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Abstract.  This paper presents a feasibility study on structural damage alarming and localization of long-

span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal 

parameters. The proposed method which requires neither structural model nor damage model is applicable to 

structures of arbitrary complexity. With the intention to enhance the tolerance to measurement 

noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms 

of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input 

vector while the training of the ANNs needs only the measured modal properties of the intact structure under 

in-service conditions. After validating the enhanced capability of the improved novelty index for structural 

damage alarming over the commonly configured novelty index, the performance of the improved novelty 

index for damage occurrence detection of large-scale bridges is examined through numerical simulation 

studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred 

with different types of structural damage. Then the improved novelty index is extended to formulate multi-

novelty indices in terms of the measured modal frequencies and incomplete modeshape components for 

damage region identification. The capability of the formulated multi-novelty indices for damage region 

identification is also examined through numerical simulations of the TMB and TKB. 
 

Keywords:  structural health monitoring; damage alarming and localization; multi-novelty indices; auto-

associative neural networks; cable-supported bridges 

 
 
1. Introduction 
 

Maintaining the safe and reliable operation of vital infrastructure systems that society depends 

upon is critical to securing the well-being of people, protecting significant capital investments, and 

supporting the vitality of regional economy. However, infrastructure systems cannot last forever; 

even after construction, these complex systems begin to deteriorate within the demanding 

operational environment in which they are placed. Given the costs associated with infrastructure 
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repair and the high environmental impact of infrastructure construction, government authorities 

worldwide are increasingly seeking sensing and instrumentation systems to more objectively 

monitor crucial infrastructure systems to ensure structural and operational safety. Structural health 

monitoring (SHM) technology can provide engineers and asset managers with early warnings on 

damage and structural deterioration prior to the need for costly repairs or situations that can lead to 

catastrophic structural collapses. The past two decades have witnessed a rapid increase in the 

applications of SHM technology to various civil engineering structures around the world (Aktan et 

al. 2001, DeWolf et al. 2002, Ko and Ni 2005, Brownjohn 2007, Catbas 2009, Fujino et al. 2009, 

Glisic et al. 2009, Ni et al. 2009a, Ou and Li 2009, Wang and Yim 2010, Ni et al. 2011, Yun et al. 

2011, Ye et al. 2013, Dan et al. 2014, Teng et al. 2015). 

In Hong Kong, a sophisticated long-term SHM system, named “Wind And Structural Health 

Monitoring System (WASHMS)” has been devised by the Highways Department of Hong Kong 

SAR Government and implemented on the suspension Tsing Ma Bridge (TMB), the cable-stayed 

Kap Shui Mun Bridge (KSMB), and the cable-stayed Ting Kau Bridge (TKB) in the late 1990s 

(Lau et al. 1999, Wong 2004). This on-line system consists of about 800 permanently installed 

sensors, including strain gauges, accelerometers, displacement transducers, anemometers, 

temperature sensors, level sensors, weigh-in-motion sensors, and global positioning systems 

(GPS). The implementation of this SHM system highlights the necessity of developing practical 

damage detection methodologies for large-scale civil structures. A research team from The Hong 

Kong Polytechnic University was commissioned by the Highways Department of Hong Kong 

SAR Government to investigate the feasibility of using the measured dynamic characteristics from 

the system to detect structural damage in the three instrumented bridges (Ko et al. 1999, 2000, 

2002, 2009). The feasibility study indicates that because of very low modal sensitivity of the 

structures with respect to damage at a component level, only the methods which have high 

tolerance to incompleteness of measured data, measurement noise, modeling error and structural 

uncertainty are applicable to large-scale cable-supported bridges for vibration-based damage 

detection. 

Among a variety of vibration-based damage detection methods developed in the past two 

decades, the novelty detection technique has been demonstrated to be greatly promising for 

damage occurrence detection of structures in operation with noisy measurement data (Worden 

1997, Chan et al. 1999, Sohn et al. 2002, Sim et al. 2004, Yan et al. 2004, Oh et al. 2009, Zhou et 

al. 2011b). The novelty detection technique, in the context of unsupervised learning paradigm, 

requires neither structural model nor damage model in both training and testing phases; it is 

therefore applicable to structures of arbitrary complexity. Also, it is intrinsically tolerant of 

uncertainties inherent in in-service structures caused by varying operational and environmental 

conditions. As a drawback, this technique usually requires a sequence of measurements; but it is 

not a problem for a structure instrumented with an online SHM system. Worden (1997) formulated 

a novelty measure in terms of the auto-associative neural network (ANN) with its input and output 

being the system transmissibility for fault detection of a simulated mechanical system. Chan et al. 

(1999) proposed an ANN-based novelty index constructed using measured modal frequencies for 

anomaly detection of bridge cables. Sohn et al. (2002) used the coefficients from an autoregressive 

and autoregressive with exogenous input (AR-ARX) model to construct an ANN-based novelty 

detector for structural damage identification under changing environmental and operational 

conditions. Sim et al. (2004) proposed an adaptive novelty detector initially to distinguish between 

normal and damaged conditions, and later to distinguish between known and unknown damage 

states. Yan et al. (2004) constructed a Kalman model by performing a stochastic subspace 
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identification to fit the measured response time-history of the healthy structure and employed the 

residual error between the prediction by the identified model and the actual response measurement 

from an unknown state of the structure as a novelty detector for damage diagnosis. Oh et al. 

