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Abstract.  Many vibrating mechanical systems from the real life are modeled as combined dynamical 

systems consisting of beams to which spring-mass secondary systems are attached. In most of the 

publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published 

recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span 

helical spring-mass systems were determined via the solution of the established eigenvalue problem, where 

the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed 

modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived 

at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is 

simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite 

different way, namely, by using the so-called “characteristic force” method. Further, parametric 

investigations are carried out for two representative types of supporting conditions of the bending beam. 
 

Keywords:  Bernoulli-Euler beams; spring-mass attachment; combined system; spring mass; characteristic 

force 

 
 
1. Introduction 
 

Examination of the existing literature shows that the free vibration problem of Bernoulli-Euler 

and Timoshenko beams restrained in various manners and carrying any number of attachments, 

i.e., point masses, spring-mass secondary systems, etc. has attracted the interest of many 

investigators. Some of the representative examples of a great number of publications on this 

subject are given and commented by Cha et al. (2008) therefore will be not referred to here. In the 

aforementioned study (Cha et al. 2008), the assumed modes method was used to derive an 

approximate but systematic formulation for the eigenfrequencies of an arbitrary supported beam 

with multiple spring–mass attachments. Recent studies on the free vibration problem of Bernoulli-

Euler and Timoshenko beams with various attachments, published after Cha et al. (2008), will be 

outlined below briefly.  

Lin (2009) successfully implemented NAM to determine the exact natural frequencies and 
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mode shapes of the multispan Timoshenko beam carrying a number of various concentrated 
elements including point masses, rotary inertias, linear springs, rotational springs and spring-mass 
systems. The study (Yesilce et al. 2008) dealt with the dynamic analysis of a multi-span 
Timoshenko beam carrying multiple spring-mass systems and natural frequencies of the system 
were calculated by using the secant method. Yesilce (2010) investigated the free vibration analysis 
of Reddy-Bickford multi-span beams carrying multiple spring-mass systems. De Rosa et al. (2010) 
dealt with the dynamic analysis of a beam with exponentially varying cross section with an 
elastically support at left and a concentrated mass at right. Cha and Honda (2010) successfully 
implemented a characteristic force method to solve for the eigensolutions of any arbitrary 
supported linear structure carrying multiple lumped attachments. Wu and Chen (2012) presented 
an efficient technique to determine the forced vibrations response amplitudes of a multi-span beam 
carrying arbitrary concentrated elements using the steady response amplitudes of the system. In the 
study (Mei 2011), a wave-based approach was applied in analyzing bending vibrations of a 
uniform beam/rod with lumped and masses based on the advanced Timoshenko theory. Wang 
(2012) studied on the natural frequencies sensitivity analysis of a straight beam loaded with a 
lumped mass and he showed a closed-form solution of the frequency sensitivity of a beam-mass 
system. In the paper (Darabi et al. 2012), free vibrations of a beam-mass-spring system with 
different boundary conditions were analyzed both numerically and analytically. Wang and Wang 
(2012) studied the effect of an end mass, including a flexible base modeled by a rotational spring, 
for an exponentially tapered cantilever beam. Banerjee (2012) assemblied the dynamic stiffness 
matrix of a combined system which consists of a cantilever beam carrying a mass-spring 
attachment. The resulting eigenvalue problem was solved by applying the algorithm of Wittrick 
and Williams. Maximov (2014) obtained a simplified mathematical model for the dynamic effect, 
caused by a moving load on a Bernoulli-Euler beam supported with two rotational springs. In the 
study (Karaton 2014), two beam-column elements based on the Elasto-Fiber approach and 
Fiber&Bernoulli-Euler approach have been developed. To obtain the stiffness matrix, cubic 
Hermitian polynomials are used. For numerical application, seismic damage analyses for a 4-story 
frame and an 8-story reinforced concrete frame with soft-story are obtained to comparisons of 
reinforced concrete element according to both approaches.  
The common aspect of nearly all of the publications mentioned above is that the masses of the 
attached helical springs of the spring-mass secondary systems, are not taken into account. The few 
exceptions in this context are the studies of Wu (2005), Gürgöze (2005), Gürgöze et al. (2006), Wu 
(2006), Wu and Hsu (2007), Cha et al. (2008). 

