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Abstract.  This paper provides the results of an experimental investigation into the flexural behavior of 

continuous two-span unbonded post-tensioned high strength concrete (HSC) beams, strengthened by end-

anchored CFRP laminates of different configurations in the hogging region. Implementing two different 

configurations of end-anchorage systems consisting of steel plates and bolts and carefully monitoring the 

development of strains throughout the load history using sufficiently large number of strain gauges, the 

response of beams including the observed crack propagations, beam deflection, modes of failure, capacity 

enhancement at service and ultimate and the amount of moment redistribution are measured, presented and 

discussed. The study is appropriate in the sense that it covers the more commonly occurring two span beams 

instead of the simply supported beams investigated by others. The experiments reconfirmed the finding of 

others that proper installation of composite strengthening system is most important in the quality of the bond 

which is essential for the internal transfer of forces. It was also found that for the tested two span continuous 

beams, the capacity enhancement is more pronounced at the serviceability level than the ultimate. This is an 

important finding as the design of these beams is mostly governed by the serviceability limit state signifying 

the appropriateness of the suggested strengthening method. The paper provides quantitative data on the 

amount of this capacity enhancement. 
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1. Introduction 
 

During the last two decades, a great amount of experimental, numerical and analytical studies 

has been conducted on the behavior of simply-supported and continuous reinforced concrete (RC) 

beams, frames slabs and columns that were strengthened with fiber reinforced polymer (FRP) 

composites (Meier et al. 1993, Teng et al. 2002, Foret and Limam 2008, Lignola et al. 2007, El-

Refaie et al. 2003, Farahbod and Mostofinejad 2010). These studies have proven that 
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strengthening of reinforced concrete with FRP composites is a viable technique superior to more 
traditional methods in terms of installation time and overall life cycle cost of repair. The more 
common type of FRP used for strengthening purposes is the carbon fiber reinforced polymer 
(CFRP) which is available as pre-cured bars, strips, and tendons, as well as wet lay-up sheets. 
Some of the major benefits of CFRP include high strength to weight ratio, high fatigue endurance 
and ease of installation (ACI-440.2R-08, Rosenboom et al. 2007). To improve the load carrying 
capacity and the serviceability of beams, quality of the bond between concrete and laminate is 
important and it highly depends on proper installation of the composite (Rosenboom et al. 2009, 
Mirmiran et al. 2004). The system must be designed to avoid premature failure due to 
delamination or debonding of the CFRP material from the concrete surface. Premature bond 
failures such as plate-end (PE) debonding and intermediate crack (IC) debonding can significantly 
limit the capacity enhancement and prevent the full ultimate flexural capacity of the retrofitted 
beams to be attained. Several studies were conducted to identify ways of preventing premature 
failures with a view to improve the load capacity and ductility of strengthened concrete beams and 
preclude failure by debonding of the composites. A number of researchers have recommended the 
use of steel anchor bolts, steel clamps at the strip ends and mechanical fasteners in order to prevent 
premature failure of RC beams strengthened with FRP plates (Chahrour and Soudki 2005, Garden 
and Hollaway 1998, Lamanna et al. 2001, Bank and Arora 2006, Breña et al. 2003). 

With the increasing use of high-strength/high-performance concrete (HSC/HPC) technology, 
researchers have started looking at the issues related to external FRP strengthening of reinforced 
concrete (RC) and prestressed concrete (PC) members constructed by HSC (Akbarzadeh and 
Maghsoudi 2010, Pellegrino and Modena 2009). The current study is also an attempt in that 
direction but focuses on strengthening of PC members. 

Over the last few years, several studies on the strengthening of simply supported (determinate) 
prestressed concrete with CFRP laminates/sheets have been conducted (Rosenboom et al. 2009, 
Takács and Kanstad 2002, Rosenboom et al. 2007). Also there have been some field applications 
using CFRP to repair prestressed concrete that verified CFRP is an effective method for 
repairing/strengthening damaged PC girder bridges (Schiebel et al. 2001) and strengthening has 
reduced beam deflections in some cases by as much as 20% (Klaiber et al. 2003). 