(2009) employed the kernel principal component analysis in conjunction with generalized extreme 

value statistics for statistical novelty detection of the hangers in a suspension bridge. With the 

intention of avoiding false-positive and false-negative alarms, Zhou et al. (2011b) studied the 

environment-tolerant capacity of an ANN-based novelty detector purposed for structural damage 

detection by incorporating generalization techniques in training the ANN and proposed a 

probability-based procedure to determine the alarming threshold. It is worth mentioning that while 

being tolerant of uncertainties caused by environmental variability and measurement error, the 

ANN-based novelty detection technique may fail to discriminate between the detected anomaly 

resulting from structural damage and resulting from sensor fault. Some recent investigations on 

sensor validation with sensor fault and distinguishing between sensor fault and structural damage 

are available (Abdelghani and Friswell 2007, Hernandez-Garcia and Masri 2008, Kullaa 2010, 

2011). The potential false-positive alarm caused by a significant variation in environmental effects 

can be alleviated by embedding a monitoring-derived environmental effect model into the novelty 

detection technique (Zhou et al. 2011a). 

In the current formulation of novelty detectors in terms of ANNs, the input and output vectors 

to train the ANN are the same sequence of measurements from the healthy structure; and the ANN 

is forced to learn just the significant prevailing features of the patterns inherent in the measurement 

data through a special design of the neural network architecture with a „bottleneck‟ hidden layer. 

In addition, the existing novelty detectors can only accomplish the detection of damage 

occurrence. In the present study, an improved novelty index is formulated in an effort to enhance 

the tolerance to measurement noise/uncertainty and the sensitivity to structural damage. In this 

new formulation, the output vector is designated to differ from the input vector; but the training of 

the ANN still only needs a sequence of measurements from the intact structure under varying 

operational and environmental conditions. The enhanced capability of the improved novelty index 

will be validated through numerical simulation conducted on a free side-span main cable on the 

TMB, where a comparison of the anomaly detection results by the conventional and improved 

novelty indices is provided. The damage detectability of the improved novelty index formulated 

using only modal frequencies will be examined through simulation studies by considering diverse 

damage scenarios on the TMB and TKB. Then the improved novelty index will be extended to 

formulate multi-novelty indices in terms of modal frequencies and incomplete modeshape 

components for damage region identification. The capability of the formulated multi-novelty 

indices for damage region identification will be verified through numerical simulations of the 

TMB and TKB. 

 

 

2. An improved movelty index 
 

2.1 Formulation 
 

A novelty detector can be realized by constructing an ANN that is configured as a multi-layer 

perceptron with „bottleneck‟ hidden layer(s) (Rumelhart et al. 1986, Hinton 1989, Petsche et al. 

1996, Worden 1997, Chan et al. 1999). As shown in Fig. 1, the ANN is trained to reproduce at the 

output layer, the patterns which are presented at the input layer. Thus the output layer must have  
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Fig. 1 Auto-associative neural network (ANN) 

 

 

the same number of the input nodes. However, the input values will not be perfectly reconstructed 

in the output since the patterns are passed through the hidden layer which has fewer nodes than the 

input layer. The network is forced to learn just the significant prevailing features of the input 

patterns. After the network being trained, the input data presented on training are passed again into 

the trained network to yield a set of output data. The difference between the input and output 

vectors is measured using some form of distance function, called novelty index. In the testing 

phase, a new series of measurement data obtained later from an unknown state of the structure 

(damaged or undamaged) is fed into the above network to form a novelty index sequence of testing 

phase. If this sequence deviates from the novelty index sequence of training phase, the occurrence 

of damage is alarmed. 

When the ANN technique is used for structural damage or anomaly detection, a series of 

measurement data or measurement-derived quantities (e.g., modal parameters) from the healthy 

intact structure under normal operational and environmental variations, X={X1 X2 ..... Xn}
T, is used 

to train the ANN. It is worth noting that each entry Xi (i=1, 2,…, n) in X denotes a set of 

measured/identified quantities of a physical parameter (e.g., the frequency for the ith mode) 

obtained from the healthy structure under varying operational and environmental conditions. No 

information on the structural model is needed. In the current practice of configuring the ANN, the 

data sequence X is used as both input vector and output vector to train the ANN; and after 

performing the training, the data sequence presented on training is fed again into the trained ANN 

to generate an output sequence  TnXXX ˆ.....ˆ ˆˆ
21X . Due to the pinching in the hidden layer of the 

ANN, only the significant features of the input patterns will progress forward to the output layer; 

and therefore the output sequence X̂  is different from the input sequence X. Thus the novelty 

index sequence in the training phase, when using the Euclidean distance, can be obtained as 

)ˆ()ˆ(ˆ)(   XXXXXXX
T

                    (1) 

 

input layer 

output layer 

demapping layer 

1X   2X   3X    …   iX         …         nX  

1X̂   2X̂   3X̂    …   iX̂         …         nX̂  

“bottleneck” layer 

mapping layer 
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where δ is a constant and is taken as unity in the present study. 

In the testing phase, a new series of measurement data or measurement-derived quantities from 

an unknown state of the structure (damaged or undamaged), Xt={X1t X2t ..... Xnt}
T, is obtained. It is 

passed into the above trained ANN to yield an output sequence tX̂ . Then the novelty index 

sequence in the testing phase is obtained as 

    
  ttt XXX ˆ)(

 
(2) 

and a shift of the novelty index sequence between the training phase and the testing phase signals 

the damage/anomaly presence in the structure. 

Eqs. (1) and (2) represent the conventional definition of the novelty index. In the present study, 

an improved novelty index is formulated in which the output vector in ANN is designated to differ 

from the input vector. The output vector of the ANN, Y={Y1 Y2 …… Yn}
T, is defined as 

    
),,2,1()( nimmXY iiii  

 (3) 

where mi is the mean of the ith entry Xi of the input vector X over the training data; α is a penalty 

factor to make a tradeoff between enhancing the significant features and amplifying the 

uncertainty effect. Although the output vector Y differs from the input vector X, both require only 

a series of measurement data or measurement-derived quantities from the healthy structure under 

normal conditions. After training the ANN with X and Y, the input sequence X is fed again into the 

trained ANN to yield an output sequence Ŷ , and the novelty index sequence for the training 

phase is obtained in terms of the Euclidean distance as 

    
YYY ˆ)( 

 
(4) 

When a new series of measurement data or measurement-derived quantities from an unknown 

state of the structure (damaged or undamaged), Xt={X1t X2t …… Xnt}
T, is obtained, it is passed into 

the above trained network to yield an output sequence tŶ . The corresponding novelty index 

sequence for the testing phase is obtained by 

    
ttt YYY ˆ)( 

 
(5) 

where Yt={Y1t Y2t …… Ynt}
T is a vector with its ith entry being 

    
),,2,1()( nimmXY iiitit  

 (6) 

If the novelty index sequence in the testing phase deviates from that in the training phase, the 

occurrence of structural damage/anomaly is flagged; if they are indistinguishable, no damage is 

signaled. 

