number of iterations as the stopping criteria for deeply search 

the design space in all test problems. Continuous step like movements of the HPSSO until the next 

iteration of algorithm shows how it can find all of the local optimums. This is another proof to 

show how HPSSO can balance its local and global search ability. 
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4. Conclusions 
 

A new efficient hybrid swarm intelligence based algorithm combining Swallow Swarm 

Optimization and Particle Swarm Optimization is presented as a new variant of the PSO algorithm 

for the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency 

constraints. Since population is divided into subcolonies, particles can learn not only from the best 

globally-experienced particle, but also from the best particle of each subcolony. The new HPSSO 

algorithm included elitism as it selects and preserves best particles (i.e., global and local leaders) 

in the process of updating population; makes a good balance between global and local search as 

explorer particles have the ability of learning from self, social and proximity cognition; utilizes 

aimless particles to further adjust local search ability. 

HPSSO is tested on four truss design optimization problems. Numerical results demonstrate the 

efficiency of the proposed optimization algorithm that outperforms the standard PSO and some 

other state-of-the-art meta-heuristic algorithms. 
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