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Abstract.  The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored 
when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it 
comes to adequately estimating the load-deformation response of steel reinforced concrete and the more 
recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified 
methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced 
flexural members using the concept of equivalent deformation modulus and the smeared crack approach to 
obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant 
modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the 
Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of 
structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the 
equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and 
reinforcement ratio (nρ), the effective-to-total depth ratio (d/h), and the level of loading. The proposed 
methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel 
reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental 
data obtained by the authors indicates that the proposed methodology is capable to adequately model the 
tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading. 
 

Keywords:  reinforced concrete; tension-stiffening; constitutive modelling; fibre reinforced polymer 

reinforcement; steel reinforcement; serviceability; numerical modelling 

 
 
1. Introduction 
 

The wider use of innovative construction materials with higher strengths for reinforcement and 

concrete has led to longer spans and smaller depths; consequently, Serviceability Limit State 
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(crack width and deformations) has often become the governing criterion in the design of 
structural elements. This phenomenon is even more accentuated when fibre reinforced polymer 
(FRP) is used as internal reinforcement. With their high tensile strength, their lower modulus of 
elasticity compared with steel most of the times leads to a design governed by limitation of 
deformations. 

Along with the traditional design codes, numerical methods are widely used in the design of 
concrete structures, so adequate modelling of material behaviour is of major importance. Previous 
research has shown that concrete between cracks contributes to the stiffness of the element due to 
interaction between the reinforcement and the concrete (usually referred to the tension-stiffening 
effect), and has a significant influence on the deformation analysis of reinforced concrete (RC) 
elements (Gilbert and Warner 1978, Floegl and Mang 1982, Gupta and Maestrini 1990, Russo and 
Romano 1992, Aiello and Ombres 2000, Torres et al. 2004, Kaklauskas 2004, Bischoff 2005, 
Bischoff 2007a, Gilbert 2007, Dede and Ayvaz 2009, Sarkar et al. 2009, Wu and Gilbert 2009, 
Kaklauskas et al. 2011a).  

Different approaches have been proposed to describe tension-stiffening. Bond stress transfer 
models (Floegl and Mang 1982, Gupta and Maestrini 1990, Wu et al. 1991, Russo and Romano 
1992, Choi and Cheung 1996, Aiello and Ombres 2000), in which, bond stresses between 
reinforcement and concrete in a cracked member are introduced using a bond stress-slip law. Due 
to its greater complexity and difficulty to determine some of the required parameters, these models 
have usually been limited to specific cases and not widely used for structures with many members. 
Equivalent flexural stiffness models, like the well-known Branson’s equation (Bischoff 2007b), 
which is based on an equivalent moment of inertia, calculated by interpolating between the 
moments of inertia of uncracked and fully cracked sections. Average stress-strain models (CEN 
2004, fib 2010), where a mean strain between the fully-cracked and uncracked states is assumed. 
Constitutive material models that are based on the constitutive equations specified for tensile 
concrete (Scanlon and Murray 1974, Lin and Scordelis 1975, Gilbert and Warner 1978, Prakhya 
and Morley 1990, Massicote et al. 1990, Kaklauskas and Ghaboussi 2001, Torres et al. 2004, 
Bischoff 2005, Stramandinoli and La Rovere 2008) or for the reinforcement (Murashev et al. 
1971, Gilbert and Warner 1978, Moosecker and Grasser 1981, Gilbert 1983, Choi and Cheung 
1994, Bischoff 2005) to predict stress-strain behaviour in a cracked section. 

Constitutive material models based on the modification of the tensile branch of the concrete 
stress-strain relationship or the stress-strain law of the reinforcement are based on the smeared 
cracking approach. These approaches have been widely used for numerical modelling of RC 
structures, since they present a combination of a relative degree of simplicity with enough 
generality to be effectively used in numerical analysis.  