Wu (2005) analyzed a beam carrying several two degree-of-freedom spring-mass systems, 
where the inertial effect of the helical springs are considered. Gürgöze (2005) analyzed the free 
vibrations of a cantilever beam carrying one tip-mounted helical spring-mass system with the 
spring-mass included. In a subsequent paper, Gürgöze et al. (2006) analyzed the free vibrations of 
a simply supported beam with a single, arbitrary located in-span helical spring-mass system using 
the same method. Wu (2006) studied the inertial effect of the helical springs of the absorber on 
suppressing the dynamic responses of the beam. Wu and Hsu (2007) presented two methods to 
obtain the vibration modes of a simply supported beam carrying multiple point masses and spring-
mass systems in which the mass of each helical spring, is considered. In the recent paper (Cha et 
al. 2008) as stated previously, Cha et al. (2008) used the assumed modes method to obtain an 
approximate but systematic formulation for the eigenfrequencies of an arbitrary supported beam 
with multiple helical spring-mass attachments, where each helical spring was modeled as an 
axially vibrating elastic rod. 
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As is known, in the assumed modes method, the space-dependent trial functions must satisfy 
the geometric boundary conditions of the bare linear structure without any attachments. The 
assumed solution in the form of a series of space-dependent trial functions multiplied by the time 
dependent generalized coordinates is substituted into the expressions of the total kinetic and 
potential energies, after which equations of motion are obtained by means of the direct application 
of Lagrange’s equations (Cha et al. 2008).  

Cha et al. (2008) used in the first part of their article, the eigenfunctions of the bare beam and 
bare rod as the space-dependent trial functions in the assumed series solutions which they refered 
to as the “traditional approach”. Then, in order to achieve higher convergence rates, they proposed 
a new scheme according to which they used a small number of the eigenfunctions of the bare rod 
plus a spatially linear-varying static mode. The numerical results i.e., natural frequencies and mode 
shapes stemming from both approaches were given in various tables showing the strength of their 
method. It is proper to note that both approaches led to the solution of a generalized eigenvalue 
problem.  

Cha et al. (2008) used the assumed modes method in the usual sense and obtained the equations 
of motion from Lagrange’s Equations and arrived at a generalized eigenvalue problem.  

In the present study, a quite different method is used leading exactly to the same eigenvalue 
problem. To this end, the differential equations of motion of the vibrating system are written more 
or less directly by making use of the concept of the “characteristic force” (Cha and Honda 2010). 
Discretization of the system is then achieved by using the same series solutions as in Cha et al. 
(2008), giving in turn the same eigenvalue problem formulation.  

On the other hand, the approach presented here, directly uses the expression for the vertical 
force that the longitudinally vibrating rod with tip mass exerts on the bending beam (characteristic 
force). This may be an important issue from the viewpoint of technical applications.  

The only type of supporting conditions which was not considered in Cha et al. (2008), was that 
of the clamped-clamped beam. This system is investigated by the proposed method and it is shown 
that the agreement of the numerical results compared with those of a finite element method 
formulation is quite good. Further, on the representative example of the clamped-free beam, 
parametric investigations are carried out by changing the rod stiffness and the tip mass of the rod 
to study how they affect eigenfrequencies and mode shapes of the combined system.  

It is appropriate to mention the fact that although in the system considered in Cha et al. (2008), 
several rod-mass systems are attached to the beam, in the present work, only one representative 
rod-mass attachment is considered to present the new methodology. The formulation obtained can 
easily be extended to the case of multiple rod-mass attachments.  
 
 
2. Theory 
 

This study deals with the natural vibration problem of an arbitrarily supported Bernoulli-Euler 
beam with an in-span helical spring-mass system. The helical spring is modeled as an axially 
vibrating rod. A representative mechanical system consisting of a clamped-free beam is shown in 
Fig. 1. However, it must be underlined that the formulation in this section is quite general and is 
applicable to a beam with any boundary conditions. 

 The representative system consists of a cantilevered Bernoulli-Euler beam to which an axially 
vibrating elastic rod with tip mass M is attached in-span. Axially vibrating rod with tip mass can be 
thought of as a realistic model of a conventional helical spring-mass system. It is assumed that this  
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x1 E1I1 ; m1 

E2A2 ; m2 
w2(x2,t) 

x2 

L2 

w1(x1,t) 

L1 

L1 

M

Fig. 1 A cantilevered beam carrying an in-span axially vibrating elastic rod with a tip mass 
 
 

combined system vibrates only in the plane of the paper. The physical properties of the system are 
as follows: The length, mass per unit length and bending rigidity of the beam are L1, m1, E1I1 
whereas the corresponding quantities and the axial rigidity of the rod are L2, m2, E2A2, respectively. 
It is to be noted that E2A2/L2 corresponds to the spring constant of the conventional helical spring.  