The role of the penalty factor α in Eqs. (3) and (6) can be expounded by substituting Eq. (3) 

into Eq. (4), that is 

    
)]ˆˆ())[(1(ˆˆ)( mXmXXXYYY  

 
(7) 

In the training phase for the intact structure, it is expected that m̂  is very close to m because 

of the identical input vectors and therefore Eq. (7) approximately generates α times as from Eq. (1)  

341



 

 

 

 

 

 

Yi-Qing Ni, Junfang Wang and Tommy H.T. Chan 

 SPAN = 1377m355.5m76.5m23m 300m

72m 72m 72m 72m

206.4m 206.4m

Anchorage

Tsing Yi Island
Anchorage

Ma Wan Island

78.58m

Novelty Index I Novelty Index II Novelty Index III Novelty Index IV Novelty Index V

 

Fig. 2 Suspension Tsing Ma Bridge (TMB) 

 

 

when δ=0. It means that the penalty factor α mainly takes a role of amplifying the uncertainty 

effect (when it is assigned to be a value larger than 1) in constructing the novelty index sequence 

in the training phase. When a set of measurement data from the damaged structure is fed into the 

trained ANN, it is argued that m̂ ( tm̂ ) is more distinct from m (mt) and thus the factor α takes a 

role of enhancing the significant features inherent in the novelty index in the testing phase (the 

difference between (X−m) and ( X̂ − m̂ ) in Eq. (7) is amplified by (α1) times). In summary, the 

penalty factor α is a tradeoff between amplifying the uncertainty effect and enhancing the 

significant features. It is suggested to be assigned as a positive constant larger than 1 while being 

less than 5 (a large value of α may result in false-positive detection results in the case of high 

environmental variability). 

 
2.2 Validation 
 

The enhanced capability of the improved novelty index defined by Eqs. (3) to (6) is validated 

by comparing its performance with that of the conventional novelty index defined by Eqs. (1) and 

(2) in detecting the anomaly in a free side-span main cable on the TMB. As illustrated in Fig. 2, 

the TMB is a suspension bridge carrying both highway and railway traffic. It carries a dual three-

lane highway on the upper deck and two railway tracks and twin single-lane emergency 

carriageways on the sheltered lower deck. The deck section adopts a double-deck box with truss 

stiffening and non-structural edge fairing. The central span and the western Ma Wan side span are 

suspended with the lengths of 1,377 m and 355.5 m, respectively. The eastern Tsing Yi side span 

is supported on three concrete piers spaced at 72 m centers instead. 

Because the main cables on the Tsing Yi side span are freely suspended without hangers, their 

tension forces can be quantitatively evaluated using the identified modal frequencies of the cables 

through ambient vibration measurements (Liao et al. 2012). As a result of carrying both highway 

and railway traffic, the TMB has the most heavily loaded bridge cables in the world. Change in the 

cable forces or inconsistent tension between the two main cables in parallel would be indicative of 

a certain degree of structural damage/anomaly (Ko et al. 1999, Hua et al. 2009), e.g., the slippage 

between the cable and saddle or breaking of the bearing connecting the saddle to the tower under 

severe longitudinal forces caused by earthquakes or hurricanes. Detecting the cable tension forces 

regularly is essential for capturing how the internal force is redistributed among the structural 

components of the bridge.  

A precise finite element modeling method for large-diameter sagged cables accounting for  
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Table 1 Modal frequencies of Tsing Yi side span cable (Hz) 

Mode No. 1st 2nd 3rd 4th 5th 6th 

In-plane mode 0.4286 0.8424 1.2704 1.7054 2.1517 2.6120 

Out-of-plane mode 0.4200 0.8425 1.2701 1.7055 2.1517 2.6120 

 

 
(a) Modal fequency sequence for the 1st in-plane mode 

 
(b) Modal frequency sequence for the 1st out-of-plane mode 

Fig. 3 Noise-corrupted modal frequencies of the cable in healthy state 

 

 

flexural rigidity, sag-extensibility, spatial variability of dynamic tension, boundary conditions, 

lumped masses and intermediate supports and/or dampers has been developed (Ni et al. 2002). It is 

used in the present study to generate the simulation data for anomaly detection of a freely 

suspended main cable on the Tsing Yi side span of the TMB. The designated horizontal tension 

force of the main cables on the Tsing Yi side span is 405,838 kN for each, which is considered as 

the true tension force in healthy state. The corresponding in-plane and out-of-plane modal 

frequencies of each cable can be accurately calculated by the above method. Table 1 lists the  
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(a) Testing data with 2% reduction in cable tension force 

 
(b) Testing data with 5% reduction in cable tension force 

 
(c) Testing data with 10% reduction in cable tension force 

Fig. 4 Original novelty index evaluated on training and testing data 
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(a) Testing data with 2% reduction in cable tension force 

 
(b) Testing data with 5% reduction in cable tension force 

 
(c) Testing data with 10% reduction in cable tension force 

Fig. 5 Improved novelty index evaluated on training and testing data 
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calculated modal frequencies for the first six in-plane modes and out-of-plane modes.  