Among the aforementioned works, a number of studies to select the values of the coefficients 
defining the constitutive laws for tensile concrete have been carried out (Scanlon and Murray 
1974, Lin and Scordelis 1975, Kaklauskas and Ghaboussi 2001, Torres et al. 2004, Bischoff 
2005), but only few studies have dealt with the constitutive equations specified for the 
reinforcement (Murashev et al. 1971, Gilbert and Warner 1978, Moosecker and Grasser 1981, 
Gilbert 1983, Bischoff 2005). Relatively early proposals (Murashev et al. 1971) were based on 
dividing the actual modulus of elasticity of the reinforcement by a coefficient depending on the 
relative level of loading (relationship between the load and the cracking load) in which a parabolic 
distribution of strains between cracks was assumed; Gilbert and Warner (1978) proposed a 
modified stepped stress-strain diagram for tension steel after cracking divided in intervals of strain 
with fixed different values of the equivalent secant modulus of elasticity of the reinforcement; 
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Gilbert (1983) proposed obtaining an equivalent modular ratio introducing an equivalent concrete 
area at the level of the reinforcement, which was adjusted with available test data and depended on 
the actual reinforcement and modular ratios; based on Murashev’s approach, Bischoff (2005) 
proposed an equivalent secant modulus of elasticity as a function of the level of load (relationship 
between applied flexural moment and cracking moment) and a relationship between the moment of 
inertia and distance between tensile reinforcement and neutral axis depth for cracked and 
uncracked sections. Most of these models have been empirically adjusted using specific databases, 
or reinforcement ratios and concrete properties that were usual for steel reinforcement, but not for 
new types of concrete or for the unique characteristics of FRP bars. Additionally, the basic 
sectional parameters influencing the laws, and therefore affecting tension-stiffening, are not 
explicitly stated in the proposals. Therefore, providing guidelines to select proper values of the 
coefficients characterizing the diagrams based on primary sectional design data could be of major 
interest.  

The present study aims at performing an analysis to rationally find the main parameters 
influencing tension-stiffening in flexural RC structures modelled through an equivalent 
reinforcement constitutive model and to propose a simple, but sound approach to obtain 
coefficients defining the law. Using general principles of structural mechanics, the modelling 
methodology is developed for rectangular sections taking Eurocode 2 (CEN 2004) as a reference 
model, in line with a number of studies that consider steel as well as FRP RC elements (Barris et 
al. 2009, Pilakoutas et al. 2011, Al-Sunna et al. 2012, Balázs et al. 2013). A closed-form equation 
is proposed to obtain the reinforcement equivalent secant stiffness as a function of the relevant 
sectional parameters. Comparison of the predicted deformations (curvatures) and experimental 
data of RC beams and specific tests carried out by the authors to measure the tension-stiffening 
effect (based on an average strain of the reinforcement), is used to validate applicability of the 
proposed methodology for modelling the tension-stiffening effect in flexural elements reinforced 
with FRP or steel bars. 

 
 

2. Equivalent stiffness of the reinforcement to model the tension-stiffening effect 
 

2.1 Equivalent secant stiffness of the reinforcement based on the Eurocode 2 model 
 
The aim of the present study is to investigate the variation in an equivalent stiffness of the 

reinforcement that reproduces a defined moment-curvature trend, while taking into account the 
tension-stiffening effect. For this purpose, Eurocode 2 (CEN 2004) moment-curvature prediction 
model is adopted, since the suitability of its methodology for steel RC and FRP RC elements has 
been widely corroborated (Pecce et al. 2000, Bischoff 2005, Al-Sunna et al. 2012, Barris et al. 
2009). According to Eurocode 2, the moment-curvature is interpolated between the fully cracked 
and uncracked states, as typically represented in Fig. 1. 

Fig. 1 shows that the sectional secant stiffness varies from that of the uncracked to that of the 
fully cracked state and is represented by the slope of the secant line between a specific point and 
the origin. It is easily seen that the slope depends on the level of load as well as on some 
relationship between the uncracked and fully cracked lines slope. Therefore, when modelling the 
tension-stiffening effect through an equivalent stiffness of the reinforcement, it is presumable that 
the stiffness will be affected by the significant parameters involved in the sectional stiffness 
variation. 
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Fig. 1 Moment-curvature relationship according to Eurocode 2 
 

Fig. 2 Stress and strain distribution at a cross-section level 
 
 
2.2 Cracked section with equivalent secant stiffness of the reinforcement 
 
The study is limited to the serviceability range in the first part of the present paper, and hence a 

linear relationship for reinforcement and for compressed concrete is assumed. The analysis is 
performed for a cracked section ignoring concrete in tension while taking into account the 
equivalent stiffness of the reinforcement. The diagrams in Fig. 2 are based on these assumptions 
and represent strain and stress at a cross-section level for the serviceability range of loading. 

