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Abstract.  Taking the mid-span/center-point of the structure as the reference point of capturing the 

maximum dynamic response is very customary in the available literature of the moving load problems. In 

this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving 

mass is widely investigated for various boundary conditions of the base beam. The response of the beam is 

obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series 

Expansion Method).  It is underlined that the absolute maximum dynamic response of the beam does not 

necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. 

Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is 

represented in which the contribution of the velocity and weight of the moving inertial objects are 

scrutinized and compared to the conventional version (maximum at mid-span). 
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1. Introduction 
 

The concern of designing safe bridge structures dates back to the ancient era. Nowadays, with 

the accelerating advance of transportation industries, the speed and the weight of the vehicles has 

been significantly increased. Consequently, the need of the bridge engineers towards having a 

more precise insight into the dynamic effects of the vehicular loads on the bridge structures could 

be sensed. There are diverse effective factors governing the design of the bridge structures; one of 

the eminent factors that should be considered is the maximum values of the bridge dynamic 

response under the traversing inertial loads caused by the moving vehicles. Such dynamic loads 

characterize a broad family of engineering problems as the moving load dynamic problems 

(Ouyang 2011).  

It is noteworthy to highlight that there exists many other instances that the influence of a 

                                                            
Corresponding author, MSc., E-mail: allahyari.h@gmail.com, allahyari@stu.nit.ac.ir 
aPhD, E-mail: lotfollahi@tabrizu.ac.ir 
bPhD, E-mail: hasan.jafarian@gmail.com 
cMSc, E-mail: taherghazvini@live.com 

mailto:hasan.jafarian@gmail.com


 

 

 

 

 

 

Mohammad Ali Lotfollahi-Yaghin et al. 

moving inertial body on the structure needs to be inspected, such as walk-ways, rail ways, roads, 

runways, and the deck of ships on which the aircrafts land (Ding et al. 2012, Mofid et al. 2012, 

Vaseghi Amiri et al. 2013). In addition to the aforementioned substructures, the moving load 

problem should be dealt with in connection with the computer disk memories, overhead cranes 

(Oguamanam et al. 2001), railway bridge, high-speed train (Johansson et al. 2013), guide ways 

(Wang and Zhang 2007), tunnels (Andersen and Jones 2006, Forrest and Hunt 2006), layered 

soils (Siddharthan et al. 1993, Xu et al. 2008), pipelines (Sofiyev et al. 2011), and high-speed 

machining processes (Cifuentes and Lalapet 1992, Ebrahimzadeh Hassanabadi et al. 2014a) which 

are all exposed to the traversing loads (Ouyang 2011, Ebrahimzadeh Hassanabadi et al. 2014). 

In view of the facts mentioned above, the computation of the dynamic stresses and 

displacements in a structure under a moving load has been of interest of different researchers in the 

recent decades. In this regard, Ouyang (2011) has addressed a variety of applications and many 

published works on moving load dynamic problems covering an interesting discussion on some 

fundamental solutions of the problem in classic analytical style. 

As previously mentioned, it is very customary to monitor the dynamic behavior of the structure 

under the action of a moving load at the mid-span/center-point of the sub-structure. In this manner, 

Esmailzadeh and Ghorashi (1995) studied dynamic behavior of a simply supported beam under the 

action of uniform partly distributed moving masse/force. Kiani et al. (2010) researched on the 

dynamic response of the multi-span viscoelastic thin beams. They applied generalized moving 

least square method (GMLSM) for discretization of parameters in spatial domain and presented 

design parameter in the form of mass or velocity of the moving mass for various values of 

relaxation rate and number of beam spans. Nikkhoo et al. (2014) presented a wide parametric 

study on the maximum dynamic response of a thin rectangular plate to a series of moving masses. 

Mofidand and Akin (1996), Mofid and Shadnam (2000) utilized DET (Discrete Element 

Technique) to determine the response time history of beams for different boundary conditions. 

They assumed that a series of virtual rigid bars hinged together with springs could be assumed as a 

model of a flexible continuous beam. Yavari et al. (2002) obtained the dynamic response of the 

Timoshenko beams subjected to moving mass via DET. Fotouhi (2007) applied FEM to 

investigate the dynamic response of the beams with large deformations; they verified the results 

with other researches. Ding et al. (2012) utilized Galerkin method to study the dynamic response 

of an elastic beam supported on nonlinear foundation with viscous damping. Ebrahimzadeh 

Hassanabadi et al. (2013) proposed the Orthonormal Polynomial Series Expansion Method 

(OPSEM) as a convenient numerical approach to analyze non-uniform thin beams vibration due to 

a moving load.  
Considering the mid-span/center point of the structure in order to illustrate the overall structural 

dynamic behavior could be seen in many other published articles (Vaseghi Amiri et al. 2013, 

Ebrahimzadeh Hassanabadi et al. 2014, Lin and Chang 2005, EftekharAzam et al. 2012). 

