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Abstract.  In this work, various higher-order shear deformation plate theories for wave propagation in 

functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded 

materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates 

having porosities in this study. The developed refined plate theories have fewer number of unknowns and 

equations of motion than the first-order shear deformation theory, but accounts for the transverse shear 

deformation effects without requiring shear correction factors. The rule of mixture is modified to describe 

and approximate material properties of the functionally graded plates with porosity phases. The governing 

equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton’s 

principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an 

eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave 

propagation of functionally graded plate are discussed in detail. The results carried out can be used in the 

ultrasonic inspection techniques and structural health monitoring. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have continuous variation 

of material properties from one surface to another, and thus eliminating the stress concentration 

found in laminated composites. A typical FGM is made from a mixture of ceramic and metal. The 

FGM is widely used in many structural applications such as aerospace, nuclear, civil, and 

automotive. When the application of the FGM increases, more accurate plate theories are required 

to predict the response of functionally graded (FG) plates. Since the shear deformation has 

significant effects on the responses of functionally graded (FG) plates, shear deformation theories 
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are used to capture such shear deformation effects. The first-order shear deformation theory 

(FSDT) accounts for the shear deformation effects by the way of linear variation of in-plane 

displacements through the thickness. Since the FSDT violates the conditions of zero transverse 

shear stresses on the top and bottom surfaces of the plate, a shear correction factor which depends 

on many parameters is required to compensate for the error due to a constant shear strain 

assumption through the thickness (Benguediab et al. 2014, Semmah et al. 2014, Bouremana et al. 

2013, Tounsi et al. 2013a, Benzair et al. 2008, Heireche et al. 2008). The higher-order shear 

deformation theories (HSDTs) account for the shear deformation effects, and satisfy the zero 

transverse shear stresses on the top and bottom surfaces of the plate, thus, a shear correction factor 

is not required (Ould Larbi et al. 2013, Tounsi et al. 2013b, Berrabah et al. 2013). Generally, 

HSDTs are proposed assuming a higher-order variations of in-plane displacements (Reddy 2000, 

Pradyumna and Bandyopadhyay 2008, Zenkour 2006, Xiang et al. 2011) or both in-plane and 

transverse displacements through the thickness (Matsunaga 2008, Chen et al. 2009, Talha and 

Singh 2010, Reddy 2011). Some of these HSDTs are computational costs because with each 

additional power of the thickness coordinate, an additional unknown is introduced to the theory 

(e.g., theories by Pradyumna and Bandyopadhyay (2008) with nine unknowns, Reddy (2011) with 

eleven unknowns, Talha and Singh (2010) with thirteen unknowns). Although some well-known 

HSDTs have the same five unknowns (e.g., third-order shear deformation theory (Reddy 2000), 

sinusoidal shear deformation theory (Zenkour and Alghamdi 2010)), their equations of motion are 

much more complicated than those of FSDT. Thus, needs exist for the development of HSDTs 

which are simple to use. Recently, some new plate theories that contain only four unknown 

functions (Benachour et al. 2011, El Meiche et al. 2011, Bourada et al. 2012, Bachir Bouiadjra et 

al. 2012, Tounsi et al. 2013c, Kettaf et al. 2013, Khalfi et al. 2014, Attia et al. 2015, Bachir 

Bouiadjra et al. 2013, Bakhti et al. 2013, Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Zidi 

et al. 2014, Draiche et al. 2014, Nedri et al. 2014, Sadoune et al. 2014) are developed to study the 

mechanical behaviors of FG plates. Yaghoobi and Torabi (2013) investigated the buckling 

behavior of FG plates resting on two-parameter Pasternak's foundations under thermal loads. 

Using an analytical formulation, Yaghoobi and Yaghoobi (2013) analyzed the mechanical 

buckling response of sandwich plates with FGM face sheets resting on elastic foundation with 

various boundary conditions. Yaghoobi and Fereidoon (2014) presented a simple refined nth-order 

shear deformation theory for mechanical and thermal buckling analysis of FG plates resting on 

elastic foundations. In the same way, Klouche Djedid et al. (2014) used the refined nth-order shear 

deformation theory for bending and free vibration of FG graded plates.   

The study of the wave propagation in the FG structures has received also much attention from 

various researchers. Chen et al. (2007) studied the dispersion behavior of waves in a functionally 

graded plate with material properties varying along the thickness direction. Han and Liu (2002) 

investigated SH waves in FG plates, where the material property variation was assumed to be a 

piecewise quadratic function in the thickness direction. Han et al. (2001) proposed an analytical-

numerical method for analyzing the wave characteristics in FG cylinders. Han et al. (2002) also 

proposed a numerical method to study the transient wave in FG plates excited by impact loads. 