Equilibrium and strain compatibility equations read 

 Ar r 
1

2
 cbxeq   (1) 

 M  Ar r d 
xeq
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  (3) 

where c and c are the maximum stress and strain in the concrete, r and r are the stress and 
strain at the reinforcement, xeq is the position of the equivalent neutral axis depth, b is the width of 
the section, Ar is the area of reinforcement, d is the effective depth, M is the flexural moment and  
is the curvature. 
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Fig. 3 Typical equivalent secant modulus of deformation relationship Er,eq/Er, depending on 
the relative load level, M/Mcr 

 
 
Development of previous equations allows obtaining the force in the reinforcement Fr, the 

sectional flexural moment M, and the equivalent secant stiffness of the reinforcement (AE)r,eq (see 
Appendix A) 

 Fr  AE r,eq
r 

1

2
Ecbxeq

2   (4) 

 M  1

2
Ecbxeq

2 d 
xeq

3









   (5) 

 AE r,eq


Ecbxeq
2

2 d  xeq 
  (6) 

where Ec is the modulus of elasticity of concrete.  
If the flexural moment M and the curvature  are known (i.e. from the Eurocode 2 model), the 

equivalent neutral axis depth xeq can be calculated from Eq. (5). Consequently, the equivalent 
stiffness can be determined from Eq. (6) at each load step by applying an inverse method 
(Kaklauskas et al. 2011b). If for the sake of simplicity the area of reinforcement is maintained as 
Ar, the equivalent secant modulus of deformation Er,eq can be obtained by rearranging Eq. (6) 

 Er,eq 
Ecbxeq

2

2Ar d  xeq 


Ec xeq d 2

2 1 xeq d 
  (7) 

where  is the actual reinforcement ratio and xeq/d can be referred as the relative depth of the 
compression zone. 

The variation of the equivalent secant modulus of the reinforcement Er,eq with the level of 
loading (as seen in Fig. 1) can be represented as a function of moment ratio (M/Mcr) where M is the 
applied moment and Mcr is the cracking moment. Fig. 3 shows a typical case of this dependency in 
an RC element with a section of 150×200 mm reinforced with FRP bars with a modulus of 
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elasticity of Er=80 GPa, and a reinforcement ratio of =0.01. The concrete compressive strength is 
75 MPa and the ratio between the effective depth and the height of the beam (d/h) is 0.75. In the 
figure, the evolution of Er,eq/Er is represented up to the point where the bending moment equals 
three times the cracking moment. 

Fig. 3 shows that the Er,eq/Er trend descends as the M/Mcr ratio increases, indicating that the 
tension-stiffening effect decreases with increasing average strain in the reinforcement. Relatively 
high values of Er,eq/Er are observed during the first steps of cracking, which is in agreement with 
results from previous studies (Gilbert and Warner 1978). However, for higher load levels Er,eq/Er 
asymptotically approaches unity, meaning that tension-stiffening disappears. 
 

2.3 Influencing parameters 
 
As mentioned previously, to model the tension-stiffening effect, the Eurocode 2 (CEN 2004) 

approach is selected as a reference. The mean curvature  due to flexural moment M is obtained by 

  1 1  2   (8) 

  1  Mcr

M









2

  (9) 

where 1 and 2 are the curvatures at uncracked and fully-cracked states respectively, and  is a 
coefficient taking account of the influence of repeated loading or the duration of sustained loading 
(1.0 for a single short-term loading and 0.5 for sustained or repeated loading). Using Eqs. (8)-(9), 
and considering short-term loading (=1), equivalent flexural stiffness in terms of equivalent 
moment of inertia is given by 

 Ieq 
I1I2

I2

Mcr

M









2

 I1 1 Mcr
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






2











  (10) 

where I1 and I2 are the moments of inertia of the uncracked and fully cracked sections respectively.  
On the other hand, the equivalent moment of inertia for a cracked section with equivalent 

secant stiffness of the reinforcement (Fig. 2) can be directly obtained from Eq. (5) 

 Ieq 
M

Ec
 1

2
bxeq

2 d 
xeq

3









   (11) 

By equating equivalent stiffness obtained from Eurocode 2 (Eq. (10)) and that from a cracked 
section with equivalent secant stiffness of the reinforcement (Eq. (11)), the following equation for 
the relative depth of the compression zone is obtained 
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
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




2

1
xeq

3d









 