Rosenboom et al. (2007, 2009) conducted an extensive experimental program in several phases 
to study the behaviour of twenty two bonded PC bridge girders, which were tested under static and 
fatigue loading conditions by application of carbon fibre reinforced polymer (CFRP) and steel 
reinforced polymer (SRP) materials. They also suggested guidelines on the installation and 
inspection of composite strengthening systems of determinate PC members as well as structural 
design guidelines. Their findings indicated that SRP materials are more structurally efficient than 
(CFRP) materials. Their results also showed that the ultimate capacity of PC bridge girders can be 
increased by as much as 73% using CFRP without sacrificing the ductility of the original member. 
They presented an overview of installation procedures. 

Chakrabari (2005) studied the repairing and retrofitting methods of determinate un-bonded 
post-tensioned beams using composite materials (GFRP and CFRP). Eleven 150 mm wide×250 
mm deep×3600 mm long beams, were loaded to nearly their ultimate capacities. As the beams 
became i) noticeably cracked, or ii) when the deflections reached to twice the allowable deflection, 
or iii) the post-tensioning forces reached critical values; the beams were unloaded. The cracked 
beams were then repaired with varying amount of composite materials (carbon and e-glass) 
adhesives, and re-tested. Results of experiments revealed that the CFRP repair system provided 
more strength than the e-glass repair system. 
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2. Experimental procedure 
 

2.1 Test specimens  
 

Experiments were performed on five specimens of two-span un-bonded post-tensioned beams. 
The length of the beams were 6000 mm, and the sectional dimensions were 150250 mm, as 
shown in Fig. 1.The beams contained two longitudinal steel bars of 10 mm at top and bottom. Area 
of prestressing strand based on cross section and length of concrete beam was selected 98.71 mm2 
(seven-wire stress-relieved strands- Grade 270). One beam was chosen as the control beam (CB); 
other beams were strengthened with CFRP laminates of 1.2 mm thickness. The widths of CFRP 
laminates were 30 mm for beams E30NA and E30NB and 50 mm for beams E50NA and E50NB, 
with a cross sectional area of 36 mm2 and 60 mm2 respectively. In this classification, E stands for 
the externally bonded reinforcement, N for strengthening of the negative moment region and 
finally A or B is used for two types of anchorage systems used (Figs. 2 and 3).The configuration of 
the laminate, reinforcements and longitudinal profile of tendon as well as the loading and support 
arrangements are shown in Fig. 1. 

The beams details are presented in Tables1 and 2. In order to avoid shear failure in the beams, 
the closed stirrups were designed based on ACI-318-11 (2011) and more stirrups were provided at 
the end blocks as well as the central beam region (Fig. 1). In order to prevent the end-debonding 
failure, two types of end-anchorage systems (A and B) consisting steel plates and bolts were used. 

The A type of anchorage system was consisted of seven bolts tightening two smooth surface 
base and bearing steel plates of 120×120×6 mm (Fig. 2). In this arrangement, the CFRP laminate 
was attached on the concrete surface, only by hand pressure with roller. However for the B type 
system, ten bolts with two rough surface base and bearing steel plates of 210×120×10 mm were 
used (Fig. 3). For this group a constant pressure of 7.6×10-3 MPa was applied during curing time 
of adhesive. 

 
 
Table 1 Details of test beams 

Beam no. ௖݂௜ᇱ  (MPa) ௖݂ᇱ (MPa) 
Steel reinforcement Prestressing steel area ܣ௣ೞ (mm2) 

௣݂೐௣݂ೠ 
Top Bottom 

CB 51.1 68.1 

2 bars 
of 10 mm 
diameter 

2 bars 
of 10 mm 
diameter 

98.71 

0.47 
E30NA 48.9 67.6 0.50 
E50NA 49.2 67.9 0.52 
E30NB 50.4 68.1 0.49 
E50NB 48.3 67.7 0.53 

 
Table 2 Details of control and strengthened beams 

Beam no. 
Over central support laminate 

Width (mm) Thickness (mm) Area (mm2) Length (m) End anchorage type 
CB None None None None None 

E30NA 30 

1.2 

36 

2 

A 
E50NA 50 60 A 
E30NB 30 36 B 
E50NB 50 60 B 
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e. Bearing plate was used at the top of CFRP laminate to anchor the ends of laminates (Figs. 
2(b) and 3(b)); 

f. The seventh bolt was added to anchor the CFRP laminates to the end of steel plates for group A. 
g. The complete application was subsequently left to cure for a minimum of 10 days at room 

temperature before load testing of the beams. 
 