To account for the measurement error/noise and structural uncertainty due to varying 

operational and environmental conditions, the „identified‟ modal frequency sequences of the cable 

in healthy state are generated by adding to the true tension force a normally distributed random 

sequence with zero mean and 0.05 variance and then calculating the corresponding modal 

frequencies at each sample value of the fluctuating tension force. Fig. 3 shows such obtained 

modal frequency sequences for the first in-plane and out-of-plane modes of the cable in healthy 

state. The noise-corrupted „identified‟ modal frequency sequences, each consisting of 500 data 

samples, for the first six in-plane and out-of-plane modes of the cable in healthy state constitute 

the input sequence X in the training phase (X embraces 12 modal frequency elements in column, 

each having 500 data samples in row). 

Two ANNs are then trained with the noise-corrupted „identified‟ modal frequency sequences in 

healthy state: the first one is trained by taking X as both input and output vectors to the ANN; and 

the second one is trained by using X as input vector and Y (calculated from X by Eq. (3)) as output 

vector to the ANN. Both ANNs are configured with a node structure of 12-8-8-12. The activation 

functions are taken as the tan-sigmoid function between the second and third layers and the linear 

transfer function between the input and second layers and between the third and output layers. The 

coefficient α is taken as 3 in the present study. After performing the training, the data sequence X 

presented on training is fed again into the two trained ANNs to yield the output sequences X̂  

and Ŷ , respectively; and the novelty index sequences in the training phase, λ(X) and λ(Y), are 

then obtained according to Eqs. (1) and (4), respectively. 

To examine and compare the ability of the trained ANNs for anomaly detection, the cable 

tension is reduced by 2%, 5% and 10%, respectively, to simulate three abnormal conditions of the 

cable. By adding to each of the reduced tension forces a normally distributed random sequence 

with the same variance (0.05), the noise-corrupted „identified‟ modal frequency data of the cable 

corresponding to the three abnormal conditions are generated. The modal frequencies of the twelve 

modes (the first six in-plane modes and the first six out-of-plane modes) are obtained and each 

data sequence is generated with 300 data. These „identified‟ data are taken as new input vectors, 

Xt, which are passed into the above trained ANNs to yield output vectors tX̂  and tŶ . The 

novelty index sequences in the testing phase, λ(Xt) and λ(Yt), are then obtained by Eqs. (2) and (5). 

Figs. 4 and 5 show the novelty index sequences in both training and testing phases obtained by 

the two ANNs for the three abnormal cases. For the case with a 2% reduction in cable tension 

force, the conventional novelty index (Fig. 4(a)) fails to detect the anomaly because the novelty 

index sequences are not distinguishable between the training and testing phases; whereas, the 

improved novelty index (Fig. 5(a)) clearly signals the anomaly by a distinct deviation of the 

novelty index sequence from the training phase to the testing phase. The conventional novelty 

index ambiguously indicates the anomaly in the case with a 5% reduction in tension force (Fig. 

4(b)) and distinctly alarms the anomaly in the case with a 10% reduction in tension force (Fig. 

4(c)). When the improved novelty index is used, the anomaly in both cases is unambiguously 

flagged (Figs. 5(b) and 5(c)), validating the enhanced capability of the improved novelty index for 

anomaly detection. 

 
 
3. Structural damage alarming by improved novelty index 
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3.1 Suspension Tsing Ma Bridge (TMB) 
 

As the conventional modeling procedure for cable-supported bridges by approximating the 

bridge deck as analogous continuous beams or grids is incompetent for accurate damage 

simulation studies, a precise 3D finite element model (FEM) consisting of 17,677 elements and 

7,375 nodes has been developed using the commercial ABAQUS software for modal analysis and 

damage detection simulation studies of the TMB. The developed FEM has the following features: 

(i) the spatial configuration of the original structure remains in the model; (ii) the geometric 

stiffness of cables and hangers stemming from the large deflection has been accurately accounted 

for in the model through a nonlinear static iteration analysis; and (iii) the mass and stiffness 

contribution of individual structural members is independently described in the model such that 

the sensitivity of global and local modal properties to any structural member can be evaluated 

conveniently and accurately. Consequently, damage to any structural member can be directly and 

precisely simulated. Modal analysis with the FEM indicates that the modal frequencies of the first 

67 modes of the TMB are less than 1.0 Hz. The vibration modes of the TMB can be classified into 

the following categories: (i) global vertical bending modes, (ii) global lateral bending and torsional 

modes, (iii) central span cable local sway modes, (iv) Ma Wan side span cable local sway modes, 

(v) Tsing Yi side span free cable local modes (in-plane and out-of-plane), (vi) Ma Wan side span 

deck dominated modes, and (vii) tower dominated modes (sway, bending and torsion).  

The above classification gives guidance to construct ANNs for damage alarming. After 

merging categories (iv) and (v) into one group and merging categories (vi) and (vii) into one 

group, five ANNs configured in terms of the improved novelty index are generated for damage 

occurrence detection of the TMB: the 1st ANN with a node structure 11-6-6-11 has its input layer 

being the modal frequencies of the first 11 global vertical bending modes (category (i)); the 2nd 

ANN with a node structure 11-6-6-11 as well has its input layer being the modal frequencies of the 

first 11 global lateral bending and torsional modes (category (ii)); the 3rd ANN with a node 

structure 17-9-9-17 has its input layer being the modal frequencies of the first 17 local sway modes 

of central span cables (category (iii)); the 4th ANN with a node structure 12-6-6-12 has its input 

layer being the modal frequencies of the first 4 local sway modes of Ma Wan side span cables and 

the first 8 local sway modes of Tsing Yi side span free cables (categories (iv) and (v)); and the 5th 

ANN with a node structure 9-5-5-9 has its input layer being the modal frequencies of the first 3 

Ma Wan side span deck dominated modes and the first 6 tower dominated modes (categories (vi) 

and (vii)). It should be noted that the optimal configuration of a multilayer perceptron neural 

network targeting to maximize its prediction capability can be determined by dividing the training 

data into training and validation data sets and applying an appropriate regularization technique (Ni 

et al. 2009b). However, the ANNs formulated herein are purposed to retain auto-associative 

memory instead of prediction capability. By specifying the hidden layers with fewer nodes than 

the input and output layers, the ANNs are forced to compress redundancies in the input pattern 

while retaining prevailing features to the output. In the present study, the number of hidden nodes 

is empirically taken to be approximately half the input and output nodes. 

