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Abstract.  The present investigation is concerned with a study effect of magnetic field and non-

homogenous on the elastic stresses in rotating orthotropic infinite circular cylinder. A certain boundary 

conditions closed form stress fields solutions are obtained for rotating orthotropic cylinder under initial 

magnetic field with constant thickness for three cases: (1) Solid cylinder, (2) Cylinder with a circular hole at 

the center, (3) Cylinder mounted on a circular rigid shaft. Analytical expressions for the components of the 

displacement and stress fields in different cases are obtained. The effect of rotation and magnetic field and 

non-homogeneity on the displacement and stress fields are studied. Numerical results are illustrated 

graphically for each case. The effects of rotating and magnetic field and non-homogeneity are discussed. 
 

Keywords:  magnetic field; rotation; free vibrations; non-homogeneous; orthotropic cylinder 

 
 
1. Introduction 
 

In the past, with increasing application of composite and orthotropic materials in rotating 

components machinery and structures (e.g., flywheels, turbines, etc.), study of plane elastic wave 

propagation in a non-rotating medium is receiving considerable attention in recent years. In the 

past, accident of rotating cylinder wheels due to flexural vibration has frequently occurred in rot-

dynamic machinery such as steam turbines and gas turbines. At the present time, applied 

mathematicians are exhibiting considerable interest in dynamical methods of elasticity, since the 

usual quasi-static approach ignores certain very important features of the problems. That approach 

is based on the assumption that the inertia terms may be omitted from the equations of motion. 

This assumption holds good but arise number of problems in engineering and technology. When 

this assumption may not hold good, the inertia terms in the equations of motion may lead to cases 

of considerable mathematical complications, which increase application of composite and 

orthotropic materials in rotating components of machinery and structures (e.g., flywheels and 
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turbines). This mater has attracted the attention of many researchers such as Abid and Khan 

(2013), Selvamani and Ponnusamy (2013), Marin et al. (2013), Abd-Alla and Yahya (2013), Abd-

Alla et al. (2013), Abd-Alla and Mahmoud (2013), Abd-Alla et al. (2011). The recent trend of 

research concerning non-homogeneous elasticity may be found in the works of all Noda et al. 

(1986), Tsai (1993), Chandrasekharaiah and Keshavan (1991). Generalized thermoelastic infinite 

medium with cylindrical cavity subjected to moving heat source was investigated by Youssef 

(2009). Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section 

was studied by Ponnusamy (2007). Stress concentration in elastic bodies, i.e., local accumulation 

of stresses arise in the presence of material discontinuities such as those due to inclusions of 

materials with elastic properties which differ from those of the surrounding matters, may be found 

in the works of Mahmoud (2014, 2012), Mahmoud et al. (2011), Mahmoud et al. (2011), 

Mahmoud (2010, 201). McGeeIII and Kim (2010) investigated the three-dimensional vibrations of 

cylindrical elastic solids with v-notches and sharp radial cracks. Vibration and radial wave 

propagation velocity in functionally graded thick hollow cylinder was studied by Shakeri, et al. 

(2006). Buchanan (2003) investigated the free vibration of an infinite magneto-electro-elastic 

cylinder. Exact analysis of the plane-strain vibrations of thick-walled hollow poroelastic cylinders 

has been studied by Reddy and Tajuddin (2000). Wang et al. (2010) investigated the three-

dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic 

cylindrical panels. Heyliger and Jilani (1992) studied the free vibrations of inhomogeneous elastic 

cylinders and spheres. Abd-Alla and Mahmoud (2012), Abd-Alla et al. (2011, 2012) studied analytical 

solution of wave propagation in non-homogeneous orthotropic rotating elastic media, wave 

propagation modeling in cylindrical human longe wet bones with cavity, the problem of transient 

coupled thermoelasticity of an annular fin. Chen et al. (2005, 2004) investigated the free vibration 

and general solution of non-homogeneous transversely isotropic magneto-electro-elastic hollow 

cylinders. Zhou and Lo (2012) studied the three-dimensional vibrations of annular thick plates with 

linearly varying thickness. Toudeshky et al. (2009) studied sound transmission into a thick hollow 

cylinder with the fixed and boundary condition. Buchanan (2003) investigated the free vibration of 

an infinite magneto-electro-elastic cylinder. Mofakhami et al. (2006) investigated the finite 

cylinder vibration with different end boundary conditions.  