The planar bending displacements of the beam are denoted as w1(x1,t), whereas the axial 
displacements of the vertical rod with tip mass M are denoted as w2(x2,t), where x2=0 corresponds 
to the attachment point of the rod to the beam. w2(x2,t) is actually a “relative” displacement of the 
rod, with the matching condition w2(0,t)=0. w1(x1,t) and w2(x2,t) are assumed to be small. 

Making use of Gürgöze et al. (2008) and Cha and Honda (2010), the equations of motion of the 
vibrational system in Fig. 1 can be written as 

 1 1 1 1 1 1 1 1 1( , ) ( , ) ( )ıvE I w x t m w x t F t x L    ,                  (1) 

2 2 2 2 2 2 2 2 1 1( , ) ( , ) ( , )E A w x t m w x t m w L t    .                   (2) 

Here, δ(x) denotes the well-known Dirac-delta function, whereas F(t) represents the vertical 
force exerted by the axially vibrating elastic rod on the bending beam, which is referred to as the 
“characteristic force” (Cha and Honda 2010). 

Using D’Alembert’s principle, this force can be formulated as 

     
2

2 2 2 1 1 2 1 1 2 2

0

( , ) ( , ) d ( , ) ( , )
L

F t m w x t w L t x M w L t w L t          .          (3) 

It is to be emphasized that 2 2 1 1( , ) ( , )w x t w L t   denotes the absolute acceleration at any 

point along the rod, and 1 1 2 2( , ) ( , )w L t w L t   represents the absolute acceleration of the tip mass.  
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As in the assumed modes method, the lateral displacements of the beam can be expressed in the 
form of a finite series as 

     1 1 1
1

,
N

i i
i

w x t x t 


                            (4) 

where N represents the number of modes used in the series expansion of the bending displacement 
of the beam, ϕi(x1) the eigenfunctions of the bare beam, and ηi(t) are the generalized coordinates to 
be determined. In a similar way, the axial displacements of the rod can be represented in the form 
of another finite series as 

      2 2 2
1

,
P

r r
r

w x t x a t


                          (5) 

where P represents the number of modes used in the series expansion of the axial displacement of 
the rod, ψr(x2) the eigenfunctions of the bare rod without the tip mass, and ar(t) the corresponding 
generalized coordinates to be determined.  

As the bare beam in Fig. 1 consists of a clamped-free beam, the functions ϕi(x1) correspond to 
the eigenfunctions of a clamped-free Bernoulli-Euler beam which in normalized form (normalized 
with respect to the mass per unit length m1 of the beam) are 

         
        1 1 1 1 1

1 1

sin sinh1
cosh cos sinh sin

cos cosh

i i

i i i i i

i i

x x x x x
m L

 
    

 

  
     

    
 (6) 

where the ith nondimensional eigenfrequency parameter 1i i L   satisfies the well-known 

transcendental equation 

   cos cosh 1 0i i    .                            (7) 

Because the vertical rod is attached to the beam, the eigenfunctions ψr(x2) correspond to those 
of a fixed- free rod. The normalized form of these eigenfunctios are (Cha et al. 2008) 

    
2 2

2 2 2

2 12
sin

2r

r
x x

m L L




 
  

 
,         ( r =1, 2, … ).              (8) 

For further considerations, it is in order to note here that ψr(x2) satisfy the following two 
geometric boundary conditions 

  0 0r  ,                2 0r L                      (9) 

where the prime represents a derivative with respect to x2. It is a known fact that the eigenfunction 
expressions (6) and (8) satisfy the following orthonormality conditions 

   
1

1 1 1 1

0

L
s

r s rm x x dx   ,              
2

2 2 2 2

0

L
s

r s rm x x dx            (10) 

where s
r  denotes the Kronecker delta.  
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Before proceeding further, it is quite appropriate to give the expressions of the squared 
eigenfrequencies ωi

2 of the bare, i.e., clamped-free beam 

 2 4 1 1
4

1 1

,i i

E I

m L
           ( i = 1, 2, …).                     (11) 

The squared eigenfrequencies 2
i  of the bare, i.e., fixed-free rod are 

 
  2

2 2 2
2

2 2

2 1

2i

i E A

m L
 

 
  
 

,        ( i =1, 2, …).                  (12) 

Substitution of the series solutions (4) and (5) into the differential Eqs. (1) and (2) where the 
functions ηi(t) and ar(t) are assumed to be exponential in time 

 
 
 

e ,

e ,

t
i i

t
r r

t

a t a





 


                               (13) 

and then carrying out the usual Galerkin-procedure leads to the following sets of equations for the 
unknowns i  and ra  

      2 2 2 2
2 2 2 2

1 1

0
N P

i i i j j i r r r
j r

m L M f f f m M L a       
 

   
        

  
  , 

(i=1, 2, …, N),                               (14) 

        2 2 2 2
2 2 2 2

1 1

0,
N P

s s s s i i s r r
i r

a m M L f L L a        
 

   
       

   
    (s=1,2,…,P). 