The computed modal frequencies from the FEM are added with normally distributed random 

noises with zero mean and 0.005 variance (about 1.5% maximum error) to form a series of 

noisy/uncertain „measured‟ data (500 data) of the healthy structure which are used to train the five 

ANNs and obtain the novelty index sequences in the training phase. Then a total of fifteen damage 

cases, as listed in Table 2, are considered in the simulation study to examine the performance of 

the improved novelty index for damage occurrence detection. By incurring the assumed damage in  
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Table 2 Simulated damage cases for TMB 

Case No. Description 

1 Damage of one bottom-chord (vertical) bearing at the Ma Wan tower 

2 Damage of one side-support (horizontal) bearing at the Ma Wan tower 

3 Damage of two side-support (horizontal) bearings at the Ma Wan tower 

4 10% reduction in the cross-sectional area of one Ma Wan side span cable 

5 0.5 m shift of one Ma Wan anchorage 

6 0.05 m slip of one saddle at the top of the Ma Wan tower 

7 0.05 m slip of two saddles at the top of the Ma Wan tower 

8 Damage of the top cross-beam of the Ma Wan tower 

9 Damage of two hangers on the north side near the mid-span 

10 Damage of two hangers on the south side near the mid-span 

11 Damage of two longitudinal bottom chords near the mid-span 

12 Damage of two bottom and two top chords near the mid-span 

13 Damage of two diagonal chords near the mid-span 

14 Damage of two bottom, two top and two diagonal chords near the mid-span 

15 Damage of two parallel rail waybeam sections near the mid-span 

 

 

the FEM, the modal frequencies for each damage case are calculated. They are then corrupted by 

normally distributed random noises with zero mean and 0.005 variance to generate the „measured‟ 

data in different damage cases. By feeding these new data into the trained ANNs, the novelty 

index sequence in the testing phase can be obtained for each case. If this sequence deviates from 

the novelty index sequence in the training phase, the occurrence of damage is alarmed. 

Figs. 6 and 7 show the novelty indices for Case 5 and Case 6 evaluated on the five ANNs. To 

facilitate judgment on the deviation between the training and testing phases, a threshold is also 

provided in the figures (dotted line). It is defined as   4  where   and  are the mean 

and standard deviation of the novelty index sequence over the training data. In Case 5, the novelty 

index sequences between the testing and training phases are just distinguishable (the deviation 

between the two phases is visually observable but less than the threshold) when evaluated on the 

1st, 3rd and 4th ANNs. When evaluated on the 2nd ANN, the novelty index sequence in the testing 

phase deviates significantly from the sequence in the training phase, unambiguously signaling the 

occurrence of damage (the deviation is larger than the threshold). When evaluated on the 5th 

ANN, the damage occurrence cannot be flagged because the novelty index sequences between the 

testing and training phases are indistinguishable. In Case 6, the novelty index sequences in the 

testing phase deviate significantly from the training phase when evaluated on all the five ANNs, 

unambiguously signaling the damage occurrence. It is found that in the noise level of 0.005 

variance (1.5% maximum error), the novelty index fails to indicate the occurrence of damage in 

Cases 1, 9, 10 and 15. For the damage at deck members (Cases 11 to 14), the novelty index is able 

to detect the occurrence of damage only when the damage occurs at two top chords, two bottom 

chords and two diagonal members simultaneously (Case 14). In Cases 2, 3, 7 and 8, the novelty 

index clearly indicates the damage occurrence. In Case 4, the novelty index sequences between the 

testing and training phases are just distinguishable. Table 3 summarizes the performance of the 

five ANNs in damage occurrence detection for all fifteen cases. 

It is interesting to relate the damage detectability by means of the novelty index with the level  
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Fig. 6 Novelty index evaluated on the testing data in Case 5 of TMB 

 

 

of modal frequency change ratios caused by damage. Table 4 lists the evaluated maximum 

frequency change ratios of the first 60 modes of the bridge corresponding to the fifteen damage 

cases. It is found that when the maximum frequency change ratio  is less than 0.3% (Cases 1, 9, 
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10, 11, 12, 13 and 15), the damage occurrence cannot be flagged by the proposed novelty index. 

This is because the maximum frequency change ratios in these damage cases are far less than the 

noise level (1.5% maximum error). When the maximum frequency change ratio  is between 

0.3% and 1.0% (Cases 4 and 14), the damage is just detectable with a weak alarming signature (the 
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Fig. 7 Novelty index evaluated on the testing data in Case 6 of TMB 
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Table 3 Structure of ANNs for TMB and damage detection results 

ANN 

No. 
Input and output vectors 

Node 

structure 

Damage cases successfully 

detected 

I 11 modal frequencies of category (i) 11-6-6-11 Cases 5, 6, 7, and 8 

II 11 modal frequencies of category (ii) 11-6-6-11 Cases 2, 3, 5, 6, 7 and 8 

III 17 modal frequencies of category (iii) 17-9-9-17 Cases 2, 3, 4, 5, 6, 7, 8 and 14 

IV 
4 modal frequencies of category (iv) and 8 

modal frequencies of category (v) 
12-6-6-12 Cases 2, 3, 4, 5, 6, 7 and 8 

V 
3 modal frequencies of category (vi) and 6 

modal frequencies of category (vii) 
9-5-5-9 Cases 2, 3, 6, 7, 8 and 14 

 
Table 4 Damage-caused maximum frequency change ratio for TMB 

Case No. Case 1 Case 2 Case 3 Case 4 Case 5 

 (%) 0.0873 2.3773 3.0048 0.4556 1.4968 

Case No. Case 6 Case 7 Case 8 Case 9 Case 10 

 (%) 3.5823 7.2066 1.8622 0.0786 0.0672 

Case No. Case 11 Case 12 Case 13 Case 14 Case 15 

 (%) 0.1688 0.2030 0.0693 0.8843 0.2037 

 
 
deviation is less than the threshold). The novelty index can unambiguously alarm the damage 

states when the maximum frequency change ratio  is greater than 1.0% (Cases 2, 3, 5, 6, 7, and 8). 