Regarding the voluminous published studies available on the vibration of continuums under the 

moving loads, the critical values of the bending moment and the vertical displacement are widely 

computed at the mid-span of the beams. In this paper, the problem of determining the absolute 

maximum dynamic response of the structure whole through its spatial domain (along the beam 

length) is focused. By using OPSEM (Ebrahimzadeh Hassanabadi et al. 2013) a robust and 

convenient computational technique is employed to analyze the dynamic behavior of a uniform 

beam under a moving mass. By verifying the solutions with the outputs of other researchers, the 

correctness of the numerical investigations is ascertained. The critical points at which the absolute 

maximum deformation/flexural moment occur are comprehensively tracked during the analyses.  
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Fig. 1 A beam-type structure under the influence of a traversing lumped inertial body 

 

 

The conventional approach of illustrating the time history of maximum dynamic response is 

compared to the spectral curves provided regarding the absolute maximums of values as 

mentioned in the latter. As a result, it is demonstrated that locations of the critical point of the 

beams is not necessarily located at the mid-span and it is dependent on the load weight and 

velocity. In this regard, a comprehensive parametric study is carried out for S-S, S-C and C-C (C: 

Clamped, S: Simply Supported) beam fixities. 

 

 

2. Problem formulation and solution 
 

A uniform beam of length l is considered. Its mass density and bending stiffness are ρ and EI 

correspondingly where E is the modulus of elasticity and I is the beam moment of inertia. The 

cross-section is signified by A and the vertical displacement at any point along the beam and any 

time is expressed via W(X, t). A concentrated moving load P(X, t) with the mass and velocity of  

m  and v  moves along the beam where X0(t) stands for the coordinates of the moving object as is 

shown in Fig. 1.  

Considering inertial effects of the moving mass, the governing motion equation of the beam 

could be expressed as 
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(2) 

In the above equation, δ( ) is the Dirac Delta and mathematically defines a concentrated pattern 

of moving load distribution. In this article, the moving mass is assumed to remain fully attached to 

the base beam during the course of movement. In OPSEM the spatial domain should be 

transformed to a coordinate system in a norm space composed of a set of BOPs (Basic 

Orthonormal Polynomials). Thus, by considering  1
2

l
X x   Eq. (1) could be transformed from 

 0,X l  to  1,1X    

      
2 4

2 4 4

1 2 16
, , ,

EI
W x t P x t W x t

t A l l x

  
  

  
  
 

(3) 

57



 

 

 

 

 

 

Mohammad Ali Lotfollahi-Yaghin et al. 
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where     0 0 1
2

l
X t x t  . The BOPs are in fact a rearrangement of the Maclaurian series 

expansion of W(x, t) with respect to x. Hence, the discretization of the spatial domain could be 

achieved by assuming the below orthonormal polynomial series expansion 
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(6) 

in which wj (x) is the jth BOP and aj (t) denotes the jth coordinate. OPSEM is a rapidly converging 

series with the stability of O(x
m+n

) where n is the number of involved BOPs in the truncated 

Orthonormal Polynomial Series and m denotes the number of fixity constraints where for a single-

span beam it is m=4. By introducing Eq. (5) into Eqs. (3) and (4) the problem could be rewritten in 

terms of the BOPs 
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Assuming aj (t)=e
Jωt

 in Eq. (5) where J 1   one can arrive at 
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and replacing Eq. (8) in Eq.(3) regarding P (x, t)=0, the relation of the free vibration equation of 

the beam could be reached 
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(10) 

The spatial domain could be removed by employing inner product of  wi (x) (aforementioned in 

Eq. (6)) on both sides of Eqs. (7) and (10). In this manner the Equation of free vibration turns into 
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Assuming non-trivial solution to Eq. (11) an eigenvalue problem should be tackled 

  2

bdet 0 K I   
 

(14) 

which yields the natural mode-shapes and frequencies of the beam. In Eq. (11) a denotes the 

vector form of unknown amplitude factors of BOPs and   is the natural frequency of free 

vibration; the dimensions of I, Kb, and a are n×n, n×n, and n×1 respectively and I signifies the 

identity matrix.  