2.2 Material properties 
 

The beams were casted with high strength concrete, HSC. The concrete mix proportion is given 
in Table 3. For each beam, nine100×100×100 mm concrete cubes were made from each batch of 
concrete used to make the test beams. Those were kept at the same location as the beams during 
curing in order to eliminate the climate factor. The cubes were tested on the day of beam’s post-
tensioning operation (fci

') and on the same day as the test beams in order to provide values of the 
cube strength (fcu) (BS EN 12390-3 2009). The mean cylindrical concrete compressive strength 
(fci

',fc
') for each beam is shown in Table 1. The relationship between cylinder strength (fc

') and cube 
strength was considered as fc

'=0.85 fcu (Iranian concrete code 2009).  
The mechanical properties of the unidirectional CFRP laminates and epoxy adhesive obtained 

from the manufacturer’s data sheets are summarized in Tables 4 and 5. The mechanical 
characterizations of prestressing and deformed steel used in the test specimens are described in 
Table 6. Prestressing steel was Grade 270 (1861.9 MPa) seven-wire stress-relieved strands. 
 
 
Table 3 Concrete mixture proportions 

Cement 
(kg/m3) 

Silica fume 
(kg/m3) 

Coarse aggregate 
(kg/m3) 

Fine aggregate 
(kg/m3) 

Super plasticizer 
(kg/m3) 

630 70 850 750 10.75 

 
Table 4 Mechanical properties of the CFRP laminate 

Material 
Density 
(kg/cm3) 

Thickness 
(mm) 

Ultimate Tensile 
stress ௙݂ೠ(MPa) 

Young’s Modulus 
Ef (GPa) 

Ultimate strain ߝ௙ೠ(%) 

CFRP 1.81 1.2 3000 165 1.7 

 
Table 5 Mechanical properties of the epoxy adhesive 

Compressive strength 
(N/mm2) 

Tensile 
strength (N/mm2) 

Flexural 
strength (N/mm2) 

Shear 
strength (N/mm2) 

95 31 71.1 19 

 
Table 6 Mechanical properties of prestressing and deformed steel 

Type of 
steel 

Nominal 
diameter (mm) 

Nominal 
Area 

(mm2) 

Yield 
strength

fy (N/mm2)

Ultimate 
strength 

fu (N/mm2)

Modulus of 
elasticity 

Es (kN/mm2)

Nominal 
weight 
(kg/km) 

Max. % 
Relaxation 

after 1000Hrs

Prestressing 
grade 270 

11.21 98.71 1714 1925 195 740 2.5 

Deformed 
steel 

10 (mm) Top & 
Bottom steel bar 

78.54 336 525 192.5 --- --- 
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Table 7 Properties of different electrical resistance strain (ERS) gauges 

Coefficient 
Length 
(mm) 

Electrical 
resistance(Ω) 

Type of ERS Type of material 

 FLK-2-11-5 Prestressed strands ߗ0.3 ± 120 2 2.10

 FLA-10-11 Steel bars ߗ0.3 ± 120 10 2.09

 BFLA-5-5 CFRP laminate ߗ0.3 ± 120 5 2.11

 PFL-30-11 Concrete ߗ0.3 ± 120 30 2.13

 
 

2.3 Test setup and instrumentation used 
 

Test beam comprising two equal spans of 2850 mm were loaded with a concentrated load at the 
middle of each two span as shown in Fig. 1. A hydraulic actuator was used to load the beam. The 
reaction of the beam at the central support was measured using a load cell. Disposable electrical 
resistance strain (ERS) gauges used were from TML and are given in Table 7. The ERS gauges 
were attached to the top and bottom of concrete surface of the beams at the mid-span and the 
central support respectively, to measure the extreme layer of concrete compressive strain (εc). The 
ERS gauges were also pasted on the tensile and compressive bars at the mid-span and the central 
support. The ERS gauges were used on six wires of strand (except the central wire) at the 
beginning, the end, the central support and the mid-span of the beams and at seven locations on the 
CFRP laminates from central support to end anchorage to monitor experimentally the development 
of material strains throughout the loading history. 