 (15) 

Here, the following abbreviations are used 

 1i if L  ; 

2 1 1
0 4

1 1

E I

m L
  ;    

2
4

2
0

i
i

 


 , 

( 1 1.875104  , 2 4.694091  , 3 7.854757  , …) 

 
2

2 2

0

L

s s x dx   .                             (16) 

As is well known, the eigenfunctions ψr(x2) of the axially vibrating bare rod satisfy only the 
geometric boundary conditions (9), but not the dynamical boundary condition 

      1 1 2 2 2 2 2 2, , , 0M w L t w L t E A w L t                        (17) 

which is due to the tip mass M.  
After the introduction of the series solutions (4) and (5) into the differential Eq. (2) and then 
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applying the classical Galerkin-procedure, one is led to Eq. (15) which actually does not contain 
the terms which are multiplied by ψs(L2). The derivation of those specific terms enabling one to 
consider the dynamic boundary condition (17), is given below. 

The mentioned terms of Eq. (15) are obtained from the first term 2 2 2 2( , )E A w x t  of the 

differential Eq. (2).  
After substituting the series solution (5) into Eq. (2) and carrying out the classical Galerkin- 

procedure, one obtains the term 

      
2

2 2 2 2 2
1 0

LP

r s r
r

E A x x dx a t 


 
  

 
  .                        (18) 

If integration by parts is applied to the definite integral in the brackets, one is led to 

           
2 2

2 2 2 2 2 2 2 2

0 0

L L

r s s r r sx x dx L L x x dx           ,                (19) 

where ψs(0)=0 is used.  
The second term on the right hand side of the above equation can be brought into the form:  

   
2 2

2 2 2
2 20

L
sr

r s rx x dx
E A

     ,                      (20) 

when the differential equation 

   2
2 2 2 2 2 0r r rE A x m x     ,                      (21) 

and the orthogonality properties of the eigenfunctions ψr(x2) are accounted for. 
Now, if Eq. (19) and Eq. (20) are substituted into Eq. (18),  

                
2

2
2 2 2 2 2 2 2 2 2

1 1 10

LP P P
s

r s r s r r r r r
r r r

E A x x dx a t E A L L a t a t     
  

 
    

 
    

(s=1,…,P)                                 (22) 

is obtained.  
Herewith, via the dynamical boundary condition (17) and the series solutions (4) and (5); Eq. 

(22) and thus expression (18) can be written as 

     

             

2

2 2 2 2 2
1 0

2
2 1 2

1 1 1

.

LP

r s r
r

N P P
s

s i i r r r r r
i r r

E A x x dx a t

L M L t L a t a t

 

      



  

 
   

 
  
    

  

 

   

       (23) 

If now in the above equation the assumed solutions (13) are substituted, it can easily be seen 
that the product term on the right hand side containing the braces is nothing else but the mentioned 
terms of Eq. (15).  
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It is to be noted that here and in Cha et al. (2008), the same series of solutions (4) and (5) are 
used for the solution via the assumed modes method. In Cha et al. (2008), the dynamic boundary 
condition is of no particular concern because it is automatically accounted for in the kinetic and 
potential energies (Meirovitch 1975). However, here, two additional terms have to be included by 
applying the Galerkin’s method in order to consider the dynamic boundary condition.  