After the elimination of the space in Eq. (7) one can arrive at (by multiplying both sides of Eq. 

(7) by wi (x)  and then integrating over the spatial domain [−1, 1]) 
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in which  

The coefficient matrices of the set of coupled ODEs in state-space equations, i.e., ML(t), CL(t), 

and KL(t), contain the terms related to the convective terms of the moving mass transverse 

acceleration. These terms could be extracted from the second order total derivative with respect to 

time in Eq. (8) 
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therefore 
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(19) 

F(t) is the matrix version for of the gravitational acceleration contribution with n×1 dimension 
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The moving mass/structure inertial interaction could be ignored by neglecting ML(t), CL(t), and 

KL(t) in the computations 
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The format given in Eq. (21) yields the well-known simulation frame work of moving force. It 

is significant to notice that the moving force would lead to invalid analysis results for the heavy 

masses with high velocities. The static deformation ws (x0, x) (deformation of the beam at any 

arbitrary point x  due to the application of a load of magnitude −mg on point x0) of the beam is 

also straightforward to be concluded from Eq. (20) by ignoring the time derivatives arriving at 

 
sw ΩΞ   

 
(22) 

 1Ξ K F   
 

(23) 

  
1j n

w x
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(24) 

Eqs. (15) and (21) could be handled by using a step-by-step matrix exponential based 

approximation (EftekharAzam et al. 2012). 

 

 

3. Numerical examples 
 

A simply supported beam with length l=5 m, cross sectional area A=0.1l×0.05l, modulus of 

elasticity E=3.6×10
10

 Pa and mass density ρ=2700 Kg.m
-3

 is considered. The BOPs of a simply 

supported beam could be conveniently constructed according to Ebrahimzadeh Hassanabadi et al. 

(2013) where in this article the first 18 are involved in the numerical examples. It is assumed that 

the moving mass starts to traverse the beam (with zero initial conditions of the moving mass/beam 

dynamics system under study) from left side of the beam. 

  0X t vt v t     (25) 

To facilitate the reproduction of the results and in order to obtain a standard normalized format 

of the data representation, the following parameters are defined  
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as the normalizing parameters of time, velocity, mass, deformation and bending moment 

respectively. In this regard, 

 /v v    (31) 

 
b/m m    (32) 

 
b/M M    (33) 
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(a) beam deformation (b) flexural moment 

Fig. 2 Comparisons of the introduced solutions and the modal superposition method; γ=0.45 

 

 

 
span-mid at ndeformatio maxmum

length beam along ndeformatio maxmum
  (34) 

 
span-midat moment  flexural maxmum

length beam alongmoment  flexural maxmum
  (35) 

Are normalized velocity, normalized mass and normalized bending moment. For all of the 

analysis, the forced vibration of the beam is considered. 

To provide an evaluation of the results precision, a comparison of the present method with the 

modal superposition method (including the first 20 natural modes based on Mofid et al. (2000)) is 

given in Fig. 2. Given γ=0.45, the graphs represent the deformation and bending moment of the 

beam along its length at the instant of occurring the absolute maximum response within the range 

of velocity 0≤α≤2. An excellent agreement of the OPSEM and eigenfunction expansion method 

could be observed.  

Moreover, Fig. 2 clearly proves that the absolute maximum dynamic responses of the beam 

does not necessarily correspond the maximum response captured at the mid-span. Regarding the 

weight and the motion velocity of the moving mass, locations of the critical points for bending 

moment and vertical displacement will be changed. 

In this regard, to gain a more clear understanding, β and λ are plotted versus the motion velocity 

of the moving mass for different weight values in Figs. 3, 5, and 7 for simply supported (S-S), 

simply supported-clamped (S-C), and clamped (C-C) beams respectively. The locations of the load 

at which the absolute maximum deformation take place for S-S, S-C, and C-C beams are depicted 

in Figs. 4, 6, and 8 respectively. The results show that the beam maximum deformation achieved 

by monitoring the mid-span is no longer valid as the velocity of the traveling object grows. 