Mid-span deflections were measured using linear variable differential transformers (LVDTs). 
For the tested beams, the load was applied step-by-step to failure in a load control manner. In other 
words, the load was applied in 5 to 10 kN increment up to failure.  The experimental values were 
monitored using a data acquisition system and the data was recorded and stored in the computer. 
The crack widths were also measured by a crack detection microscope with an accuracy of 0.02 
mm. At the end of each load increment, observations, measurements, crack development and its 
propagation on the beam surfaces were recorded. 

To obtain the stress-strain diagram, the strands and rebars were tested in tension based on 
ASTM-A370-2012 (Ghasemi 2012). Approximately 1000 hours before the loading test, each 
prestressing strand was anchored at the far end and then tensioned from the prestressing end using 
a center hole hydraulic ram. The effective prestressed values after 1000 hours, fpe (i.e., at the time 
of beams test) for all the beams which were monitored using the readings of the strain electrical 
gauges attached on the strands varied between about 47% and 53% of the ultimate strength of the 
strands (the more exact values are given in Table 1). This range of tension stress is representative 
of the effective stress fpe available in the prestressing steel during the service life of the PC 
members after accounting for the long-term prestress losses. 

 
 

3. Test results 
 

The obtained experimental results are presented and subsequently discussed in terms of the 
observed crack propagation, beam deflection (serviceability) and mode of failure, enhancement of 
load and moment capacity at service and ultimate limit states and moment redistribution.  
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3.1 Serviceability states 
 

Unlike RC, the primary analysis of PC is based on service conditions, and on the assumption 
that stresses in the extreme concrete fibers are limited to values which will correspond to elastic 
behavior (ACI-318-11, BS-8110 1997). If the tensile stress in the concrete is limited to a certain 
permissible value, then all stresses can be calculated on the assumption that the section is 
uncracked and thus the gross concrete section properties govern. If this is not the case, then 
calculations may have to be based on a cracked section. Limited cracking is permissible depending 
on whether the beam is pre- or post-tensioned and the appropriate exposure conditions. However, 
in BS (1997) for the design of prestressed flexural members, the three following classes are 
allowed under service loads. The flexural tensile stress and crack limitation for each class is: class 
1; the stress is zero and no crack is allowed, class 2; the stress is calculated by Eqs. (1) and (2) for 
bonded and unbonded tendons respectively with non-visible cracks. For class 3; although cracking 
is allowed, it is assumed that the concrete section is uncracked and that design hypothetical tensile 
stresses exist at limiting crack widths of 0.1 mm and 0.2 mm with either prestressed or grouted 
(bonded) post-tensioned tendons, depending on the surrounding area conditions. No suggestion is 
given for unbonded post-tensioned tendons. For all classes, the compressive stress should not 
exceed 0.4fcu for continuous beams. 

ft= 0.36ඥ ௖݂௨                                                                (1) 

ft= 0.45ඥ ௖݂௨                                                                 (2) 

In the case of strengthened beams, the provision of CFRP laminate resulted in an improved 
crack control, reduced deflection and improved serviceability in comparison to the un-
strengthened control beam. 

 
3.1.1 Cracking propagation 
Post-tensioned concrete beams with fully unbounded reinforcement tend to develop few cracks 

and concentrate deformation on a single crack (at critical regions) during the beam’s failure 
(Warwaruk et al. 1962). It is therefore, for better distribution of cracks for the tested beams of this 
report (especially for control beam,(CB)), 2Ф10  bars which is slightly more than the minimum 
area of ordinary steel reinforcement, based on the ACI-318-11 suggestion, Eq. (3) is used 

                                               As=0.004A                                                                   (3) 

Where A is that part of the cross section between the flexural tension face and the center of 
gravity of the gross section. 

Considering the CB specimen (Fig. 4(a)), the first visible flexural crack occurred at the 
maximum moment region (i.e., at central support) with a crack width of 0.03 mm at the cracking 
load (Pcr) of 64.1 kN (Table 8). By slightly increasing the load, the cracking became extensive 
with only a limited number of cracks, and crack widths increased in this region. However, on 
further load increases, the cracks accrued under the load points at the two mid spans. Fig. 4(b) 
illustrates that the number of cracks occurring at the mid span were more than the number of 
cracks at the central support. The observed crack propagation in CB, is not similar to past research 
findings on RC (Akbarzadeh Bengar and Maghsoudi 2010) or bonded PC (Pellegrino and Modena 
2009) due to strands having been unbonded. 