Introducing further the definitions 

0   ,       2 2

1 1
m

m L

m L
  ,    

1 1
M

M

m L
  , 2 2 2

3
1 1 1

k

E A L

E I L
   

2
*2

2
0

i k
i

m

  
 

 ,  ( *
1 2  , *

2 3 2  , …) 

1

2 1iz
i




, 2 2
i iz z


  

       
        1 1

sin sinh
cosh cos sinh sin

cos cosh

i i

i i i i i i

i i

f f m L
 

   
 

 
     
  

, 

     
2 2 2 2

2 1
2 sin

2r r

r
L L m L


 

 
   

 
,     2

2
r r m M r

m

z L  


     (24) 

the two sets of equations given in (14) and (15) can be brought into the following simplified forms 

   2 2 4 2

1 1

0
N P

m M i j i ij j i r r
j r

f f f a       
 

           
     (i=1,2,…,N),     (25) 

     2 *2 2 2
2 2 2

1 1

2
2 2 2 0

P N
k M M

s s s r r m s s i i
r im m m

a L L a z L f
          
    

      
          

       
   

(s=1,2,…,P).                               (26) 

The (N+P) Eqs. in (25) and (26) can be combined into the following matrix equation 

 
   
   
A B

C D

     
     

    

η 0

a 0
.                          (27) 

Here, following submatrices and additional abbreviations are introduced 

1

T

i i iPx
f f f   if  ;    1 2PxN    NF f f f    1 2

T

Nf f f   f   

 
1

T

r r rNx
   rΩ  ;    NxP  1 2 PΩ Ω Ω Ω  

 1 2

T

N  η  ;           1 2

T

Pa a aa  , 

     
 

   

2 2 4

2

2 2

,

[ ] ,

2
[ ] 2 2 ,

T
m M i

i

M
m i i

m

A

B f

C z k

    



  
 

   



 

f f diag

diag Ω

diag F diag F
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 

 

2 *2 2

2 1 2

2

, .

Tk M
i

m m

T

i i P

D

k L k k k

   
 



 
   

 

    

diag kk

k 
 

(28)

In order that the linear, homogeneous matrix Eq. (27) has nontrivial solutions, the determinant 
of its coefficient matrix should be zero, leading to the characteristic (frequency) equation 

 
   
   

det 0
A B

C D

 
 

 
.                            (29) 

The  values which are purely imaginary numbers in nature, making the above determinant 
equal to zero, give the nondimensionalized eigenfrequencies of the combined system in Fig. 1. 
However, it is a known fact that finding those characteristic values which make a determinant 
equal to zero, may be sometimes problematic from the numerical point of view. Hence, it is 
desirable to express the matrix Eq. (27) alternatively as an eigenvalue problem.  

It can easily be shown that the corresponding generalized eigenvalue problem is as follows:  

 
   
   

   
   

*0

0

B A C

E D D


        
              

η η

a a
                     (30) 

with 

     
   
   

     

 

   

* 2

4

*2

2
2 2

2 .

T
m M NxN

i

i

M
m i i

m

k
i

m

TM
PxP

m

A I

B

C f

D z k

E

D I

 

 




 

 





 

   

 

 

     
  

 
   

 

  

f f

diag

diag Ω

diag diag F

diag

kk

             (31) 

where [C′]=[D′]T. 
Here, [I]N×N denotes the N×N identity matrix, and [0] N×P, or P×N zero matrix.  
It can be shown that the submatrices given above are simply the nondimensional forms of the 

submatrices given in Eqs. (8) and (9) of Cha et al. (2008). Hence, it can be stated finally that: 
Exactly the same eigenvalue problem in Cha et al. (2008) is obtained here, tracing a quite different 
route.  

Recall that up to now, the beam under investigation is assumed to be a clamped-free Bernoulli-
Euler beam, as seen from Fig. 1. However, the formulations made in the present work are quite 
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general such that other types of supporting conditions for the beam are applicable as well. 
For the sake of the completeness, in the following part, the corresponding formulations for a 

simply-supported beam, a fixed-simply supported beam and a fixed-fixed supported beam are 
given. At this point, it is quite in order to refer to the work of Gonçalves et al. (2007). Numerical 
results for the clamped-free beam and the fixed-fixed beam are given in the next section.     

For a simply supported uniform beam, the eigenfunctions, normalized (normalized with respect 
to the mass per unit length m1 of the beam) are 

   1
1

1 1 1

2
sini

i x
x

m L L


 

  
 

                          (32) 

and its squared eigenfrequencies are 

  42 1 1
4

1 1
i

E I
i

m L
  .                             (33) 

Hence, the corresponding definitions in (16) and (24) should be replaced by 

 1i if L  ,           1 1 2 sini if m L f i   

 
2

4 4
2

0

i
ii

  


  ,       (
1  , 2 2  , …) .               (34) 

For a fixed-simply supported uniform beam, the eigenfunctions, normalized (normalized with 
respect to the mass per unit length m1 of the beam) are 

         
        1 1 1 1 1

1 1

cosh cos1
cos cosh sin sinh

sin sinh

i i

i i i i i

i i

x x x x x
m L

 
    