Additionally, it could be clearly concluded that the heavier the mass, the larger the deficiency of 

the conventional approach for recording the beam maximum response.  Although it seems 

increasing in mass leads to higher β value, with respect to S-C beams Fig. 5(a) indicates it is not 

always true, actually in this case it is completely inverse because increasing in mass contributes to 

increase the absolute maximum response but less than of reveled to the mid-span. Figs. 4, 6, and 8  
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(a) beam deformation 

 
(b) flexural moment 

Fig. 3 Absolute maximum dynamic response along beam length versus the maximum deformation 

at the mid-span for a simply supported beam (S-S) 

 

 

show the point at which the absolute maximum dynamic response takes place has not a strict 

location and it is variable along the beam, even though there is an exception. Indeed Figs. 6(b) and 

8(b) indicate the absolute maximum dynamic response always takes place on x=−1 or 1 for S-C 

and C-C beams. Also the results reveled the absolute maximum dynamic responses are oscillatory 

at low velocities, whereas there are rapid declines and increases in their values.  

Identifying the most critical load case is of high priority concerns for the bridge engineers and 

it should be shed light on with an appropriate precision. Assessing the critical dynamic loading 

that results in the absolute maximum bending moment of a beam-type bridges is one of the most 

dominant design factors. Fig. 5 reasonably highlights that the deficiency of the conventional 

approach in detecting the critical flexural moment becomes notably more error-prone than the 

beam deformation. Thus, revisiting the previous works on detecting the maximum dynamic 

response of the beam, specifically the beam bending moment, seems to be necessary. 
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(a) beam deformation 

 
(b) flexural moment 

Fig. 4 The point at which the absolute maximum dynamic response takes place for a simply 

supported beam (S-S) 

 

 
(a) beam deformation 

Fig. 5 Absolute maximum dynamic response along beam length versus the maximum deformation 

at the mid-span for a simply supported-Clamped beam (S-C) 
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(b) flexural moment 

Fig. 5 Continued 

 

 
(a) beam deformation 

 
(b) flexural moment 

Fig. 6 The point at which the absolute maximum dynamic response takes place for a simply 

supported-Clamped beam (S-C) 
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(a) beam deformation 

 

(b) flexural moment 

Fig. 7 Absolute maximum dynamic response along beam length versus the maximum deformation 

at the mid-span for a Clamped-Clamped beam (C-C) 

 

 

(a) beam deformation 

Fig. 8 The point at which the absolute maximum dynamic response takes place for a Clamped-

Clamped beam (C-C) 
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(b) flexural moment 

Fig. 8 Continued 

 

 

4. Conclusions 
 

In this paper, one of the most significant concerns of the bridge engineers, i.e., determining the 

critical values of design parameters and their location is focused. To this end a robust and 

convenient numerical method based on OPSEM is utilized analyzing the dynamics of a beam to a 

moving inertial load. The maximum response of the beam at its mid-span is comprehensively 

compared with the absolute maximum response along the beam length. The presented results 

clarify that the overall maximum dynamic response of a beam subjected to a moving mass cannot 

be acceptably predicted by monitoring the mid-span for heavy moving loads with high velocities. 

It is shown that the value and the location of the absolute maximum response strongly depends on 

the weight and the motion velocity of the traveling inertial body. Regarding S-C beams the 

boundary conditions are not symmetric. The absolute maximum response for beam deformation so 

takes place in the left half of the beam, as it is expected increasing in mass leads to increase the 

absolute maximum response whereas β value decreases. Both the absolute and the mid-span 

maximum responses increase but this increment is higher for that of the mid-span and that is why 

the β value decreases. Besides, it is revealed that the difference between the maximum responses 

that the base beam experiences at its mid-span, could be highly different from the absolute 

maximum response in terms of the beam flexural moment rather than the beam deformation.  
 

 

References 
 
Andersen, L. and Jones, C.J.C. (2006), “Coupled boundary and finite element analysis of vibration from 

railway tunnels-a comparison of two-and three-dimensional models”, J. Sound. Vib., 293(3-5), 611-625. 

Cifuentes, A. and Lalapet, S. (1992), “A general method to determine the dynamic response of a plate to a 

moving mass”, Comput. Struct., 42, 31-36.  

Ding, H., Chen, L.Q. and Yang, S.P. (2012), “Convergence of Galerkin truncation for dynamic response of 

finite beams on nonlinear foundations under a moving load”, J. Sound. Vib., 331(10), 2426-2442. 

Ebrahimzadeh Hassanabadi, M., Khajeh Ahmad Attari, N., Nikkhoo, A. and Baranadan, M. (2014a), “An 

optimum modal superposition approach in the computation of moving mass induced vibrations of a 

distributed parameter system”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

66



 

 

 

 

 

 

On the absolute maximum dynamic response of a beam subjected to a moving mass 

Mechanical Engineering Science, DOI: 10.1177/0954406214542968. 