As for the strengthened beams, the first flexural crack appeared under the load points in the mid  
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Flexural strengthening of continuous unbonded post-tensioned concrete beams... 

 
Fig. 6 Total applied load versus mid-span deflection for the tested beams 

 
Table 10 Total load in accordance with allowable deflections and enhancement ratio (߰, ߴ, ߯, ߭) 

Beam no. 
L/240=11.88 (mm)=߂ L/180=15.83 (mm)=߂ L/360=7.92 (mm)=߂ L/480=5.94 (mm)=߂
P (kN) ߰ P (kN) ߴ P (kN) ߯ P (kN) ߭ 

CB 141.2 1 132.7 1 121.1 1 111.5 1 
E30NA 173.6 1.23 161.6 1.22 147.9 1.22 138.8 1.24 
E50NA 207.4 1.47 189.5 1.43 165.1 1.36 157.9 1.42 
E30NB 185.6 1.31 170.2 1.28 156.2 1.29 145.2 1.30 
E50NB 220.1 1.56 205.3 1.55 188.6 1.56 176.1 1.58 ߰ is ratio of the load in accordance with deflection of L/180 of strengthened beams to that of control beam. ߴ is ratio of the load in accordance with deflection of L/240 of strengthened beams to that of control beam. ߯ is ratio of the load in accordance with deflection of L/360 of strengthened beams to that of control beam. ߭ is ratio of the load in accordance with deflection of L/480 of strengthened beams to that of control beam. 

 
 

presence of un-yielded unbonded tendon, there is a significant slope in the curve at this stage and a 
considerable deflection enhancement occurred by load increment up to failure (Fig. 6). In stage 2, 
a considerable difference exists between the CB and the strengthened beams. In CB, the initial 
crack occurred earlier with a rapid increase on the width of a limited number of cracks, whereas in 
the strengthened beams, a suitable distribution of cracks with smaller width and deflection 
occurred. A close observation during the tests revealed that upon beam cracking and yielding at 
the central support, IC debonding had also occurred. A small length of laminate debonded at the 
central support as the flexural intermediate cracks grew wider. The debonding length was 
increased as the loads were incremented higher resulting in larger rotation at the central support. 
The enhancement of the crack width, length of laminate debonding and rotation of the central 
support contributed to the mid span deflection. It can be concluded that external strengthening 
compensates for the unbonding of the strands and as such improves the serviceability of the 
beams. The beams deflections for system B were lower than those of system A (Fig. 6). In system 
B, there was a delay on debonding, and for the same load a shorter debonding length was formed. 

In the open literature, one can find no trace of deflection prediction for continuous unbonded 
post-tensioned FRP-strengthened beams. Here, for the conventionally suggested limits of L/180, 
L/240, L/360 and L/480 (ACI 318-2011), the corresponding allowable load limitations are 
determined. For the beam with 2850 mm span, these workout to be 15.83, 11.88, 7.92, 5.94 mm 
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Flexural strengthening of continuous unbonded post-tensioned concrete beams... 

Fig. 11 Load versus extreme concrete compressive strain at the central support of test beams 
 

Fig. 12 Load versus tensile strain at the middle of CFRP laminates (i.e., central support of test beams) 
 
 
3.3.1 Extreme concrete compressive strain 
For the tested beams, the concrete compressive strains measured using at least four electrical 

strain gauges attached on the bottom and on the sides of the concrete beam, very close to the mid 
span and to the central support. Fig. 11 indicates the strain of concrete bottom surface at the central 
support. The highest strain value is for CB with a value of 5110 μߝ, which is considerably higher 
than the suggested values of different design codes (ACI-318-11, BS-8110 1997). The results 
indicate that the provision of As

'=2Φ10 and stirrups, Φ10@10cm centers at the central support 
region for a length of 700 mm, was capable of affecting the beam confinement. For the 
strengthened beams, the concrete compressive strain independent of the area of CFRP laminate 
remains more or less linear up to the beam’s failure and is not significantly affected by concrete 
cracking or yielding of the tensile steel. These results demonstrate that the effect of strengthening 
is to reduce the strain in the compressive region of concrete. Thus, externally bonded FRP 
laminate may also be utilised to reduce concrete compressive stresses, in addition to acting as 
additional tensile reinforcement.  