The present investigation is concerned with a study effect of non-homogenous on the elastic 

stresses in rotating orthotropic infinite circular cylinder subjected to magnetic field. The solutions 

have been obtained in analytical form. In both cases, the stresses have been calculated. Finally, 

comparisons between both cases are clarified by figures. The stresses in rotating cylinder made of 

orthotropic materials will be found for the following three cases:  

(1) a solid cylinder ;  

(2) a cylinder mounted on a circular rigid shaft ; 

(3) a cylinder with a circular hole at the center.  

 

 

2. Formulation of the problem 
 

Let us consider a cylindrical coordinate systems (r,,z) with z-axis coinciding with the axis of 

cylinder. We consider the strains symmetric about z-axis. The radial displacement ur=u, u is a 

function of r and t only, the circumferential displacement u=0 and the longitudinal displacement 

uz=0, which are independent of  and z. let H


(0,0,Hz), the analysis is based on the following 

assumptions (1) the infinitesimal elasticity theory of an orthotropic body (2) the materials are 
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macroscopically homogeneous and cylindrically orthotropic; (3) stress-strain relations obey a 

generalized Hook’s law; (4) the condition of plane strain is used. In plane strain in the plane 

perpendicular to the z-axis, u is a function of r alone the stresses components are given by 

𝜎𝑟𝑟 = 𝑐11
𝑑𝑢

𝑑𝑟
+ 𝑐12

𝑢

𝑟
, 

𝜎𝜃𝜃 = 𝑐12
𝑑𝑢

𝑑𝑟
+ 𝑐22

𝑢

𝑟
, 

𝜎𝑧𝑧 = 𝑐13
𝑑𝑢

𝑑𝑟
+ 𝑐23

𝑢

𝑟
, 

𝜏𝑟𝑟 = 𝜇𝑒𝐻𝑧
2(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
), 

 𝜏𝑟𝑧 = 𝜏𝜃𝑧 = 0.                        (1) 

The equilibrium equation in the direction of r is given by 

𝑑𝜎𝑟𝑟

𝑑𝑟
+
1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) + 𝜌𝛺

2𝑟 + 𝐹𝑟 = 0,     (2)  

where 𝑐𝑖𝑗 are the elastic constants,  is the uniform angular velocity about z-axis, 𝛺⃗ (0,0, 𝛺) and 

 is the density of the cylinder. Fr the radial component of Lorentz's force. 

𝐹𝑟 = 𝜇𝑒𝐻𝑧
2 𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
).                             (3) 

We characterize the elastic constants cij and  and 𝜇𝑒 of non-homogeneous material , the elastic 

constants and the density are power functions of the radial coordinate 

𝑐𝑖𝑗 = 𝛼𝑖𝑗𝑟
2𝑚 , 𝜌 = 𝜌0𝑟

2𝑚, 𝜇𝑒 = 𝜇𝑒𝑜𝑟
2𝑚 at i=1,2; j=1,2,3          (4) 

where α𝑖𝑗, o, 𝜇𝑒𝑜  are constants and m is rational number. The elastic matrix of the elastic 

constants is 

(

 
 
 

𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐22 𝑐23 0 0 0
𝑐13 𝑐23 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66)

 
 
 

 

 

 

3. Solution of the problem 
 

We seek the solution of Eq. (2) as 

𝑑𝜎𝑟𝑟

𝑑𝑟
+
1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) + 𝜌𝛺

2𝑟 + 𝜇𝑒𝐻𝑧
2 𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
) = 0.                (5) 

Multiple Eq. (5) by r 

𝑟
𝑑𝜎𝑟𝑟

𝑑𝑟
+ 𝜎𝑟𝑟 − 𝜎𝜃𝜃 + 𝜌𝛺

2𝑟2 + 𝜇𝑒𝐻𝑧
2 𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
) = 0, 
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𝑑