 
3.2 Cable-stayed Ting Kau Bridge (TKB) 
 

The TKB as illustrated in Fig. 8 is a cable-stayed bridge with two main spans of 448 m and 475 

m respectively, and two side spans of 127 m each. It has single-deck carrying a dual four-lane 

expressway and three single-leg towers supporting the deck. In the bridge, each of the two halves 

of the deck consists of two longitudinal steel girders along the deck edges with steel cross-girders 

and a concrete slab on top. Every third cross-girder is extended continuously to the central cross-

girder to connect the two carriageways. The four main longitudinal girders carry the main load 

effects from the deck to the stay cables. The deck is supported only at the central tower in the 

longitudinal direction. In the transverse direction, the deck is supported at all three towers. On both 

ends of the bridge, the deck is vertically connected by rocker bearings into the northern end pier 

and the southern end abutment. The critical problem of a multi-span cable-stayed bridge is the 

stabilization of the central tower. Therefore, longitudinal stabilizing cables, with the length up to 

464.6 m, are installed to stabilize the central tower. Transverse stabilizing cables are also used to 

strengthen each tower in sway direction. There are totally 456 cables including 384 main stay 

cables in four cable planes, 64 transverse stabilizing cables and 8 longitudinal stabilizing cables. 

A precise 3D FEM containing 5,581 elements and 2,901 nodes has been developed for the TKB 

by using the commercial ABAQUS software. The modeling is based on the same criteria as for the 

modeling of the TMB. In this FEM, the bridge deck is modeled by membrane/shell elements to 

account for the horizontal thrust ability, while its bending stiffness is represented in the steel grid 

structure as nominal flanges of the longitudinal girders and cross-girders. The towers are modeled 

as Timoshenko‟s beam elements. The geometric distances between cable ends and the cross- 
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Fig. 8 Cable-stayed Ting Kau Bridge (TKB) 

 

 

section centroids of the deck and towers are represented by rigid bars. A key issue in the modeling 

of the TKB is how to model the total 456 cables to realize a compromise between the model scale 

(system degrees of freedom) and the model accuracy (reflecting the influence of cable vibration). 

After a comparison between adopting a multi-element cable system for all the cables and modeling 

the main stay cables, longitudinal stabilizing cables and transverse stabilizing cables as single-

element cable systems in turn, a hybrid-element strategy is finally used in the modeling where the 

longitudinal stabilizing cables are modeled by a multi-element cable system while the other cables 

are modeled by a single-element cable system. 

Modal analysis with the FEM shows that the modal frequencies of the TKB are closely spaced 

and the frequencies of the first 100 modes are less than 1.0 Hz. The vibration modes of the TKB 

can be classified into the following categories: (i) global vertical bending modes, (ii) global lateral 

bending modes, (iii) global torsional modes, (iv) cable local out-of-plane modes, and (v) cable 

local in-plane modes. The first three categories are global modes while the latter two are local 

modes of the longitudinal stabilizing cables. All the global modes are accompanied with local 

vibration components of the cables to some extent. With the above modal classification, five 

ANNs configured in terms of the improved novelty index are formulated for damage occurrence 

detection of the TKB: the 1st ANN with a node structure 11-6-6-11 has its input layer being the 

modal frequencies of the first 11 the global vertical bending modes (category (i)); the 2nd ANN 

with a node structure 6-4-4-6 has its input layer being the modal frequencies of the first 6 global 

lateral bending modes (category (ii)); the 3rd ANN with a node structure 12-9-9-12 has its input 

layer being the modal frequencies of the first 12 global torsional modes (category (iii)); the 4th 

ANN with a node structure 18-11-11-18 has its input layer being the modal frequencies of the first 

18 cable local out-of-plane modes (category (iv)); and the 5th ANN with a node structure 13-9-9-

13 has its input layer being the modal frequencies of the first 13 cable local in-plane modes 

(category (v)).  

A series of „measured‟ modal frequencies of the healthy structure are obtained by adding to the 

computed modal frequencies from the FEM normally distributed random noises with zero mean 

and 0.005 variance, which are used to train the five ANNs and obtain the novelty index sequences 

in the training phase. A total of eleven damage cases, as listed in Table 5, are introduced for the 

damage detection simulation study. The modal frequencies for each damage case are calculated by 

incurring the simulated damage in the FEM, which are then corrupted by normally distributed  
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Table 5 Simulated damage cases for TKB 

Case No. Description 

1 20% tension force reduction of one longitudinal stabilizing cable 

2 20% tension force reduction of two longitudinal stabilizing cables 

3 90% tension force loss of one main stay cable 

4 90% tension force loss of two main stay cables 

5 90% tension force loss of four main stay cables 

6 Damage of a longitudinal bearing at the central tower 

7 Damage of an anchorage bearing at the Tsing Yi abutment 

8 Damage of one longitudinal girder section 

9 Damage of two longitudinal girder sections and two cross-girder sections 

10 Damage of one connecting cross-girder 

11 Damage of two connecting cross-girders 

 

 

random noises with zero mean and 0.005 variance to generate the „measured‟ data in the damage 

state. By presenting these data into the trained ANNs, the novelty index sequences in the testing 

phase are obtained. 