Comparison between the amount of concrete compressive strain for two anchorage system, A 
and B (Fig. 11) indicates that, for a particular load, the strain value is reduced for system B. This is 
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due to the occurrence of a smaller rotation in the critical region at the central support, a lower 
deflection and also the delay in laminate debonding of beams in group B. The measured concrete 
compressive strain values for E30NA, E50NA, E30NB and E50NB beams were respectively 3327 
µε, 2760 µε, 3415 µε and 2812 µε. 

 
3.3.2 CFRP laminate strain 
The tensile strain in CFRP laminates was measured from end anchorage to central support by 

using seven electrical strain gauges. Fig. 12 indicates the CFRP tensile strain at the central support. 
Tensile strains in the FRP laminates were increased significantly after concrete cracking. In 
addition, the strain of FRP laminates rapidly increased after yielding of the internal tensile steel 
reinforcement. Not only increasing the area of laminate reduced the tensile strain of the laminate 
for a given value of the applied load, but it also decreased the maximum tensile strains in the 
laminates before the beam failure (Fig. 12). The measured laminate strain values for beams; 
E30NA, E50NA, E30NB and E50NB were 8450 µε, 6833 µε, 9600 µε and 8255 µε respectively. 
The FRP strain corresponding to the applied load (including the ultimate state) generally decreased 
with the increase in the area of FRP reinforcement (Fig. 12). For the type B anchorage, at a 
particular value of the applied load, laminates tensile strain reduced when compared to the type A 
anchorage. As for group B, there is no surface slippage of laminate and the maximum tensile 
strains of laminates are increased prior to the beam’s failure (Fig. 12). 
 

3.3.3 Internal tensile steel strain 
Fig. 13 shows the total applied load against the tensile strain in the top steel bars at the central 

support of the beams. It indicates that the total applied load, at which the tensile steel bars of the 
strengthened beams yielded, was higher compared to that of the control beam. In the strengthened 
beams, the FRP laminates increased the beams rigidity so that after yielding of the tensile steel 
reinforcement, the beam continues to carry load and the slope of load-deformation curve does not 
drop to near zero as is the case for the control beam, CB (Fig 13). In addition, for a given load, the 
strain in the ordinary steel is reduced compared to CB (Fig 13). The measured steel tensile strain 
values for beams; CB, E30NA, E50NA, E30NB and E50NB were 17884 µε, 8309 µε, 6377 µε, 
8761 µε and 6900 µε respectively. Comparing the strain of steel for the two anchorage systems, A 
and B (Fig. 13) indicates that, at a particular load because of the delay in the FRP laminate 
debonding and the lack of slippage at the anchorage steel plates, the amount of beam rotation at 
the central support and the steel strain are smaller for group B. 
 

3.3.4 Post-tensioned strand strain 
The load versus post-tensioned strand strain of the tested beams is shown in Fig. 14. It indicates 

that before testing of the beams, only the beams self-weight was acting as the external load and the 
range of strand effective strains after total prestress loss, was between 4668 µε and 5156 µε. 
Comparing Figs. 6 and 14, it is seen that the curve for the applied load versus unbonded strand 
strain enhancement follows a trend similar to that of load-deflection response, which indicates 
there is a close relation between deflection and stress in the unbonded post-tensioned tendons. 
While only the control unbonded beam developed a level of strain passing yield at the onset of 
failure, the strengthened beams in groups A and B, experienced strain values close to yield at 
failure. At the peak load, the value of strain or stress in the unbonded strands generally decreased 
with an increase in the area of external FRP reinforcement for the beam with the same end 
anchorage system (Fig. 14). The measured strand strain values for beams; CB, E30NA, E50NA,  
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Flexural strengthening of continuous unbonded post-tensioned concrete beams... 

Fig. 13 Load versus top tensile steel strain at the central support of test beams 
 

Fig. 14 Load versus post-tensioned unbonded strand strain at the central support of test beams 
 
 

E30NB and E50NB at ultimate load were 12000 µε, 9200 µε, 8485 µε, 9358 µε and 8920 µε 
respectively. 