 

  
     

    

   (35) 

where 
1i i L   denotes ith root of the following transcendental equation 

       sin cosh cos sinh 0i i i i     .                   (36) 

The ith squared eigenfrequency of the beam is 

2 4 1 1
4

1 1
i i

E I

m L
  .                              (37) 

Hence 

 1i if L  , 

       
        1 1

cosh cos
cos cosh sin sinh

sin sinh

i i

i i i i i i

i i

f f m L
 

   
 

  
      

    

    (38) 

2
4

2
0

i
i

 


 ,  1 23,926602, 7,068583, ..   .               (39) 
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For a fixed-fixed (i.e., clamped-clamped) uniform beam, the eigenfunctions, normalized (with 
respect to the mass per unit length m1 of the beam) are 

         
        1 1 1 1 1

1 1

cos cosh1
cosh cos sinh sin

sinh sin

i i

i i i i i

i i

x x x x x
m L

 
    

 

  
     

    

  (40) 

where 1i i L   denotes the ith root of the following transcendental frequency equation:  

   cos cosh 1 0i i    .                          (41) 

The ith squared eigenfrequency of the beam is the same as in Eq. (37).  
Here, the corresponding definitions in (16) and (24) are to be replaced by:  

 1i if L  , 

       
        1 1

cos cosh
cosh cos sinh sin

sinh sin

i i

i i i i i i

i i

f f m L
 

   
 

  
      

    
 (42) 

and  

2
4

2
0

i
i

 


 ,       1 24,730041, 7,853205, ..                 (43) 

 
 

3. Numerical results 
 

This section is devoted first to the numerical application of some of the formulas established in 
the preceding section to the special case of a clamped-clamped beam which was not investigated in 
Cha et al. (2008). Secondly, on the example of a clamped-free beam, as depicted in Fig. 1, 
parametric investigations are carried out by varying the rod stiffness and the tip mass on the rod, to 
study their effects on the eigencharacteristics of the whole system.  

All the numerical results given in this section were obtained by using MATLAB.  
In Table 1, the nondimensional eigenfrequencies of the clamped-clamped Bernoulli-Euler beam 

with an in-span attached axially vibrating rod with a tip-mounted mass, are given. As mentioned 
above, this combined system is not dealt with in Cha et al. (2008). Following physical parameter 
values are chosen: αm=0.1, αM=2, αk=48, ζ=0.37. It is in order to recall that the square roots of the 
eigenvalues λi

* obtained from the generalized eigenvalue problem (30), correspond to the 
nondimensional eigenfrequencies ωi in Cha et al. (2008). 

The values in the second column are the results of a conventional FEM-formulation with 100 
elements for both the beam and the rod, N being the number of eigenfunctions used in series 
expansion (4) of the bending vibrations of the beam, used also in Cha et al. (2008). Recall that P 
here denotes the number of the eigenfunctions used in the series expansion (5) of the axial 
vibrations of the rod, corresponding to Nn in Cha et al. (2008). The values written in parenthesis 
below the eigenfrequencies denote the corresponding relative errors with respect to FEM-solution. 

For the clamped-clamped beam, the common forms of eigenfunctions, given by (34) permit 
evaluation of only the first 12 modes or so due to numerical issues (Cha 2013). Therefore, in case  
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Table 1 The nondimensional eigenfrequencies *
i  of the clamped-clamped Bernoulli-Euler beam with an 

in-span attached axially vibrating rod with a tip-mounted mass. Nondimensional physical parameters of the 
combined system are taken as: αm=0.1, αM=2, αk=48, ζ=0.37 

*
i  FEM 

N=10 N=100 
P=10 P=100 P=200 P=10 P=100 P=200 

1 4.409433 
4.445268 

(%8.13×10-1) 
4.413158 

(%8.45×10-2)
4.411393 

(%4.44×10-2)
4.445067 

(%8.08×10-1)
4.412962 

(%8.01×10-2) 
4.411197 

(%4.00×10-2)

2 23.611707 
23.666629 

(%2.33×10-1) 
23.617223

(%2.33×10-2)
23.614499

(%1.18×10-2)
23.666547

(%4.11×10-1)
23.617147 

(%2.30×10-2) 
23.614424

(%1.15×10-2)

3 58.809347 
59.051877 

(%4.12×10-1) 
58.835293

(%4.41×10-2)
58.822663

(%2.26×10-2)
59.050962

(%4.11×10-1)
58.834254 

(%4.24×10-2) 
58.821616

(%2.09×10-2)