1

6 d h 3

I2 I1

I2 I1 Mcr M 2  1 Mcr M 2





  (12) 

This equation indicates that (xeq/d) depends on the relative effective depth of the section (d/h) 
and on the ratio of moments of inertia of fully cracked and uncracked section I2/I1. The latter can 
be expressed as 
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 I2 I1 

1

2
bx2 d  x 3 

1
12
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
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x
d









2

1 x 3d 

h
d









3
  (13) 

in which the moment I2 has been obtained using Eq. (11) applied to a fully cracked section. The 
normalized neutral axis depth can be obtained from the well-known equation (fib 2010) 

 
x

d
 n  n 2  2n   (14) 

where x is the neutral axis depth of the fully cracked section, n is the modular ratio of the moduli 
of elasticity of the bare bar, Er, and concrete, Ec. Consequently, I2/I1 in Eq. (13) and therefore in 
Eq. (12), depends only on n and d/h. The same applies to (xeq/d) in Eq. (12) as well as Er,eq in Eq. 
(7) that also depends on n and d/h. A more detailed derivation of the above governing equations 
is given in Appendix A. 

 
 2.4 Parametric study 
 
A parametric study has been performed to investigate the influence of parameter (n) and 

relative effective depth (d/h) on variation of the equivalent secant modulus of deformation Er,eq 
found in Eq. (7). Covering the range of values usually found in practice, the reinforcement ratio 
varied from 0.005 to 0.04, the modulus of elasticity of the reinforcement ranged between 40 and 
200 GPa, the concrete compressive strength varied from 25 to 70 MPa, and the d/h ratio varied 
from 0.75 to 0.85. In the considered cases, n varied from 0.01 to 0.25. Fig. 4 illustrates the effect 
of n and d/h on Er,eq/Er expressed as a function of relative load level (M/Mcr) for a typical RC 
section with 150 mm width and 200 mm depth, and with a concrete strength of 25 MPa. It can be 
observed that the equivalent secant modulus of deformation decreases as n and d/h increase, 
which reflects the expected decrease in the tension-stiffening effect according to Eurocode 2 as 
these parameters increase.  

 
 

(a) at different n values (b) at different d/h values 
Fig. 4 Equivalent secant modulus of deformation relationship Er,eq/Er depending on the relative load 
level, M/Mcr 
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(a) for different n values (b) for different d/h values 

Fig. 5 Representation of normalized equivalent secant modulus of deformation 
 

Fig. 6 Dependence of parameter a on n and d/h (see Eq. (13)) 
 
 
Different types of equations could be investigated to adjust a closed form equation for the 

equivalent secant modulus of deformation. Nevertheless, from the existing literature (Murashev et 
al. 1971, Bischoff 2005) it can be assumed that the relationship between the equivalent secant 
modulus of deformation and the load level can be expressed in the form: 
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where a is a dimensionless parameter. Since it has been proved that Er,eq/Er depends on n and d/h, 
the effect of variation of these parameters on a are shown in Fig. 5, with a being the slope of the 
curves. The curves obtained are approximately straight lines with a slope that decreases as n (Fig. 
5(a)) and d/h (Fig. 5(b)) increase.  

0.00 

0.25 

0.50 

0.75 

1.00 

0.00 0.25 0.50 0.75 1.00 

1-
1/

(E
r,

eq
 /E

r)
 

(Mcr/M)2 

n=0.015 
 
 
 
n=0.10 
 
  
n=0.20 
 
 

0.00 

0.25 

0.50 

0.75 

1.00 

0.00 0.25 0.50 0.75 1.00 

1-
1/

(E
r,

eq
 /E

r)
 

(Mcr/M)2 

d/h=0.75 
 
d/h=0.85 

1004



 
 
 
 
 
 

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar 

(a) for different n values (b) for different d/h values 

Fig. 7 Moment-curvature comparison for a typical FRP RC element 
 

Fig. 8 Moment-curvature comparison for a typical steel RC element 
 
 
Parameter a is represented as a function of n and d/h in Fig. 6. It can be observed that 

parameter a is strongly influenced by the variation of n with a nearly linear shape of this 
relationship. The influence of d/h on a by increasing the slope of the curves as d/h increases is also 
seen. 