 
3.4 Enhancement of load and moment 

 
The failure load results and the ultimate load enhancement ratio γ, which is defined as the ratio 

of the ultimate load of a strengthened beam to that of the CB, are summarized in Table 8. It 
indicates that using CFRP laminates in the negative region to strengthen of continuous unbonded 
post-tensioned beams, is not only an effective technique to improve the serviceability 
considerations, but also it improves the load resistance capacity as the ultimate load for E30NA, 
E50NA, E30NB and E50NB increased by a factor of 1.08, 1.15, 1.11 and 1.2 respectively in 
comparison with CB. Fig. 6 presents the curves for the total loads exerted on each beam in terms 
of the corresponding mid-span displacement. It should be noted that the strengthening increased 
the beams rigidity so that the mid-span displacement in the strengthened beams reduced in 
comparison to the control beam. Smaller deflection, in turn, resulted in smaller values of the strand 
strain. It is therefore concluded that the strand strain in the strengthened beams does not increase 
as much as that of the CB which is more dependent on the ultimate load condition. Another 
observation here is that the highest load carrying capacity belonged to the group B (E50NB). 
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Comparing the two mechanical anchorage systems A and B, for the same area of CFRP laminate 
(the beams, E50NB and E50NA); the load carrying capacity of system B was higher by 5%. Table 
11 lists the ultimate moment and its enhancement ratio μ which is defined as the ratio between the 
ultimate moment of the strengthened beams and that of the unstrengthened control beam at the 
central support. The bending moment was calculated based on satisfying the equilibrium 
conditions using the measured central support reaction and the applied load at the mid-spans. By 
comparing the ultimate load enhancement ratio, ߛ, (Table 8) of a strengthened beam and the 
ultimate moment enhancement ratio, μ, (Table 11) of a strengthened section in the same beam, it 
can be concluded that the latter was significantly higher than the former. Such a conclusion is not 
valid for simply supported beams strengthened with external reinforcement where the ultimate 
moment and load enhancement ratios are similar. All strengthened beams resisted higher moments 
than the control beam. For the tested beams E30NA, E50NA, E30NB and E5NB, the moment 
enhancement ratio of 1.80, 2.06, 1.91 and 2.09 is obtained respectively in comparison with the CB. 

Figs. 15 and 16 show the total applied load plotted against the sagging and hogging bending 
moments for the tested beams. The hogging and sagging bending moments obtained from an 
elastic analysis based on assuming uniform flexural stiffness along the beam span are also plotted 
in Figs. 15 and 16. The behavior of all beams at early load levels was nearly elastic. For the 
control beam, by increasing the applied load, many cracks occurred, the steel reinforcement 
yielded, and consequently, the bending moment was found different from that calculated based on 
an elastic analysis, as can be seen from Figs. 15 and 16. The hogging bending moments of CB was 
always less than the elastic prediction, and the reverse was true for the strengthened beams. 

 
3.5 Evaluation of moment redistribution 

 
For the tested beams, the moment redistribution ratio β is calculated based on Eq. (5) and is 

given in Table 11. It was calculated for the positive and the negative moment at the mid-span and 
at the central support region (Figs. 15 and 16) at the failure load.  ߚ= 

ெ೐೗ିெ೐ೣெ೐೗ × 100                                                              (5) 

Where, Mel and Mex are the elastic and the failure experimental moments respectively. The Mel 
in beams (with and without the strengthening laminates) was obtained from linear elastic analysis 
by assuming a constant flexural stiffness along the beams. 

It is worth mentioning that the values of ultimate moment at the central support and at the mid-
span region were determined for each incremental loading stage on the basis of the values of the 
applied load and the support reactions measured by the load cells. 

 
 

Table 11 Redistribution of moment at failure 

Beam no. Mu (kN.m) μ 
 (%) ,ߚ

Hogging region Sagging region 
CB -36.11 1 38.15 -22.89 

E30NA -65.06 1.80 -4.68 3.33 
E50NA -74.38 2.06 -10.62 6.37 
E30NB -68.79 1.91 -3.98 2.34 
E50NB -75.35 2.09 -7.52 4.51 
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Fig. 15 Load versus positive moment at the mid-span region 
 

Fig. 16 Load versus negative moment at the central support region 
 
 

The sagging bending moment of the strengthened beam was always smaller than the elastic 
predictions and the reverse was true for CB beam at the mid-span region (Figs. 15 and 16). Hence, 
the highest moment redistribution value was observed in CB with a moment redistribution ratio of 
38.15% at the central support and 22.89% at the mid-span. 