𝑑𝑟
(𝑟𝜎𝑟𝑟) − 𝜎𝜃𝜃 + 𝜌𝛺

2𝑟2 + 𝜇𝑒𝐻𝑧
2 𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
) = 0, 

𝑑

𝑑𝑟
(𝑟𝜎𝑟𝑟) − 𝜎𝜃𝜃 + 𝜌𝛺

2𝑟2 + 𝜇𝑒𝐻𝑧
2𝑟

𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
) = 0,                (6) 

by using Eqs. (1), (2), (6) 

𝑑

𝑑𝑟
(𝑟𝛼11𝑟

2𝑚
𝑑𝑢

𝑑𝑟
+ 𝛼12𝑟

2𝑚𝑢) − (𝛼12𝑟
2𝑚 𝑑𝑢

𝑑𝑟
+ 𝛼22𝑟

2𝑚
𝑢

𝑟
)

+𝜌𝑜𝑟
2𝑚𝛺2𝑟2 + 𝜇𝑒𝑜𝐻𝑧

2𝑟2𝑚𝑟
𝑑

𝑑𝑟
(
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
) = 0.

 

(2𝑚 + 1)𝑟2𝑚𝛼11
𝑑𝑢

𝑑𝑟
+ 𝛼11𝑟

2𝑚:1
𝑑2𝑢

𝑑𝑟2
+ 2𝑚𝛼12𝑟

2𝑚;1𝑢 + 𝛼12
𝑑𝑢

𝑑𝑟
𝑟2𝑚

−𝛼12𝑟
2𝑚
𝑑𝑢

𝑑𝑟
− 𝛼22𝑟

2𝑚
𝑢

𝑟
+ 𝜌𝑜𝑟

2𝑚𝛺2𝑟2

+𝜇𝑒𝑜𝐻𝑧
2𝑟2𝑚:1 [

𝑑2𝑢

𝑑𝑟2
+
1

𝑟

𝑑𝑢

𝑑𝑟
−
𝑢

𝑟2
] = 0 , (𝑟2𝑚;1 ≠ 0)

 

𝑟2(𝛼11 + 𝜇𝑒𝑜𝐻𝑧
2)
𝑑2𝑢

𝑑𝑟2
+ [(2𝑚 + 1)𝛼11 + 𝜇𝑒𝑜𝐻𝑧

2]𝑟
𝑑𝑢

𝑑𝑟

+(2𝑚𝛼12 − 𝛼22 − 𝜇𝑒𝑜𝐻𝑧
2)𝑢 + 𝜌𝑜𝑟

3𝛺2 = 0(÷ (𝛼11 + 𝜇𝑒𝑜𝐻𝑧
2)) ,

         (7) 

one obtain 

𝑟2
𝑑2𝑢

𝑑𝑟2
+
[(2𝑚 + 1)𝛼11 + 𝜇𝑒𝑜𝐻𝑧

2]

[𝛼11 + 𝜇𝑒𝑜𝐻𝑧
2]

𝑟
𝑑𝑢

𝑑𝑟
+
(2𝑚𝛼12 − 𝛼22 − 𝜇𝑒𝑜𝐻𝑧

2)

(𝛼11 + 𝜇𝑒𝑜𝐻𝑧
2)

𝑢 

= −
𝜌𝑜𝛺

2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
𝑟3.      (8) 

The homogenous solution of Eq. (8) 

𝑟2
𝑑2𝑢

𝑑𝑟2
+
[(2𝑚:1)𝛼11:𝜇𝑒𝑜𝐻𝑧

2]

[𝛼11:𝜇𝑒𝑜𝐻𝑧
2]

𝑟
𝑑𝑢

𝑑𝑟
+
(2𝑚𝛼12;𝛼22;𝜇𝑒𝑜𝐻𝑧

2)

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

𝑢 = 0,           (9) 