As can be observed from Fig. 6, the relationship between parameter a and variables n and d/h 
can be found using linear regression analysis. The obtained equation can be expressed as for 
practical application: 

 a 10n· 11.5d h  1  (17) 

Fig. 7 shows typical moment-curvature relationships for the range of values adopted in this 
parametric study. Good agreement between the Eurocode 2 predictions and the results using the 
proposed tension-stiffening model can be observed. 
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Eq. (17) can also be applied to a conventional steel RC section that includes compressive 
reinforcement. Fig. 8 represents the moment-curvature relationship for a steel RC section with 150 
mm witdh and 200 mm depth, where n=0.06, d/h=0.85, d'/h=0.10 and ’/ varies between 0 and 
1, being ’ the compressive reinforcement ratio. As can be seen, there are no significant 
differences between the curves. 

A closed-form solution for the relative modulus of deformation Er,eq/Er as a function of the 
relative load Mcr/M can be obtained from Eqs. (15)-(17). If a relationship for Er,eq/Er based on the 
strain ratio r/r,cr is needed, the corresponding values of the strains for M and Mcr can be obtained 
from 

 
 

eqc

eq
r IE

xdM 
   (18) 

 r,cr 
Mcr d  x1 

EcI1

  (19) 

where x1, and I1 are, respectively, the neutral axis depth and moment of inertia of the uncracked 
section (as a simplification they can be substituted by the gross section parameters xg and Ig). 

 
 2.5 Application of the methodology up to failure 
 
The deductions made in the previous sections were performed assuming elastic behaviour of 

reinforcement and concrete, resulting in the procedure to model tension-stiffening suitable for the 
serviceability range of loads. This section illustrates applicability of the considered methodology 
for the entire range of loads up to failure with no loss of precision, taking into account the non-  

 
 

Fig. 9 Strains and stresses in Cracked Section Analysis (CSA) 
 

Fig. 10 Stress-strain curve of concrete in compression up to failure 
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(a) for different n values (b) for different d/h values 

Fig. 11 Comparison of moment-curvature diagrams up to failure for a typical FRP RC element 
 

 
Fig. 12 Comparison of moment-curvature diagrams up to failure for a typical steel RC element 

 
 

linear properties of materials. Validity of equations obtained for linear behaviour and serviceability 
can be justified by the reduction tendency of tension-stiffening as the load increases.  

To obtain a moment-curvature response using the proposed methodology, Cracked Section 
Analysis (CSA) could be used (Fig. 9).  

The constitutive law adopted in the present paper for concrete in compression is shown in Fig. 
10 (CEN 2004). 

Extending the simulation results presented in Figs. 7 and 8 at the advanced stages of loading 
(up to failure), resulted in moment-curvature relationships shown in Figs. 11 and 12. It can be 
observed that good agreement is found between the predictions made by Eurocode 2 and the 
proposed technique obtained both for FRP and steel reinforced members. 
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Table 1 Characteristics of the tested beams 

Beam 
Designation 

b 
(mm)

h 
(mm)

d/h
Ar 

(mm2)
Er  

(MPa)
fc 

(MPa)
Ec 

(MPa) 
fct 

(MPa) n

S2-6nm (Gribniak et al. 2013) 273 303 0.80 402 64433 56.0 38227 3.96 0.010
S5-3-8Gnm (Gribniak et al. 2013) 278 302 0.90 151 64433 45.0 36630 3.33 0.003
N-212-D1-A (Barris et al. 2013) 140 190 0.85 226 63437 32.1 25845 2.8 0.024
N-216-D1-B (Barris et al. 2013) 140 190 0.85 402 64634 32.1 25845 2.8 0.045
H-316-D1-A (Barris et al. 2013) 140 190 0.85 603 64634 54.5 28491 4.1 0.061

H-212-D1-S (Barris and Torres 2011) 140 190 0.85 226 200000 54.5 28491 4.1 0.070
 

(a) under service load (b) up to Mmax,exp 

Fig. 13 Comparison of moment-curvature diagrams of FRP RC beams with low n values 
 
 

3. Comparison with experimental data 
 

3.1 Moment-curvature curves 
 
The proposed method of modelling tension-stiffening is validated using test results of six 

concrete beams reinforced with GFRP or steel bars coming from different experimental programs 
completed earlier (Barris and Torres 2011, Gribniak et al. 2013, Barris et al. 2013). The present 
study also includes data of newly tested beam S5-3-8Gnm. The properties of the specimens and 
materials are summarised in Table 1. 