4 73.597601 
74.803537 

(%1.64×100) 
73.717210

(%1.63×10-1)
73.658964

(%8.34×10-2)
74.797264

(%1.63×100)
73.711341 

(%1.55×10-1) 
73.653117

(%7.54×10-2)

5 120.868476
120.875343 

(%5.68×10-3) 
120.869168

(%5.72×10-4)
120.868803

(%2.70×10-4)
120.875330

(%5.67×10-3)
120.869149 

(%5.57×10-4) 
120.868783

(%2.54×10-4)

6 138.480971
141.269892 
(%2.01×100) 

138.746037
(%1.91×10-1)

138.609411
(%9.27×10-2)

141.255027
(%2.00×100)

138.731673 
(%1.81×10-1) 

138.595076
(%8.24×10-2)

7 196.192216
197.131589 

(%4.79×10-1) 
196.286721

(%4.82×10-2)
196.232681

(%2.06×10-2)
197.128750

(%4.77×10-1)
196.282307 

(%4.59×10-2) 
196.228164

(%1.83×10-2)

8 211.140764 
214.615049 
(%1.65×100) 

211.418246
(%1.31×10-1)

211.257168
(%5.51×10-2)

214.596011
(%1.64×100)

211.401829 
(%1.24×10-1) 

211.240899
(%4.74×10-2)

9 275.843529
281.264754 
(%1.97×100) 

276.232554
(%1.41×10-1)

275.965409
(%4.42×10-2)

281.236163
(%1.95×100)

276.204084 
(%1.31×10-1) 

275.936973
(%3.39×10-2)

10 299.034338
299.403864 

(%1.24×10-1) 
299.053940

(%6.56×10-3)
299.038503

(%1.39×10-3)
299.402707

(%1.23×10-1)
299.053532 

(%6.42×10-3) 
299.038120

(%1.26×10-3)
 
 

of N=100, the following alternative forms of eigenfunctions of a clamped-clamped Bernoulli-Euler 
beam are used in the numerical evolutions (Gonçalves et al. 2007) 

   
1

1 1 1 1
1

1 1 11 1

1
e cos 1 sin sinh

i
x

L
i i i i

i i

x x x
x

L L Lm L


     

     
         

       
        (44) 

with  

   
   

e cos sin

sinh sin

i
i i

i i

  


 

  
 
  

.                        (45) 

It is shown that the above alternative forms allow the evaluation of high-order modes without 
numerical problems.  

It is seen that for a fixed N, the “best” results i.e., the smallest errors are obtained for P=200. 
The overall “best” results are obtained for N=100 and P=200. Further, it is interesting to see that 
the errors of the 10th eigenfrequency are much more smaller than those of the fundamental 
eigenfrequency. Furthermore, the investigation of Table 1 allows the following important 
observation that P, the number of the eigenfunctions of the axial vibrations of the rod, is more  
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Fig. 2 The first five mode shapes of a clamped-clamped Bernoulli-Euler beam with an in-span attached 
axially vibrating rod with a tip-mounted mass. The physical parameters are the same as those of Table 1
 
 

effective than N, the number of eigenfunctions of the bending vibrations of the beam, on the 
convergence of the numerical solutions. Further, when the number N increases from 10 to 100 for 
a constant P-value, the errors in eigenfrequencies are somewhat decreased. However, it is worth 
noting that the decreases in the errors are more apparent when P increases for a constant N-value.     

To sum up, the eigenfrequencies of the combined system investigated above, can be obtained 
via the eigenvalue problem formulation re-established here, with a very satisfactory accuracy. The 
corresponding eigenmodes of the clamped-clamped beam with an in-span attached axially 
vibrating rod with tip-mounted mass are depicted in Fig. 2.  

Further, results of the parametric investigation obtained by varying the stiffness of the rod and 
its tip mass on the eigencharacteristics of the combined system, consisting of the cantilevered 
beam and the rod with tip mass, as depicted in Fig. 1, are given in form of graphs in Figs. 3-6.  
All numerical results below are based on the assumption of N=100 and P=200.  

The first five mode shapes of the cantilever beam with axially vibrating rod corresponding to 
reference parameters (αm=1, αM=2, αk=1, ζ=0.5) are presented in Fig. 7. It is seen that the first four 
modes of cantilevered beam are similar to the first bending mode of a cantilevered bare beam. The 
fifth mode, however, is similar to the second bending mode of a cantilevered bare beam. The mode 
shapes of axially vibrating rod, on the other hand, appear similar to the first, second and third 
modes of a bare rod. 