Sun and Luo (2011a) also studied the wave propagation and dynamic response of rectangular 

functionally graded material plates with completed clamped supports under impulsive load. 

Considering the thermal effects and temperature-dependent material properties, Sun and Luo 

(2011b) investigated the wave propagation of an infinite functionally graded plate using the 

higher-order shear deformation plate theory. However, in FGM fabrication, micro voids or 

porosities can occur within the materials during the process of sintering. This is because of the  
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Fig. 1 Geometry and coordinates of FG plates 

 

 

large difference in solidification temperatures between material constituents (Zhu et al. 2001). 

Wattanasakulpong et al. (2012) also gave the discussion on porosities happening in side FGM 

samples fabricated by a multi-step sequential infiltration technique. Therefore, it is important to 

take in to account the porosity effect when designing FGM structures subjected to dynamic 

loadings. Recently, Wattanasakulpong and Ungbhakorn (2014) studied linear and nonlinear 

vibration problems of elastically end restrained FG beams having porosities.  

Considering FG structural members, it is evident from the above discussed literature that there 

is no study on wave propagation in FG plates having porosities. Thus, the objective of this work is 

to investigate the wave propagation of an infinite FG plate having porosities using various simple 

higher-order shear deformation theories. The displacement fields of the proposed theories are 

chosen based on cubic, sinusoidal, hyperbolic, and exponential variation in the in-plane 

displacements through the thickness. By dividing the transverse displacement into the bending and 

shear parts and making further assumptions, the number of unknowns and equations of motion of 

the proposed theories is reduced and hence makes them simple to use. The governing equations of 

the wave propagation in the FG plate are derived by using the Hamilton’s principle. The analytic 

dispersion relations of the FG plate are obtained by solving an eigenvalue problem. The 

dispersion, phase velocity and group velocity curves of the wave propagation in FG plates having 

porosities are plotted. The influences of the volume fraction index and porosity volume fraction on 

the dispersion and phase velocity of the wave propagation in the FG plate are clearly discussed.  

 

 

2. Functionally graded plates with porosities  
 

A FG plate made from a mixture of two material phases, for example, a metal and a ceramic as 

shown in Fig. 1. The material properties of FG plates are assumed to vary continuously through 

the thickness of the plate. In this investigation, the imperfect plate is assumed to have porosities 

spreading within the thickness due to defect during production. Consider an imperfect FGM with a 

porosity volume fraction, α (α<<1), distributed evenly among the metal and ceramic, the modified 

rule of mixture proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 




















22


ccmm VPVPP                          (1) 

1145



 

 

 

 

 

 

Sihame Ait Yahia, Hassen Ait Atmane, Mohammed Sid Ahmed Houari and Abdelouahed Tounsi 

Now, the total volume fraction of the metal and ceramic is: Vm+Vc=1, and the power law of 

volume fraction of the ceramic is described as 

n

c
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z
V 










2

1
                                (2) 

Hence, all properties of the imperfect FGM can be written as 
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It is noted that the positive real number n (0≤n<∞) is the power law or volume fraction index, 

and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully ceramic 

plate when n is set to zero and fully metal for large value of n. 

Thus, the Young’s modulus (E) and material density (ρ) equations of the imperfect FGM plate 

can be expressed as 
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However, Poisson’s ratio (v) is assumed to be constant. The material properties of a perfect FG 

plate can be obtained when α is set to zero. 

 

 

3. Fundamental equations 
 

3.1 Basic assumptions and constitutive equations 
 

The displacement fields of various shear deformation plate theories are chosen based on 

following assumptions: (1) the axial and transverse displacements are partitioned into bending and 

shear components; (2) the bending component of axial displacement is similar to that given by the 

classical plate theory (CPT); and (3) the shear component of axial displacement gives rise to the 

higher-order variation of shear strain and hence to shear stress through the thickness of the plate in 

such a way that shear stress vanishes on the top and bottom surfaces. Based on these assumptions, 

the displacement fields of various higher-order shear deformation plate theories are given in a 

general form as 

    

),,(),,(),,,(

)(),,(),,,(

)(),,(),,,(

0

0

tyxwtyxwtzyxw

y

w
zf

y

w
ztyxvtzyxv

x

w
zf

x

w
ztyxutzyxu

sb

sb

sb























 
(6a) 

    

),,(),,(),,,(

)(),,(),,,(

)(),,(),,,(

0

0

tyxwtyxwtzyxw

y

w
zf

y

w
ztyxvtzyxv

x

w
zf

x

w
ztyxutzyxu

sb

sb

sb























 

(6b) 

1146



 

 

 

 

 

 

Wave propagation in functionally graded plates with porosities using various higher-order... 