Figs. 9 and 10 show the novelty indices for Case 1 and Case 7 evaluated on the five ANNs. In 

Case 1 (the damage is simulated by a 20% reduction of tension force in a longitudinal stabilizing 

cable), the novelty index sequences in the testing phase deviate significantly from the sequences in 

the training phase when evaluated on the 1st, 3rd and 4th ANNs, unambiguously signaling the 

damage occurrence. The damage occurrence cannot be flagged when evaluated on the 2nd and 5th 

ANNs. In Case 7 (the damage is incurred in an anchorage bearing at the Tsing Yi abutment), the 

novelty index evaluated on the 1st ANN unambiguously signals the occurrence of damage, with 

the deviation being larger than the threshold. When evaluated on the 2nd ANN, the novelty index 

sequences in the training and testing phases are clearly distinguishable although the deviation is 

less than the threshold. The damage occurrence cannot be flagged when evaluated on the 3rd, 4th 

and 5th ANNs, where the novelty index sequences in the two phases are indistinguishable. It is 

observed that in the noise level of 0.005 variance (1.5% maximum error), the novelty index 

cannot indicate the occurrence of damage in some cases. Table 6 summarizes the performance of 

the five ANNs in damage occurrence detection for all eleven cases. 

Table 7 lists the evaluated maximum frequency change ratios of the first 125 modes of the 

bridge corresponding to the eleven damage cases. It is found that when the maximum frequency 

change ratio  is less than 0.4%, the damage occurrence cannot be flagged by the proposed novelty 

index (Cases 3, 4, 5, 8 and 10). When the maximum frequency change ratio  is between 0.4% and 

1.0% (Cases 9 and 11), the damage is just detectable with a weak alarming signature. The novelty 

index can unambiguously alarm the damage states when the maximum frequency change ratio  is 

greater than 1.0% (Cases 1, 2, 6 and 7). Under the identical noise level (0.005 variance), the 

minimum frequency change ratio for the TKB (0.4%) which makes damage detectable by the 

proposed novelty detection technique is slightly different from that for the TMB (0.3%); whereas 

they are fairly consistent with each other. The difference between them is primarily attributed to 

different structural type and scale (and therefore different redundancy degree) between the two 

bridges, which results in different modal sensitivity of the two bridges to damage in the same 

extent. 

353



 

 

 

 

 

 

Yi-Qing Ni, Junfang Wang and Tommy H.T. Chan 

 

 

 

 

 
Training / testing data 

Fig. 9 Novelty index evaluated on the testing data in Case 1 of TKB 
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Training / testing data 

Fig. 10 Novelty index evaluated on the testing data in Case 7 of TKB 
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Table 6 Structure of ANNs for TKB and damage detection results 

ANN No. Input and output vectors Node structure 
Damage cases successfully 

detected 

I 11 modal frequencies of category (i) 11-6-6-11 Cases 1, 2, 6, 7, 9 and 11 

II 6 modal frequencies of category (ii) 6-4-4-6 Cases 6 and 7 

III 12 modal frequencies of category (iii) 12-9-9-12 Cases 1, 2 and 6 

IV 18 modal frequencies of category (iv) 18-11-11-18 Cases 1 and 2 

V 13 modal frequencies of category (v) 13-9-9-13 Case 2 

 
Table 7 Damage-caused maximum frequency change ratio for TKB 

Case No. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 (%) 3.7015 3.7926 0.0268 0.0537 0.1348 6.4518 

Case No. Case 7 Case 8 Case 9 Case 10 Case 11  

 (%) 2.9527 0.3968 0.7044 0.3749 0.9570  

 
 
4. Identification of damage region by multi-novelty indices 
 

For model-free damage detection methods, using only the measured modal frequencies is 

impossible to locate damage. In this study, we extend the novelty detection technique to diagnose 

the damage region without need of structural model. Multi-novelty indices constructed in terms of 

modal flexibility coefficients are developed for this purpose. Following this approach, the bridge is 

partitioned into a set of structural regions and it is assumed that there are vibration transducers at 

each region. For each structural region, an ANN is formulated by taking the modal flexibility 

coefficients as input feature, which are calculated using the global modal frequencies and a few 

localized modeshape components measured from the sensors deployed within this region. The 

damage region is signaled by the corresponding novelty index if it exhibits a drift from the training 

phase to the testing phase. The modal flexibility matrix [F] can be calculated from the modal 

frequency matrix [Λ] and the mass-normalized modeshape matrix [Ф] as follows 

       
][][][][ 1   T

F
 

(8) 

where the elements of the modal flexibility matrix [F] are obtained by 
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(9) 

If the novelty index sequence in the testing phase deviates from that in the training phase, the 

occurrence of structural damage/anomaly is flagged; if they are indistinguishable, no damage is 

signaled. 

In practice, only a limited number of modes and a few modeshape components can be 

measured for a complex civil structure. An advantage of using modal flexibility is that the modal 

flexibility matrix of a structure can be accurately estimated by considering only a few low-order  
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(a) Novelty index I (b) Novelty index II 

  
(c) Novelty index III (d) Novelty index IV 

 
(e) Novelty index V 

Fig. 11 Multi-novelty indices using modal flexibility for damage localization (Case 11 of TMB) 

 

 

modes, because the modal contribution to flexibility decreases as frequency increases. Therefore, 

using a limited number of modes and a few modeshape components, the flexibility matrix can be 

expressed as the following approximate equation (Ni et al. 2008) 

    pmmm
T

mppp   ][][][][ F
 

(10) 

where m denotes the number of measured or selected modes; and p denotes the number of 

measured modeshape components (measured DOFs). Both m and p are substantially smaller than 

the total number of DOFs in the analytical model, n. In the present study, only the diagonal terms 

of [F]pp are used. 
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(a) Novelty index I (b) Novelty index II 

  
(c) Novelty index III (d) Novelty index IV 

Fig. 12 Multi-novelty indices using modal flexibility for damage localization (Case 10 of TKB) 

 

 

The diagonal components of the measurement-derived modal flexibility matrix are used instead 

of the modal frequencies as input feature to train an ANN and to obtain a novelty index for each 

region. As such, multi-novelty indices are formulated for different regions. The damage region is 

signaled by the corresponding novelty index that displays drift from the training phase to the 

testing phase. In the following, we demonstrate the applicability of the proposed method for 

structural damage region identification by taking the TMB and TKB as examples. 