The analysis deals with the experimental curvatures averaged along the pure bending zone. The 
experimental bending moment-mean curvature response is compared with that obtained using the 
proposed methodology (Eqs. (13)-(15)) up to the service load and up to the maximum load applied 
during testing (Mmax,exp) in Figs. 13-15. It should be pointed out that beams N-212-D1-A, N-216-
D1-B, H-316-D1-A and H-212-D1-S were loaded up to failure. 

As can be seen, there is good agreement between the experimental results and those obtained 
from the equation proposed for both FRP and steel RC beams. 

 
3.2 Tension-stiffening measurement  
 
Specimen H-316-D1-b (Barris and Torres 2011) was instrumented with strain gauges, which 

1008



 
 
 
 
 
 

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar 

were placed 22 mm apart along 250 mm on the FRP (Fig. 16), to measure the tension-stiffening 
effect using average strains of the FRP bar. The specimen also had a notch in the central section to  

 
 

(a) under the service load (b) up to Mmax,exp 
Fig. 14 Comparison of moment-curvature diagrams of FRP RC beams with high n values 

 

(a) under the service load (b) up to Mmax,exp 

Fig. 15 Comparison of moment-curvature diagrams of a steel RC beams 

 

 
Fig. 16 Instrumentation details for beams H-316-D1-B 
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(a) under service load 

 
(b) up to failure 

Fig. 17 Evolution of the rebar strain along part of the length of the beam 
 

Fig. 18 Crack strain vs. average strain relationship 
 
 

control the position of the crack and it was fitted with strain gauges capable of monitoring the 
formation and development of adjacent cracks in the central zone. 

Fig. 17 shows the evolution of the rebar strains along the part of the beam that was 
instrumented (the dotted lines indicating the position of appearing cracks). During the crack 
formation phase, the strain gauges recorded the appearance of cracks with peaks in the strain 
curve, whereas once cracking was stabilised, the strain profile remained almost constant all along 
the measured length of the beam. 

In Fig. 18, the rebar strain in the midspan crack (G11 in Fig. 16) is compared to the average 
strain at the rebar between two adjacent cracks. The strain in the crack (r,cr) was obtained directly 
from the strain profile (gauge G11), whereas the average strain (r,ave) was calculated by numerical 
integration of strain gauge readings.  
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Fig. 19 Experimental and analytical values of the equivalent modulus of deformation of the reinforcement 
 

(a) under service load (b) up to failure 

Fig. 20 Experimental and proposed values of the equivalent stress-strain curve of the reinforcement 
 
 
At the crack, the tensile force is carried entirely by the reinforcement, while between cracks the 

force is carried by both the concrete and the rebar due to bond. Consequently, the average strain in 
the rebar is expected to be lower than the strain at a crack as it is observed in Fig. 18. Moreover, 
results show that once stabilized cracking is attained, an essentially linear relationship between the 
average strain and the crack strain is shown. The line representing the average strain tends to join 
the strain at the crack, which proves that at high load levels, tension-stiffening is almost negligible. 

The effect of tension-stiffening can also be drawn as an equivalent deformation modulus of the 
reinforcement (Er,eq) defined as the ratio between the stress at a flexural crack (r,cr) and the 
average strain between cracks (r,ave) (Barris and Torres 2011). If Er,eq is related to the actual 
modulus of elasticity of the reinforcement (Er), defined as the ratio of stress to strain at the crack 
(r,cr), the following relationship is obtained: 

 
Er,eq

Er


r,cr

r,ave

 (20) 

Eq. (20) gives an experimental measure of the tension-stiffening effect after cracks are formed. 
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It is presented in Fig. 19 and compared with the ratio Er,eq/Er obtained using the procedure 
proposed in the present study. The proposed methodology quite accurately follows the 
experimental trend once the first crack is formed. Obtained results show that the ratio Er,eq/Er 
decreases and tends towards a value of 1.0 as the strain increases in the stabilized cracking phase; 
which means that tension-stiffening is effectively being reduced. 

The tension-stiffening effect can be represented by an equivalent stress-strain curve of the 
reinforcement. The average stress between cracks, obtained from the strain profile, in function of 
the experimental strain at midspan crack is represented in Fig. 20. The equivalent modulus of 
deformation obtained from the present study and the bare bar modulus of elasticity are also 
depicted for comparison purposes. The proposed methodology satisfactorily follows the 
experimental trend. 