Further, the effects of the variation of the αk parameter on the mode shapes are investigated. 
The individual mode shapes of the combined system corresponding to different αk values are 
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calculated and presented in Fig. 3. It is obvious that the first modes of the combined system 
corresponding to different αk parameters do not show any significant variation. However, the 
results presented in Figs. 3(b)-3(e) show that the mode shapes for higher modes exhibit strong 
dependency on αk parameter.  

 
 

 
(a) 

 
(b) 

Fig. 3 The individual mode shapes of the combined system corresponding to different rod stiffness 
parameter αk. Graphs on the left and right correspond to the mode shapes of the beam and the rod, 
respectively. (αm=1, αM=2, ζ=0.5) (a) First modes, (b) Second modes, (c) Third modes, (d) Fourth 
modes, (e) Fifth modes 
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(c) 

 

(d) 

Fig. 3 Continued 
 
 
In Fig. 4, the eigenfrequencies of the combined system are also plotted against αk, as expected, 

increasing the stiffness of the rod, results in increasing natural frequencies. It is noted that the 
natural frequencies of the higher modes are affected more than those of the lower modes. 

Having investigated the effects of the variation of the rod stiffness on the eigencharacteristics 
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(e) 

Fig. 3 Continued 
 

 

Fig. 4 The variation of the eigenfrequencies of the combined system as function of αk (αm=1, αM=2, ζ=0.5)
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(a) 

 

(b) 

Fig. 5 The individual mode shapes of the combined system corresponding to different tip mass parameter 
αM. Graphs on the left and right correspond to the mode shapes of the beam and the rod, respectively. (αm=2, αk 

=24, ζ=0.5) (a) First modes, (b) Second modes, (c) Third modes, (d) Fourth modes, (e) Fifth modes  
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(c) 

 
(d) 

Fig. 5 Continued 
 
 
of the combined system, it is quite in order also to investigate the effects of the tip mass parameter 
αM on the mode shapes and eigenfrequencies. The individual mode shapes of the combined system 
corresponding to different αM -values are calculated and presented in Fig. 5 with the following 
nondimensional parameter values αk=24, αm=2, ζ=0.5. Considering all the mode shapes in Fig. 5(a) 
to 5(e), it is seen that the mode shapes do not change significantly as a function of the tip mass 
parameter αM. However, it is worth stating that third modes of the rod are somewhat affected, in  
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(e) 

Fig. 5 Continued 
 

 
Fig. 6 The variation of the eigenfrequencies of the combined system as function of αM (αm=2, αk=24, ζ=0.5)

 
 
the sense that the nodal points are shifted towards tip mass of the rod. In addition, the 
eigenfrequencies of the system for the first five modes are plotted against αM in Fig. 6. Although, 
there is a gradual decrease in natural frequencies as the tip mass parameter αM increases, the  
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(a)                                              (b) 

Fig. 7 The first five mode shapes of the combined system: (a) beam, (b) rod. (αm=1, αM=2, αk=1, ζ=0.5) 
 
 
change in natural frequencies is not significant when αM is greater than approximately 2. The 
reason for this trend is that natural frequencies of the system approach to those of the system, 
when the mass M is approaching to ∞. This situation corresponds to the case when the free end of 
the rod is fixed.  
 
 
4. Conclusions 
 

There are a large number of publications in the technical literature on vibrations of combined 
dynamical systems consisting of beams to which helical spring-mass secondary systems are 
attached. In the majority of these studies, the helical springs are assumed to be massless. In a paper 
recently published, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with 
several in-span helical spring-mass systems were obtained on the basis of an eigenvalue problem. 
In that work, the helical springs, were modeled as axially vibrating rods. The authors used the 
assumed modes method and obtained the equations of motion of the system from Lagrange’s 
Equations and established the corresponding generalized eigenvalue problem after applying a 
Galerkin procedure. 

In the present study, the equations of motion of the corresponding vibrating system are written 
directly by making use of the “characteristic force” concept. Discretization of the system is then 
achieved by using the same series solutions as in the paper mentioned. Afterwards, it is shown that 
the approach used here, which is quite different from that of the mentioned study leads actually to 
the same generalized eigenvalue problem. Then, parametric investigations are carried out for two 
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representative types of supporting conditions of the bending beam. 
It should be noted that the generalized eigenvalue problem re-established here can easily be 

generalized to the case of multiple spring-mass attachments. 
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