Considering Figs. 15 and 16 and Table 11, the moment redistribution ratio was found to depend 
on the existence of the CFRP laminate and its area. In the strengthened beams, the first crack 
occurred at the mid span region and unlike the CB, the moment was then transferred to the central 
support region. This may be attributed to the variation of the flexural stiffness along the beam. In 
other words, the CFRP laminate in the hogging region tends to attract moments to the central 
support due to a considerable enhancement in flexural stiffness. The moment redistribution ratio of 
the strengthened beams significantly decreased due to the increase in area of CFRP laminate. For 
beams, E30NA, E50NA, E30NB, and E50NB, moment redistribution ratios of -5.38%, -10.62%, -
3.98% and -7.52% at the central support and 3.33%, 6.37%, 2.34% and 4.51% at mid span, were 
obtained respectively. By comparing the results for group B and group A, it was observed that the 
use of B anchorage system slightly increased the moment redistribution ratio as group B 
experienced higher rotation at the central support before failure than group A due to lack of 
slippage in the laminate. 
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4. Conclusions 
 

In this study, experiments were performed on four continuous unbonded post-tensioned HSC 
beams retrofitted by end-anchored CFRP laminate in addition to a control beam, CB. The major 
results obtained include: 

• In unbonded post-tensioned beams, an externally bonded reinforcement strengthening system 
can significantly improve the flexural performance at the serviceability state; while, based on 
result of previous researches, bonded prestressed concrete beam is not like that. 

• The load at which the internal steel reinforcement for a strengthened beam yielded was 
between 16% and 48% higher than that of the corresponding steel reinforcement in the un-
strengthened control beam yielded. This again highlights the existence of a much improved 
serviceability response. 

• The cracking load for the strengthened beams increased by up to 56% comparing to the 
control beam. This allowed a reduction of crack amplitudes and a more uniform distribution of 
cracks. Besides, in the strengthened beams, the strain within the concrete compressive region was 
reduced as a result of smaller beam rotation at the central support. Reducing the size of cracks and 
the more uniform distribution are both desirable in bridge rehabilitation scenarios where 
deleterious agents can affect bridge durability in the long run. 

• Reduction of the mid span deflection at the ultimate load due to the application of FRP was 
sizable for the strengthened beams. Similarly a large increase was observed in the value of the load 
corresponding to the allowable deflection which experienced an increase up to %58. 

• Proper installation of CFRP and allowing adequate size for end anchorage are two important 
issues affecting the performance of the strengthening system. Allowing for adequately large 
dimensions of end anchorage, would help delaying end anchorage failures and increase the 
ultimate strain developable in the laminates even after their complete debonding. The ultimate 
CFRP strain in group B anchorages was significantly higher than that in group A. The overall 
average CFRP strains at ultimate for the strengthened beams using two different areas of CFRP 
laminate and end anchorage were 9600 μ6833-ߝ μߝ. 

• In the CB, after an initial phase of linear behavior to cracking, the deviation from elastic 
behavior was observed. On the contrary, the flexural behavior of the strengthened beams remained 
linear to failure. 

• Failure of the beams occurred by concrete crushing at the central support and mid span and 
also end-anchorage failure after FRP debonding. This was the common method of failure observed 
in all beams.  

• Depending on the area of CFRP laminate and end anchorage type, the increase in load 
capacity varied between a minimum of 8% and a maximum of 20% and the moment enhancement 
ratio at the central support varied between a minimum of 80% and a maximum of 109% for the 
strengthened beams. Meanwhile, increasing the CFRP area significantly decreased the moment 
redistribution ratio from 38.15% to-10.62% in the unstrengthened and strengthened beams 
respectively. This reconfirms the fact the system remains in the linear service state longer. 

Overall, the main point to raise based on the findings is that the enhancements realized due to 
the suggested strengthening scheme affect the serviceability response considerably more than it 
affects the ultimate. This is the immediate outcome of the tendons being unbonded. The method is 
useful for bridges suffering from service overloads and cracking. The study is a new contribution 
to this research filed because i) the study is on two-span continuous beams which had not been 
studied previously by others and ii) it proves that the suggested strengthening will be considerably 
more effective for serviceability state rather than ultimate. 
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