    ),,(),,(),,,(

)(),,(),,,(

)(),,(),,,(

0

0

tyxwtyxwtzyxw

y

w
zf

y

w
ztyxvtzyxv

x

w
zf

x

w
ztyxutzyxu

sb

sb

sb























 (6c) 

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction, respectively; 

wb and ws are the bending and shear components of transverse displacement, respectively; and f(z) 

f(z) is a shape function determining the distribution of the transverse shear strain and shear stress 

through the thickness of the plate. The shape functions f(z) are chosen to satisfy the stress-free 

boundary conditions on the top and bottom surfaces of the plate, thus a shear correction factor is 

not required. In this study, these shape functions are chosen based on the third-order shear 

deformation theory (TSDT) of Reddy (2000), sinusoidal shear deformation theory (SSDT) of 

Touratier (1991), hyperbolic shear deformation theory (HSDT) of Soldatos (1992), and 

exponential shear deformation theory (ESDT) of Karama et al. (2003), as presented in Table 1. 

The nonzero linear strains associated with the displacement field in Eq. (6) are 
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Table 1 Shape functions 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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where (ζx, ζy, ηxy, ηyz, ηxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 

Using the material properties defined in Eq. (4), stiffness coefficients, Cij, can be expressed as 
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3.2 Governing equations 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as 
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where δU is the variation of strain energy; and δK is the variation of kinetic energy. 
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where the stress resultants N, M, and S are defined by 

   




2/

2/

,,1,,

h

h

i

s

i

b

ii dzfzMMN  ,   xyyxi ,,  and  




2/

2/

h

h

ii dzgS  ,   yzxzi ,  (13) 

The variation of kinetic energy is expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 

and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 

     

   




2/

2/

22

222110 )(, ,,,,1,,,,,

h

h

dzzffzzfzKJIJII   (15) 

Substituting the expressions for δU and δK from Eqs. (12) and (14) into Eq. (11) and 

integrating by parts, and collecting the coefficients of δu0, δv0, δwb and δws, the following 

equations of motion of the plate are obtained 
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By substituting Eq. (7) into Eq. (9) and the subsequent results into Eq. (13), the stress resultants 

are obtained as 
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where  
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where Aij, Bij, Dij, etc., are the plate stiffness, defined by 
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By substituting Eq. (17) into Eq. (16), the governing equations can be expressed in terms of 

displacements (u0, v0, wb and ws) as 
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4. Dispersion relations 
 

We assume solutions for u0, v0, wb and ws representing propagating waves in the x-y plane with 

the form 
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where U; V; Wb and Ws are the coefficients of the wave amplitude, k1 and k2 are the wave numbers 

of wave propagation along x-axis and y-axis directions respectively, ω is the frequency. 

Substituting Eq. (21) into Eqs. (20), we obtain 
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The dispersion relations of wave propagation in the functionally graded plate are given by 

     
    0  2  MK   (24) 

Assuming k1=k2=k, the roots of Eq. (24) can be expressed as 

   )(11 kW ,  )(22 kW ,  )(33 kW  and  )(44 kW  (25) 

They correspond with the wave modes M0, M1, M2 and M3, respectively. The wave modes M0 

and M3 correspond to the flexural wave, the wave modes M1 and M2 correspond to the extensional 

wave.  

The phase velocity of wave propagation in the functionally graded plate can be expressed as 
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Fig. 2 The dispersion curves of the different perfect functionally graded plates 
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Fig. 2 Continued 
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Fig. 3 The phase velocity curves of the different perfect functionally graded plates 
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5. Numerical results and discussion 
 

In this section, a FG plate made from Si3N4/SUS304; whose material properties are: E=348.43 

GPa, ρ=2370 kg/m3, ν=0.3 for Si3N4 and E= 201.04 GPa, ρ= 8166 kg/m3, ν=0.3 for SUS304; are 

chosen for this work. The thickness of the FG plate is 0.02 m. The analysis based on the present 

TSDT, SSDT, HSDT, and ESDT are carried out using MAPLE.  

Fig. 2 plots the dispersion curves of the different perfect FG plates using various shear 

deformation plate theories. It can be seen that the dispersion curves predicted by all proposed plate 

theories are almost identical to each other and this regardless the power law index n and wave 

modes (M0, M1, M2 and M3). For the same k, the frequency of the wave propagation in the perfect 

FG plate decreases with the increase of the power law index n whatever the wave modes. Also, the 

frequency of the wave propagation becomes maximum in the homogeneous plate (n=0). 

Fig. 3 shows the phase velocity curves of the different perfect FG plates predicted using various 

shear deformation plate theories. It can be seen that the phase velocity of the wave propagation in  
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Fig. 4 The dispersion curves of the different imperfect functionally graded plates using TSDT 

 

1156



 

 

 

 

 

 

Wave propagation in functionally graded plates with porosities using various higher-order... 