This equation is Euler’s equation the solution is u=r

, 𝜆 ∉ 𝑅 substitution in Eq. (9) we obtain 

𝜆2 +
2𝑚𝛼11

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
𝜆 +

(2𝑚𝛼12;𝛼22;𝜇𝑒𝑜𝐻𝑧
2)

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

= 0 , 

 𝜆 =
1

2
[

;2𝑚𝛼11

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
±√

4𝑚2𝛼11
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)2
−
4(2𝑚𝛼12;𝛼22;𝜇𝑒𝑜𝐻𝑧

2)

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

] , 

𝜆 =
;𝑚𝛼11

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
±√

𝑚2𝛼11
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)2
−
(2𝑚𝛼12;𝛼22;𝜇𝑒𝑜𝐻𝑧

2)

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

 , 

𝑢𝐻 = 𝐴𝑟
;

2𝑚𝛼11
(𝛼11+𝜇𝑒𝑜𝐻𝑧

2)
:𝑘
+ 𝐵𝑟

;
2𝑚𝛼11

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)
;𝑘

 , 

where 𝑘2 =
𝑚2𝛼11

2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)2
−
(2𝑚𝛼12;𝛼22;𝜇𝑒𝑜𝐻𝑧

2)

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

 , 

The particular solution of Eq. (8) up=R r
3 
by substitution in Eq. (8) we obtain 
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𝑅 =
;𝜌𝑜𝛺

2

9𝛼11:8𝜇𝑒𝑜𝐻𝑧
2:6𝑚𝛼11:2𝑚𝛼12;𝛼22

,                (10) 

Hence 

𝑢(𝑟) = 𝐴𝑟
;

𝑚𝛼11
(𝛼11+𝜇𝑒𝑜𝐻𝑧

2)
:𝑘
+ 𝐵𝑟

;
𝑚𝛼11

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)
;𝑘
+ 𝑅𝑟3,                (11) 

where A, B are arbitrary constants, R given from Eq. (10). Substituting Eq. (11) into Eqs. (1), (2) to 

find the components of stresses, we obtain 

𝜎𝑟𝑟 = 𝐴𝛽1𝑟

𝑚𝛼11+2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝐵𝛽2𝑟

𝑚𝛼11+2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

;𝑘;1
+ 𝛽3𝑟

2𝑚:2 ,         (12) 

where 𝛽1 = 𝛼11(
;𝑚𝛼11

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
+ 𝑘) + 𝛼12, 

𝛽2 = 𝛼12 − 𝛼11(
𝑚𝛼11

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)
+ 𝑘), 𝛽3 = (3𝛼11 + 𝛼12)𝑅, 

𝜎𝜃𝜃 = 𝐴𝛾1𝑟

𝑚𝛼11+2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝐵𝛾2𝑟

𝑚𝛼11+2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

;𝑘;1
+ 𝛾3𝑟

2𝑚:2,         (13) 

where γ1 = α22 + α12(
;𝑚α11

(α11:μ𝑒𝑜𝐻𝑧
2)
+ 𝑘) , γ2 = α22 − α12(

𝑚α11

(α11:μ𝑒𝑜𝐻𝑧
2)
+ 𝑘) , γ3 = 𝑅(3α12 +

α22). 
 

3.1 Case I: a solid cylinder with radius b 
 

The constant A, B are determined by the continuity condition at the center of cylinder 

u = 0 at r = 0                               (14) 

If there are no forces applied there, then 

rr = 0 at r = b                               (15) 

Substituting Eq. (14) into Eq. (11) we obtain 

B = 0,  k > m.                          (16) 

Eq. (12) become 

𝜎𝑟𝑟 = 𝐴𝛽1𝑟

𝑚𝛼11+2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝛽3𝑟

2𝑚:2.                     (17) 

Then, by substituting (15) into Eq. (17) we obtain 

𝐴 = −
𝛽3

𝛽1
𝑏

𝑚𝛼11
(𝛼11+𝜇𝑒𝑜𝐻𝑧

2)
;𝑘:3

.                         (18) 

Substituting Eqs. (18), (16) into Eqs. (11), (13) and (17) 