 

4.1 Suspension Tsing Ma Bridge (TMB) 
 

We consider only the main span deck of the TMB in this example. As illustrated in Fig. 2, the 

main span of the TMB is partitioned into five regions. It is assumed that for each region five 

modal components are measured. Then the modal flexibility values (diagonal components) at the 

five nodes for each region are computed by taking the first five global modes, and further 

corrupted independently with normally distributed random noises with zero mean and 0.005 

variance to generate the „measured‟ modal flexibility sequences. Five ANNs, one for each region, 

are configured with a node structure 5-3-3-5 for damage region identification. Each ANN is 

trained using only the five modal flexibility sequences obtained in the relevant region. The 

previous Case 11 of the TMB is examined here (the damage is assumed by removing two 

longitudinal bottom chords near the mid-span). Fig. 11 shows the novelty detection results by 

means of the multi-novelty indices in this case. In the structural regions I, II, IV and V, no damage 

is signaled because the novelty index sequences in training phase do not deviate from their 
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counterparts in testing phase. For the structural region III, the novelty index sequence in the 

training phase evidently deviates from that in the testing phase (although the deviation is less than 

the threshold), indicating damage occurrence in this region. Indeed, the true damage occurs at the 

mid-span deck section within the region III.  

 
4.2 Cable-stayed Ting Kau Bridge (TKB) 
 

We partition the TKB into four regions as shown in Fig. 8. It is assumed that for each region 

six modal components of the nodes at girders and longitudinal stabilizing cables are measured. 

The modal flexibility values (diagonal components of the flexibility matrix) at the six nodes for 

each region are computed by taking the first five global modes. These analytical values are 

corrupted independently with normally distributed random noises with zero mean and 0.005 

variance to generate the „measured‟ modal flexibility sequences. Four ANNs, one for each region, 

are configured with a node structure 6-4-4-6 for damage region identification. Each ANN is 

trained using only the six modal flexibility sequences obtained in the relevant region. The previous 

Case 10 for the TKB is examined here (the damage is assumed by losing the stiffness of a cross-

girder). The damage location is nearly in the middle of the Tsing Yi main span (at the deck section 

between the outermost cable stretching from the central tower and the outermost cable stretching 

from the Tsing Yi tower). Fig. 12 shows the novelty detection results by using the multi-novelty 

indices. The novelty indices indicate no damage in the regions I and II, and alarm damage in the 

regions III and IV. In fact, the true damage occurs at the intersection between the regions III and 

IV, and therefore the novelty indices indicate the damage simultaneously at the two regions. 

 
 
5. Conclusions 
 

This paper presents a feasibility study on the detection of damage occurrence and damage 

region by using an improved novelty index formulated in terms of auto-associative neural 

networks (ANNs) and a multi-novelty index technique, both being free of structural model. For the 

detection of damage occurrence, only measured modal frequencies are required to train ANNs and 

to formulate the improved novelty index for damage alarming. For the identification of damage 

region, it is required to measure a few modeshape components for each region as well. The modal 

flexibility values (diagonal components of the flexibility matrix) obtained from the measured 

modal frequencies and incomplete modeshape components are used to train ANNs and to 

formulate multi-novelty indices for damage localization. The proposed techniques are verified 

through numerical simulations by using FEMs of the suspension Tsing Ma Bridge (TMB) and the 

cables-stayed Ting Kau Bridge (TKB). According to the modal classification, five ANNs are 

configured for the TMB and TKB, respectively, to identify the occurrence of structural damage. 

The multi-novelty indices for damage region identification are constructed using five modeshape 

components at each region and the modal frequencies of the first five global modes in the TMB 

case and using six modeshape components at each region and the modal frequencies of the first 

five global modes in the TKB case. The numerical simulations with the aid of FEMs enable the 

consideration of different types and extents of damage and help to reveal the relationship between 

damage detectability by the proposed novelty detection technique and the damage-caused modal 

frequency change ratio. The following conclusions are drawn from the present study: 

1. For the TMB, when only modal frequencies are used and normally distributed random noises 
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with zero mean and 0.005 variance (1.5% maximum error) are considered, the ANN-based 

novelty detectors are able to unambiguously alarm the damage states if the damage-caused 

maximum modal frequency change ratio is greater than 1.0%. When the maximum modal 

frequency change ratio is between 0.3% and 1.0%, the damage is just detectable with a weak 

alarming signature. The occurrence of damage cannot be flagged if the maximum modal frequency 

change ratio is less than 0.3%; 

2. For the TKB, when only natural frequencies are used and normally distributed random noises 

with zero mean and 0.005 variance (1.5% maximum error) are considered, the ANN-based 

novelty detectors are able to unambiguously alarm the damage states if the damage-caused 

maximum modal frequency change ratio is greater than 1.0%. When the maximum modal 

frequency change ratio is between 0.4% and 1.0%, the damage is just detectable with a weak 

alarming signature. The occurrence of damage cannot be flagged if the maximum modal frequency 

change ratio is less than 0.4%; 

3. The multi-novelty indices in terms of modal flexibility values derived using the measured 

modal frequencies and incomplete modeshape components can provide identification of the 

damage region in the TMB and TKB without need of structural model. However, the proposed 

method is operational on the assumption that there exist vibration transducers in each region to 

measure a few modal components. The proposed method also requires a series of measurements of 

the modal data in both healthy and damage states. 
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