Ebrahimzadeh Hassanabadi, M., Nikkhoo, A., Vaseghi Amiri, J. and Mehri, B. (2013), “A new Orthonormal 

Polynomial Series Expansion Method invibration analysis of thin beams with non-uniform thickness”, 

Appl. Math. Model., 37(18-19), 8543-8556. 

Ebrahimzadeh Hassanabadi, M., Vaseghi Amiri, J. and Davodi, MR. (2014b), “On the vibration of a thin 

rectangular plate carrying a moving oscillator”, Scientia Iranica, Tran. A: Civil Eng., 21(2), 284-294. 

EftekharAzam, S., Mofid, M. and Afghani Khoraskani, R. (2012), “Dynamic response of Timoshenko beam 

under moving mass”, Scientia Iranica, Tran. A: Civil Eng., 20(1), 50-56. 

Esmailzadeh, E. and Ghorashi, M. (1995), “Vibration analysis of beams traversed by uniform partially 

distributed moving masses”, J. Sound. Vib., 184, 9-17. 

Forrest, J.A. and Hunt, H.E.M. (2006), “Ground vibration generated by trains in underground tunnels”, J. 

Sound. Vib., 294(4-5), 706-736. 

Fotouhi, R. (2007), “Dynamic analysis of very flexible beams”, J. Sound. Vib., 305 (3), 521-533. 

Johansson, C., Pacoste, C. and Karoumi, R. (2013), “Closed-form solution for the mode superposition 

analysis of the vibration in multi-span beam bridges caused by concentrated moving loads”, Comput. 

Struct., 119, 85-94. 

Kiani, K., Nikkhoo, A. and Mehri, B. (2010), “Assessing dynamic response of multi span viscoelastic thin 

beams under a moving mass via generalized moving least square method”, Acta. Mech. Sinica., 26, 721-

733. 

Lin, H.P. and Chang, SC. (2005), “Free vibration analysis of multi-span beams with intermediate flexible 

constraints”, J. Sound. Vib., 281(1-2), 155-169. 

Mofid, M., Eftekhar Azam, S. and Afghani Khorasghan, R. (2012), “Dynamic control of beams acted by 

multiple moving masses in resonance state using piezo-ceramic actuators”, Proceedings of SPIE - The 

International Society for Optical Engineering, 8341, art. no. 83412J. 

Mofid, M. and Akin, JE. (1996), “Discrete element response of beams with traveling mass”, Adv. Eng. 

Softw., 25, 321-331. 

Mofid, M. and Shadnam, M. (2000), “On the response of beams with internal hinges under moving mass”, 

Adv. Eng. Softw., 3, 323-328. 

Nikkhoo, A., Ebrahimzadeh Hassanabadi, M., Eftekhar Azam, S. and Vaseghi Amiri J. (2014), “Vibration of 

a thin rectangular plate subjected to series of moving inertial loads”, Mech. Res. Commun., 55, 105-113. 

Oguamanam, D.C.D., Hansen, J.S. and Heppler, G.R. (2001), “Dynamics of a three-dimensional overhead 

crane system”, J. Sound. Vib., 242(3), 411-426. 

Ouyang, H. (2011), “Moving load dynamic problems: a tutorial (with a brief overview)”, Mech. Syst. Signal 

Pr., 25(6), 2039-2060. 

Siddharthan, R., Zafir, Z. and Norris, G. (1993), “Moving load response of layered soil. I: Formulation”, J. 

Eng. Mech., 119(10), 2052-2071. 

Sofiyev, A.H., Halilov, H.M. and Kuruoglu, N. (2011), “Analytical solution of the dynamic behavior of non-

homogenous orthotropic cylindrical shells on elastic foundations under moving loads”, J. Eng. Mech., 

69(4), 359-371. 

Vaseghi Amiri, J., Nikkhoo, A., Davoodi, M.R. and Ebrahimzadeh Hassanabadi, M. (2013), “Vibration 

analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method”, 

Thin Wall. Struct., 62, 53-64. 

Wang, H.P., Li, J. and Zhang, K. (2007), “Vibration analysis of the maglev guideway with the moving 

load”, J. Sound. Vib., 305(4-5), 621-640.  

Xu, B., Lu, J.F. and Wang, J.H. (2008), “Dynamic response of a layered water-saturated half space to a 

moving load”, Comput. Geotech., 35(1), 1-10.  

Yavari, A., Nouri, M. and Mofid, M. (2002), “Discrete element analysis of dynamic response of 

Timoshenko beams under moving mass”, Adv. Eng. Softw., 33, 143-153. 

 

 

CC 

67