 
 

4. Conclusions 
 

The present paper introduces a methodology for numerical modelling of the tension-stiffening 
effect in flexural reinforced concrete elements using the concept of equivalent deformation 
modulus of the reinforcement. The proposed methodology has been adjusted for rectangular RC 
sections selecting the Eurocode 2 curvature prediction technique as reference. The main 
parameters influencing tension-stiffening in flexural RC structures has been rationally found. To 
model the tension-stiffening effect, a closed-form solution for the equivalent deformation modulus 
of the reinforcement has been proposed. The study draws the following specific conclusions: 

• It has been established that the equivalent modulus of deformation as well as tension-
stiffening is dependent on the product of the modular ratio and the reinforcement ratio (nρ), the 
effective-to-total depth ratio (d/h), and the level of loading expressed as the ratio between the 
applied and the cracking moments, Mcr/M. The equivalent modulus decreases as nρ, d/h, and 
M/Mcr increase. 

• The proposed methodology accurately reproduces moment-curvature behaviour as predicted 
by Eurocode 2. 

• Predicted results present good agreement with experimental data of both steel and FRP RC 
beams, including specific tests carried out to experimentally measure the tension-stiffening effect 
based on the average strain of the reinforcement. 

• Although the constitutive equations of the equivalent deformation modulus were deduced 
using elastic properties of concrete, the equations are also valid for the advanced loading stages 
with non-linear behaviour of materials. 
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Appendix A. Equivalent secant stiffness and Eucorode 2 equations. 
 
According to Fig. 2, equilibrium and strain compatibility equations for a cracked section read 

 eqcrrr bxAF 
2

1
  (A1) 

 M  Ar r d 
xeq

3









 (A2) 

   c

xeq

 r

d  xeq

 (A3) 

where c and c are the maximum stress and strain in the concrete, r and r are the stress and 
strain at the reinforcement, xeq is the position of the neutral axis depth, b is the width of the section, 
Ar is the area of reinforcement, d is the effective depth, Fr is the force in the reinforcement, M is 
the flexural moment and  is the curvature. 

Taking into account that the concrete maximum stress is 

  c  Ecc  Ecxeq  (A4) 

substituting Eq. (A4) into (A1), and (A1) into (A2) the sectional flexural moment and the force in 
the reinforcement read 

 Fr 
1

2
Ecbxeq

2   (A5) 

 M  1

2
Ec xeq

2 d 
xeq

3









   (A6) 

being Ec the modulus of elasticity of concrete.  
If the concept of equivalent secant stiffness of the reinforcement (AE)r,eq is introduced, the force 

in the reinforcement can be expressed as 

 Fr  AE r,eq
r   (A7) 

Substitution of Eq. (A3) into (A7) gives 

 Fr  AE r,eq
 d  xeq   (A8) 

and equating (A8) and (A5) allows obtaining equivalent secant stiffness of the reinforcement as 

 AE r,eq


Ecb xeq d 2

2 1 xeq d 
  (A9) 

where xeq/d can be referred as the relative depth of the compression zone. 
For a cracked member the mean curvature  due to bending moment M, taking into account the 

tension-stiffening effect, can be calculated using the Eurocode 2 approach by 
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  1 1  2   (A10) 

   (A11) 

where 1 and 2 are the curvatures at uncracked and fully-cracked states respectively, Mcr is the 
cracking moment, and  is the coefficient taking account of the duration of the loading (1.0 for a 
single short-term loading and 0.5 for sustained or repeated loading).  

From Eqs. (A10)-(A11), considering short-term loading (=1), an equivalent flexural stiffness 
can be obtained in terms of equivalent moment of inertia given by 

 Ieq 
I1I2

I2

Mcr

M
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
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2
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

2



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



  (A12) 

where I1 and I2 are the moments of inertia of the uncracked and fully cracked sections respectively.  
An equivalent moment of inertia for the cracked section in Fig. , in which the stiffness of the 

reinforcement can vary, is directly obtained from Eq. (A6) 

   (A13) 

Equating Eq. (A13), based on an equivalent stiffness of the rebar, and Eq. (A12), which derives 
from the reference model (Eurocode 2) gives 
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  (A14) 

Dividing each member of Eq. (A14) by , being Ig the gross moment of inertia 
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and rearranging terms, the following equation is obtained for the relative depth of the compression 
zone 
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