𝑢 = −
β3

β1
𝑏

𝑚α11
(α11+μ𝑒𝑜𝐻𝑧

2)
;𝑘:3

𝑟
;

𝑚α11
(α11+μ𝑒𝑜𝐻𝑧

2)
:𝑘
+ 𝑅𝑟3,                (19) 

σ𝑟𝑟 = −β3𝑏
𝑚α11

(α11+μ𝑒𝑜𝐻𝑧
2)
;𝑘:3

𝑟

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ β3𝑟

2𝑚:2,  
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σθθ =
;β3

β1
γ1𝑏

𝑚α11
(α11+μ𝑒𝑜𝐻𝑧

2)
;𝑘:3

𝑟

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

;𝑘;1
+ γ3𝑟

2𝑚:2, 

 

3.2 Case II: a hollow circular cylinder with internal and external radius a and b, 
respectively 

 

The boundary conditions 

rr = 0 at r = a, rr = 0 at r = b                          (20) 

Substituting Eq. (20) into Eq. (12) we obtain 

𝐴β1𝑎

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝐵β2𝑎

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

;𝑘;1
+ β3𝑎

2𝑚:2 = 0, 

𝐴β1𝑏

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝐵β2𝑏

𝑚α11+2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

;𝑘;1
+ β3𝑏

2𝑚:2 = 0.         (21) 

Solving Eq. (21) together we obtain 

𝐴 =
β3

β1
𝑎

−𝑚α11−2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3 [(
𝑏

𝑎
)

−𝑚α11−2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

−𝑘+2𝑚+3

;(
𝑏

𝑎
)−2𝑘]

[(
𝑏

𝑎
)−2𝑘;1]

,            (22) 

𝐵 =
𝛽3

𝛽2
𝑎

−𝑚𝛼11−2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

:𝑘:2𝑚:3 [(
𝑏

𝑎
)

−𝑚𝛼11−2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11+𝜇𝑒𝑜𝐻𝑧
2)

−𝑘+2𝑚+3

;1]

[1;(
𝑏

𝑎
)−2𝑘]

 ,             (23) 

Substituting Eqs. (22) and (23) into Eqs. (11)-(13) we obtain 

𝑢 =
β3
β1
𝑎

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3 [(
𝑏
𝑎)

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− (
𝑏
𝑎)
;2𝑘]

[(
𝑏
𝑎)
;2𝑘 − 1]

𝑟

;𝑚α11
(α11:μ𝑒𝑜𝐻𝑧

2)
:𝑘
+
β3
β2
𝑎

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

:𝑘:2𝑚:3
𝑟

;𝑚α11
(α11:μ𝑒𝑜𝐻𝑧

2)
;𝑘

[(
𝑏
𝑎)

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− 1]

[(
𝑏
𝑎)
;2𝑘 − 1]

+ 𝑅𝑟3,

 

𝜎𝑟𝑟 = 𝛽3𝑎

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3 [(
𝑏
𝑎)

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− (
𝑏
𝑎)
;2𝑘]

[(
𝑏
𝑎)
;2𝑘 − 1]
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𝑟

𝑚𝛼11:2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ 𝛽3𝑎

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

:𝑘:2𝑚:3
𝑟

𝑚𝛼11:2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘;1

[(
𝑏
𝑎
)

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− 1]

[1 − (
𝑏
𝑎
);2𝑘]

+ 𝛽3𝑟
2𝑚:2 ,

 

σθθ = γ1
β3
β1
𝑎

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3 [(
𝑏
𝑎
)

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− (
𝑏
𝑎
);2𝑘]

[(
𝑏
𝑎
);2𝑘 − 1]

𝑟

𝑚α11:2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

:𝑘;1
+ γ2

β3
β2
𝑎

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

:𝑘:2𝑚:3
𝑟

𝑚α11:2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘;1

[(
𝑏
𝑎)

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3
− 1]

[1 − (
𝑏
𝑎)
;2𝑘]

+ γ3𝑟
2𝑚:2.