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4
(d) M

3
 mode

 =0

 =0.1

 =0.2

k (10
2
rad/m)


 (

1
0

6
ra

d
/s

)

 
Fig. 4 Continued 

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0,0

0,1

0,2

0,3

0,4

0,5

0,6
(a) M

0
 mode

 =0

 =0.1

 =0.2

k (10
2
rad/m)

C
 (

1
0

4
 m

/s
)

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0,50

0,55

0,60

0,65

0,70
(b) M

1
 mode

 =0

 =0.1

 =0.2C
 (

1
0

4
 m

/s
)

k (10
2
rad/m)  

Fig. 5 The phase velocity curves of the different imperfect functionally graded plates using TSDT 
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Fig. 5 Continued 
 

 

the perfect FG plate decreases as the power law index n increases for the same wave number k. 

The phase velocity for the extensional wave modes M1 and M2 of the plate (n=0) is a constant, but 

it is not a constant for the plate (n≠0). In the case of the homogeneous plate (n=0), the phase 

velocity takes the maximum among those of all FG plates. Also, it can be seen that the phase 

velocity curves predicted by all proposed plate theories are almost identical to each other.  

Fig. 4 shows the dispersion curves of different imperfect FG plate with n=2. It can be seen that 

the porosity has effect on the frequency of the wave propagation in FG plate for the large wave 

numbers (k) and especially for the extensional wave mode M2. Indeed, the frequencies are reduced 

when the porosity increases. 

Fig. 5 shows, the phase velocity curves of different imperfect FG plate with n=2. It can be seen 

from Fig. 5 that the phase velocity of the FG plate decreases as the porosity increases, except for 

flexural wave mode M3, where an opposite behaviour is observed. Furthermore, it is seen that the 

influence of porosity on the phase velocity for M1 and M2 modes is also obvious at lower wave  
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Fig. 6 The effects of power law index and the porosity on the frequency of the wave propagation 

in the perfect and imperfect FG plates using TSDT for the wave number k=10 rad/m 
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Fig. 6 Continued 

 

0 2 4 6 8 10

0,04

0,06

0,08

0,10

0,12

0,14
(a) M

0
 mode

Power law index (n)

 =0

 =0.1

 =0.2

C
(1

0
4
m

/s
)

 

0 2 4 6 8 10

0,4

0,6

0,8

1,0

1,2

1,4
(b) M

1
 mode

Power law index (n)

 =0

 =0.1

 =0.2

C
(1

0
4
m

/s
)

 

Fig. 7 The effects of power law index and the porosity on the phase velocity of the perfect and 

imperfect FG plates using TSDT for the wave number k=10 rad/m 
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Fig. 7 Continued 

 

 
number. The influence of porosity on the phase velocity for the flexural wave modes M0 and M3 is 

very little at lower wave number, but the influence is obvious as wave numbers increases.  

To investigate the influences of power law index of material constituents (n) and porosity 

volume index (α) on the frequency and the phase velocity, the results of perfect and imperfect FG 

plates are shown in Figs. 6 and 7, respectively, using TSDT for the wave number k=10 rad/m. It is 

seen that when the power law index n>1, both the frequency and the phase velocity decrease with 

increasing the porosity contrary to the case where the power law index is less to 1. However, it is 

observed that the increase of the power law index leads to reducing the frequency and the phase 

velocity and this regardless the value of the porosity.  
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6. Conclusions 
 

The wave propagation of an infinite perfect and imperfect functionally graded plate is analyzed 

using various higher-order shear deformation plate theories. The main advantage of the proposed 

theories over the existing higher-order shear deformation theories is that the present ones involve 

fewer unknowns as well as the dispersion relations of wave propagation in the FG plate. The 

computational cost can therefore be reduced. The modified rule of mixture covering porosity 

phases is employed to describe and approximate material properties of the imperfect FG plates. 

The analytic dispersion relation of the functionally graded plate is obtained by solving an 

eigenvalue problem. From the present work, it can be concluded that the influence of the volume 

fraction distributions and porosity volume index on wave propagation in the FG plate is 

significant. An improvement of present formulation will be considered in the future work to 

account for the thickness stretching effect by employing quasi-3D shear deformation models 

(Bessaim et al. 2013, Saidi et al. 2013, Bousahla et al. 2014, Bourada et al. 2015, Belabed et al. 

2014, Fekrar et al. 2014, Hebali et al. 2014, Houari et al. 2014, Larbi Chaht et al. 2014, Meradjah 

et al. 20154, Hamidi et al. 2015, Swaminathan and Naveenkumar 2014, Sayyad and Ghugal 2014). 
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