 

 

3.3 Case III: a hollow circular cylinder with external radius b mounted on a rigid shaft 
of radius a (b > a) 

 

The constants A and B are determined by the conditions such that no displacements are allowed 

between the shaft and cylinder. Also no applied forces at the periphery of the cylinder then 

u = 0 at r = a, rr = 0 at r = b                         (24) 

and substituting in Eqs. (11), (12) we obtain 

𝐴 =
[β3𝑏

−𝑚α11−2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

−𝑘+2𝑚+3

;𝑅β2(
𝑏

𝑎
)−2𝑘𝑎

𝑚α11
(α11+μ𝑒𝑜𝐻𝑧

2)
−𝑘+3

]

[β2(
𝑏

𝑎
)−2𝑘;β1]

 ,           (25) 

𝐵 =
[β3𝑏

−𝑚α11−2𝑚μ𝑒𝑜𝐻𝑧
2

(α11+μ𝑒𝑜𝐻𝑧
2)

−𝑘+2𝑚+3

𝑎2𝑘;β1𝑅𝑎

𝑚α11
(α11+μ𝑒𝑜𝐻𝑧

2)
+𝑘+3

]

[β1;β2(
𝑏

𝑎
)−2𝑘]

 .          (26) 

Substituting Eqs. (25) and (26) into Eqs. (11)-(13) we obtain 

𝑢 = 𝑟

;𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
:𝑘 [𝛽3𝑏

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

− 𝑅𝛽2(
𝑏
𝑎
);2𝑘𝑎

𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
;𝑘:3

]

[𝛽2(
𝑏
𝑎
);2𝑘 − 𝛽1]

+r

;𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
;𝑘 [𝛽3𝑏

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

𝑎2𝑘 − 𝑅𝛽1𝑎

𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
:𝑘:3

]

[𝛽1 − 𝛽2(
𝑏
𝑎
);2𝑘]

+𝑅𝑟3 
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𝜎𝑟𝑟 = 𝛽1𝑟

𝑚𝛼11:2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

:𝑘;1 [𝛽3𝑏

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

− 𝑅𝛽2(
𝑏
𝑎
);2𝑘𝑎

𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
;𝑘:3

]

[𝛽2(
𝑏
𝑎
);2𝑘 − 𝛽1]

+𝛽2r

𝑚𝛼11:2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘;1 [𝛽3𝑏

;𝑚𝛼11;2𝑚𝜇𝑒𝑜𝐻𝑧
2

(𝛼11:𝜇𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

𝑎2𝑘 − 𝑅𝛽1𝑎

𝑚𝛼11
(𝛼11:𝜇𝑒𝑜𝐻𝑧

2)
:𝑘:3

]

[𝛽1 − 𝛽2(
𝑏
𝑎
);2𝑘]

+𝛽3𝑟
2𝑚:2 

 

σθθ = γ1𝑟

𝑚α11:2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

:𝑘;1 [β3𝑏

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

− 𝑅β2(
𝑏
𝑎
);2𝑘𝑎

𝑚α11
(α11:μ𝑒𝑜𝐻𝑧

2)
;𝑘:3

]

[β2(
𝑏
𝑎
);2𝑘 − β1]

+γ2r

𝑚α11:2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘;1 [β3𝑏

;𝑚α11;2𝑚μ𝑒𝑜𝐻𝑧
2

(α11:μ𝑒𝑜𝐻𝑧
2)

;𝑘:2𝑚:3

𝑎2𝑘 − 𝑅β1𝑎

𝑚α11
(α11:μ𝑒𝑜𝐻𝑧

2)
:𝑘:3

]

[β1 − β2(
𝑏
𝑎
);2𝑘]

+γ3𝑟
2𝑚:2  

 

 

 

4. Numerical results and discussion 
 

For the numerical calculations of u, σrr and σθθ in different cases, we use the data for orthotropic 

material. In order to illustrate theoretical results obtained in the preceding section, we now present 

some numerical results. Numerical calculations are carried out for the displacement and the stress 

components along the r-direction at different values of the rotation Ω and magnetic field in the 

case of non-homogeneous material. In order to get magnetic field and non-homogeneity influence 

on the stress fields distribution in a rotating cylinder, the elastic constants are taken from Hearmon 

(Abd-Alla et al. 2011). α11=0.331, α12=0.203, α13=0.192, α22=0.276, α23=0.241, α33=0.393 

Dyne.cm
2
 (Units=10

11
), a=2 cm, b=4 cm. In all figures u, σrr and σθθ denote the corresponding case 

when the cylinder is completely orthotropic material. 

The cases (1) and (3) in Figs. 1-18 denoting the components of displacement and stresses of 

orthotropic material. Figs. 1, 4 ,7, 10, 13 and 16 show the components of radial displacement, 

which it changes with the effect of magnetic field, rotation and non-homogeneity, respectively, in 

all cases. Figs. 2, 5, 8, 11, 14 and 17 show the components of radial stress fields, which it changes 

with magnetic field, rotation and non-homogeneity, respectively. Figs. 3, 6, 9, 12, 15 and 18 show 

the components of tangential stress, which it changes with the effect of magnetic field, rotation and 

non-homogeneity, respectively, in all cases. Figs. 1, 4, 7, 10, 13 and 16 show the components of 

displacement which it changes with the magnetic field, rotation and non-homogeneity, 

respectively, in cases (1) and (3). Figs. 1, 4 ,7, 10, 13 and 16 show the variation of the components 

of displacement increase and decrease with increasing r in all cases and satisfied the boundary 

conditions for two problems, while it increase with increasing of rotation, as well it decreases with 

increasing of magnetic field and non-homogeneity. Figs. 2, 5, 8, 11, 14 and 17 show the variation 

of the components of radial stress, it is notice that in Fig. 2 the radial stress decreases with 

increasing of the radial r, while in Figs. 5, 8, 13, 17 the radial stress increase and decrease with  
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Fig. 1 Variation of the radial component of the 

displacement u with the radial r. when rotation 

Ω=0.6, the non-homogeneity m=1.6 at different 

values for magnetic field H0, in case I 

Fig. 2 Variation of the radial component of the stress 

σrr with the radial r. when rotation Ω=0.6, the non-

homogeneity m=1.6 at different values for magnetic 

field H0, in case I. 

 

  
Fig. 3 Variation of the tangential component of 

the stress σθθ with the radial r. when rotation 

Ω=0.6, the non-homogeneity m=1.6 at different 

values for magnetic field H0, in case I 

Fig. 4 Variation of the radial displacement with 

the radial, when magnetic field H0=2×10
3
,  the 

non-homogeneity m=1.6 at different values for 

rotation Ω=0.6, 1.1, 1.6, in case I 

 

 

increasing of the radial r, as well it increases with increasing of magnetic field, rotation and non-

homogeneity, respectively, and satisfied the boundary conditions for two problems. Figs. 3, 6, 9, 

12, 15 and 18 show the variation of the components of tangential stress, in Fig. 3 the tangential 

stress increases with increasing of the radial r, in Fig. 6 the tangential stress decreases with 

increasing of the radial r, while in Figs. 9, 12, 15, 18) the tangential stress increase and increase 

with increasing of the radial r, as well it increase with increasing of the rotation, magnetic field and 

non-homogeneity. 

The variations of the stresses σrr and σθθ and displacement u, are due to the effect of rotation 

and magnetic field and non-homogeneity. It can be seen that the components of displacement and 

the stress satisfy the boundary conditions. It is evident that orthotropic it has a significant influence 

on the stresses. Also, the influence of the rotation and magnetic field and non-homogeneity on 

displacement and stresses is very pronounced. The results are specific for the example considered,  
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Fig. 5 Variation of the radial stress with the 

radial, when magnetic field H0=2×10
3
,
 
the non-

homogeneity m=1.6 at different values for 

rotation Ω=0.6, 1.1, 1.6, in case I 

Fig. 6 Variation of the tangential stress with the 

radial, when magnetic field H0=2×10
3
,
 
the non-

homogeneity m=1.6 at different values for 

rotation Ω=0.6, 1.1, 1.6, in case I 

 

  
Fig. 7 Variation of the radial displacement with 

the radial, when magnetic field H0=2×10
3
,
 

rotation Ω=0.6 at different values for  the non-

homogeneity m=0.5, 1.5, 2.5, in case I 

Fig. 8 Variation of the radial displacement with 

the radial, when magnetic field H0=2×10
3
,
 

rotation Ω=0.6 at different values for the non-

homogeneity m=0.5, 1.5, 2.5, in case I 

 

  
Fig. 9 Variation of the tangential stress with the 

radial, when magnetic field H0=2×10
3
,
 
rotation 

Ω=0.6 at different values for the non-homogeneity 

m=0.5, 1.5, 2.5, in case I 

Fig. 10 Variation of the radial component of the 

displacement u with the radial r, when rotation 

Ω=0.6, the non-homogeneity m=1.6 at  different 

values for magnetic field H0, in case II 
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Fig. 11 Variation of the radial component of the 

stress σrr with the radial r, when rotation Ω=0.6, 

the non-homogeneity m=1.6 at different values for 

magnetic field H0, in case II 

Fig. 12 Variation of the tangential component of 

the stress σθθ with the radial r, when rotation 

Ω=0.6, the non-homogeneity m=1.6 at different 

values for magnetic field H0,in case II 

 

  
Fig. 13 Variation of the radial displacement 

with the radial, when magnetic field H0=2×10
3
,
 

the non-homogeneity m=1.6 at different values 

for rotation Ω=0.6, 1.1, 1.6, in case II 

Fig. 14 Variation of the radial stress with the 

radial, when magnetic field H0=2×10
3
,
 
the non-

homogeneity m=1.6 at different values for  

rotation Ω=0.6, 1.1, 1.6, in case II 

 

  
Fig. 15 Variation of the tangential stress with 

the radial, when magnetic field H0=2×10
3
,
 
the 

non-homogeneity m=1.6 at different values for  

rotation Ω=0.6, 1.1, 1.6, in case I 

Fig. 16 Variation of the radial displacement 

with the radial, when magnetic field H0=2×10
3
,
 

rotation Ω=0.6 at different values for  the non-

homogeneity m=0.5, 1.5, 2.5, in case II 
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Fig. 17 Variation of the radial displacement 

with the radial, when magnetic field H0=2×10
3
,
 

rotation Ω=0.6 at different values for the non-

homogeneity m=0.5, 1.5, 2.5, in case II 

Fig. 18 Variation of the tangential stress with 

the radial, when magnetic field H0=2×10
3
,
 

rotation Ω=0.6 at different values for the non-

homogeneity m=0.5, 1.5, 2.5, in case II 

 

 

other cases may have different trends because of the dependence of the results on the mechanical 

properties of the material in many researches such as (Lukic et al. 2010, Aslani and Natoori 2013, 

Aydemir 2013, Bouiadjra et al. 2013, Berrabah et al. 2013) that have many applications in 

scientific and technical disciplines from cosmology to materials science. 

 

 

5. Conclusions 
 

Due to the complicated nature of the governing equations of the magneto-elastic theory, the 

done works in this field are unfortunately limited. The method used in this study provides a quite 

successful in dealing with such problems. This method gives exact solutions in the elastic medium 

without any restrictions on the actual physical quantities that appear in the governing equations of 

the considered problem. Important phenomena are observed in these computations. 

• It was found that for large values of magnetic field give close results. The case is quite 

different when we consider small value of rotation. The solutions obtained in the context of 

elasticity theory. 

• Comparing Figs. 1-18 for two problems, it was found that u, σrr, σϑθ have the same behavior in 

both problems. But with the passage of magnetic field, non-homogeneity and rotation, the 

numerical values of u, σrr, σϑθ in problem I are large in comparison with those in problem II due to 

the influences of magnetic field and rotation and non-homogeneity. 

• The results presented in this paper will be very helpful for researchers concerning with 

material science, designers of new materials, as well as for those working on the development of a 

theory of hyperbolic propagation. Study of the phenomenon of rotation, non-homogeneity and 

magnetic field are also used to improve the conditions of oil extractions.  
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